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Summary: In our previous study [1], we have compared the performance of a number of widely used discrimination meth-
ods for classifying ovarian cancer using Matrix Assisted Laser Desorption Ionization (MALDI) mass spectrometry data on 
serum samples obtained from Refl ectron mode. Our results demonstrate good performance with a random forest classifi er. 
In this follow-up study, to improve the molecular classifi cation power of the MALDI platform for ovarian cancer disease, 
we expanded the mass range of the MS data by adding data acquired in Linear mode and evaluated the resultant decrease in 
classifi cation error. A general statistical framework is proposed to obtain unbiased classifi cation error estimates and to analyze 
the effects of sample size and number of selected m/z features on classifi cation errors. We also emphasize the importance of 
combining biological knowledge and statistical analysis to obtain both biologically and statistically sound results.

Our study shows improvement in classifi cation accuracy upon expanding the mass range of the analysis. In order to obtain 
the best classifi cation accuracies possible, we found that a relatively large training sample size is needed to obviate the 
sample variations. For the ovarian MS dataset that is the focus of the current study, our results show that approximately 
20-40 m/z features are needed to achieve the best classifi cation accuracy from MALDI-MS analysis of sera. Supplementary 
information can be found at http://bioinformatics.med.yale.edu/proteomics/BioSupp2.html.

Introduction
Proteomics is an integral part of the process of understanding biological systems, pursuing drug discovery, 
and uncovering disease mechanisms. Because of their importance and their very high level of variability 
and complexity, the analysis of protein expression and protein:protein interactions is as potentially 
exciting as it is a challenging task in life science research [2]. Comparative profi ling of protein extracts 
from normal versus experimental cells and tissues enables us to potentially discover novel proteins that 
play important roles in disease pathology, response to stimuli, and developmental regulation. However, 
to conduct massively parallel analysis of thousands of proteins, over a large number of samples, in a 
reproducible manner so that logical decisions can be made based on qualitative and quantitative differ-
ences in protein content, is an extremely challenging endeavor.

Mass Spectrometry (MS) is being used increasingly for rapid identifi cation and characterization of 
protein populations. Recently, there has been extensive research directed toward the utilization of MS 
technology to build molecular diagnosis and prognosis tools for cancers [3,4,5]. Many of the papers 
have claimed ≥90% sensitivity and specifi city using a subset of selected m/z features; some of them 
even achieve perfect classifi cation [6]. But upon close inspection of some of these studies, some of 
the identifi ed m/z features correspond to background noise, which suggests some systematic bias from 
non-biological variation in the dataset [12,13,14]. In our opinion many of these studies do not give 
suffi cient importance to data pre-processing and to the appropriate interpretation of the MS data. Another 
commonly neglected area is the correct way of using cross-validation (CV). As discussed in [7], it is 
important to carry out an external CV, whereby at each stage of the validation process no information is 
used from the testing set to build a classifi er from the training set. Internal CV is used in many current 
MS studies, whereby the selection of m/z features has utilized information from all the samples, which 
will substantially under-estimate classifi cation error. In our previous study [1], our goal was to compare 
the relative performance of popular classifi cation methods in the context of an MS ovarian cancer 
dataset. For ease of comparison we chose a subset of fi xed features before we compared classifi cation 
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methods. This internal CV will most likely prove 
to seriously under-estimate classifi cation errors. 
For the current ovarian cancer data, we have found 
that (see data on the supplementary website) the 
relative performance ranking of the different 
methods tested previously [1] was not changed by 
using external versus internal CV. These results 
again support the good performance of the random 
forest (RF) [8] approach when compared to other 
classifi cation methods. In this study we use RF to 
estimate the unbiased classifi cation error for our 
ovarian cancer MS data which is derived from 
MALDI-MS analysis of desalted sera samples. In 
the meantime, we also empirically evaluate the 
impact of the number of selected m/z features and 
the sample size on classifi cation error. Our analysis 
framework provides a general guideline for the 
practice of utilizing MS for cancer or other disease 
molecular diagnosis and prognosis.

Experimental Data
We have obtained ovarian cancer and control serum 
samples from the National Ovarian Cancer Early 
Detection Program at Northwestern University 
Hospital. The Keck Laboratory then subjected 
these samples to automated desalting and MALDI-
MS on a Micromass M@LDI-L/R instrument as 
described generally at: http://info.med.yale.edu/
wmkeck/prochem/biomarker.htm.

The M@LDI-L/R mass spectrometer auto-
matically acquires two sets of data in positive 
ion detection mode. The mass range acquired is 
dependent on the mass analyzer being used, with 
700-3500 Da for refl ectron and 3450-28000 Da 
for linear. The resulting merged dataset consists of 
MS spectra that extend from 700 to 28000 Da and  
were obtained on serum samples from 93 ovarian 
cancer patients and 77 normal samples.

Methods

Classifi cation Error Estimation with RF 
RF [8] combines two useful features: Bootstrap 
to produce pseudo-replicates and random feature 
selection to improve prediction accuracy. Each 
bootstrap sample (sampled with replacement from 
the original sample) is used to generate a classifi ca-
tion tree; and the fi nal classifi er is based on voting 
from all the trees obtained from all the bootstrap 
samples. Generally the larger the number of trees, 
the more accurate the error rate estimation. In the 

construction of classifi cation trees, at each node 
split (i.e., branch) the best m/z feature is selected 
from a random subset of all the features. After the 
fi rst split the two resulting daughter populations 
of samples are “purer” in the sense that they have 
higher or lower fractions of cancer samples. Each 
of the two resulting branches is then split into 
another two branches at another m/z feature whose 
relative level of intensity can be used to best sepa-
rate cancer from control samples. Additional nodes 
(i.e., with each occurring at an m/z value that has 
the best ability to accurately classify the samples in 
that particular daughter population) will be found 
and utilized until each of the resulting daughter 
populations is 100% “pure” such that each contains 
only control or cancer samples. The random selec-
tion of features is an innovation introduced in RF 
as a way to reduce the dependence between clas-
sifi cation trees, which in turn may lead to the reduc-
tion of the classifi cation errors [8]. Typically, a 
“forest” might have 5,000 trees and each tree might 
require >20 branches depending on the sample size. 
RF can also estimate the importance of features 
based on their individual contribution to the clas-
sifi cations. For the detailed algorithm, see [1]. We 
use the R [15] interface of random forest [16] in 
our analysis. From the RF program we can derive 
the posterior probability of each sample belonging 
to each class. Based on these posterior probabili-
ties we can evaluate the sensitivity, specifi city and 
classifi cation errors based on RF. 

We can summarize our MS dataset for n samples 
in a p by n+1 matrix: (mz, X) = (mz, X1, …, Xn) 
where p is the number of m/z ratios observed, mz 
is a column vector denoting the measured m/z 
ratios, and the xi are the corresponding intensities 
for the i-th sample. We use vector Y = (yi) to denote 
the sample cancer status. Our goal is to predict yi 
based on the intensity profi le X’i = (x1i, x2i, …, xpi). 
Assume that we have g classes. RF classifi er parti-
tions the space X of protein intensity profi les into 
g disjoint subsets, A1, …, Ag, such that for a sample 
with intensity profi le X = (x1, …, xp) ∈ Aj the 
predicted class is j. 

Classifi ers are built from observations with 
known classes, which comprise the learning set 
(LS) L = {(X1, y1), …, (XnL, ynL)}. Classifi ers can 
then be applied to a test set (TS) T = {X1, …, XnT}, 
to predict the class for each observation. If the true 
classes y are known, they can be compared with 
the predicted classes to estimate the error rate of 
the classifi ers. 
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We denote the RF classifi er built from a learning 
set L by C(., L). Given a new sample (X, y), 
we can represent C(X, L) by a g-element vector 
(C1, …, Cg). If we want a hard-decision classifi er, we 
will have Ck = 1 and Ci≠k = 0, i.e. it predicts sample 
(X, y) to belong to class k. Or we also can obtain 
a probability output, Pr(Ci = 1) = Pi∈[0,1] and 
∑i=1, …, g Pi = 1, i.e. it predicts the probability that 
sample (X, y) belongs to class k is Pk.

For our ovarian cancer dataset we only have 
two classes, cancer (y = 1) and normal (y = 2) 
samples. For two-class classifi cation problems 
we can defi ne sensitivity (θ) and specifi city (η), 
which are inherently related to classifi cation errors. 
Sensitivity is also known as the true positive rate, 
which is the probability of classifying a sample 
as cancer when it actually derives from a patient 
with cancer, i.e. Pr(C(X, L) = 1|y = 1). Specifi city 
is also known as the true negative rate, which is 
the probability of classifying a sample as normal 
when it is actually from a normal sample, i.e. 
Pr(C(X, L) = 2|y = 2). The relationship between 
sensitivity and 1-specifi city is well known as a 
ROC curve in medical research.

If C(X, L) is a hard-decision classifi er, we can 
estimate sensitivity and specifi city using sample 
proportions,
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The most commonly used classifi cation error (Err) 
is estimated as
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where n1 and n2 are the sample size for the cancer 
and normal groups, 1-θ is classifi cation error for the 
cancer group, and 1-η is the classifi cation error for 
the normal group. If we have a very un-balanced 
sample set, i.e. n1>> n2 or n1>> n2, we can see that 
the previous defi nition of Err will encourage clas-

sifying all samples into the group with the larger 
sample size, which obviously is not the optimum 
approach. To avoid this problem we can use a 
balanced classifi cation error defi nition
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This error defi nition gives equal weights to 
the cancer versus control groups and makes the 
subjective assumption that specifi city and sensi-
tivity are equally important. If the latter assump-
tion is not optimal for a particular application, 
the above equation allows for easily changing the 
relative importance of specifi city versus sensitivity 
depending upon the experimental context. 

In the case where we have a probability output, 
we fi rst select a threshold α and then defi ne the 
hard-decision classifi er as

( , )C X L
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We can then estimate θ, η and Err similarly as before
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As mentioned above, the relationship between 
( )i a

%  and ( )h a
%  is the commonly used ROC curve. 

Minimum classifi cation error can be estimated as 
minα∈[0,1] ( )Err a

% . Our choice of balanced error 
rate as the representation is just one way to deal 
with an unbalanced sample size. The full informa-
tion is included in the ROC curve, which enables 
us to choose different specifi city and sensitivity 
depending on the context of specifi c problems.

Pre-processing
The purpose of pre-processing, arguably the most 
important step in MS data analysis, is to reduce the 
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effects of noise and to facilitate interpretation of 
the MS datasets. Before we submit the dataset to 
our fi nal classifi er, we carry out the following pre-
processing steps: mass alignment, normalization, 
smoothing and identifi cation of m/z data points 
that occur in peaks. The detailed pre-processing 
steps used in the current work are discussed in [17]. 
More advanced methodologies for peak alignment 
are discussed in [9,10]. 

Briefl y, mass alignment is accomplished by 
numbering refl ectron data points consecutively (in 
both a positive and negative direction) by assigning 
the observed m/z value that is closest to the 
expected MH+ for the C12 isotope of the internal 
standard Bradykinin, which is 1060.569, as data 
point zero. A similar approach is then used with the 
linear data points which are aligned by assigning 
the m/z data point closest to the expected average 
MH+ of oxidized insulin chain B, which is 3496.95, 
as data point 100,000. Spectra are normalized (so 
they each contribute more equally to the overall 
search for biomarkers), by determining a linear 
normalization factor for each spectrum which mini-
mizes the summed difference between all intensi-
ties observed within the specifi ed refl ectron + linear 
mass range and the corresponding intensities in the 
overall, baseline-corrected median spectrum for 
all samples. Baseline smoothing begins by taking 
the natural log of all intensities. A sliding window 
of 1,000 data points is then used to determine the 
least squares, robust local polynomial fi t curve 
that best represents the baseline. We then subtract 
the corresponding baseline intensity for the poly-
nomial fi t curve from each data point. Finally, 
we assume that only data points in completely 
or partially resolved peaks result from peptide or 
small protein ions and are likely to be meaningful.
To be classifi ed as occurring in a peak, at least 3 
of 4 successive data point intensities before or 
after each candidate marker data point must show 
a progressive increase or decrease in background 
corrected, normalized peak intensity. Each peak 
data point is then extended by an additional 4 data 
points before/after the last data point that passed 
the peak test. Hence at this point we include a band 
width around each peak.

CV
Since we do not have a test set, CV was utilized to 
provide a nearly unbiased estimate of the classifi ca-
tion error. The idea of CV is to randomly partition 

the original data into two parts: a training set used 
to build the classifi er, and a testing set used to esti-
mate the performance of the classifi er. As discussed 
in [7], the commonly used leave-one-out CV 
approach has high variance. K-fold CV is recom-
mended, whereby K is usually taken to be around 
5 or 10. In our study we use 5-fold CV to estimate 
classifi cation errors. It is important to perform 
peak identifi cation and biomarker selection inside 
each CV to avoid selection bias and to obtain an 
unbiased classifi cation error estimation.

Study Design
It is obvious that Err depends on the underlying 
classifi er, sample size N and the number of selected 
m/z features M. In this study we have fi xed the 
classifi er to be RF. We will evaluate the impact of 
N and M on Err. Our strategy is to model empiri-
cally the functional relationship Err(N, M) for 
a grid of values of N, M. For MS data the total 
number of features is usually very large, there are a 
total p = 130,000 m/z ratios for each of our ovarian 
cancer Linear + Refl ectron spectra and the total 
number of selected m/z features is usually in the 
range of 10 ~ 100. In our study we evaluate Err 
for M ranging from 5 to 100. The total number of 
samples is usually very small compared to the total 
number of features. There are a total of n = 170 
samples in our current ovarian cancer dataset. We 
need to carry out an extrapolation to estimate the 
impacts of N on Err. As discussed in [10], there is 
an inverse-power-law learning curve relationship 
between Err and N, Err(N) = β0 + β1N –α, which 
is approximately true for large sample size data-
sets (usually about tens of thousands of samples).
β0 is the asymptotic classification error and
(α, β1) are positive constants. Our current dataset 
has a relatively small sample size (n = 170) compared 
to its high-dimension feature space (p = 130,000). 
Under this situation it is very dangerous to rely on 
the learning curve model to extrapolate β0, which 
corresponds to an infi nite training sample size 
N = ∞. But within a limited range we can still
rely on this model to extrapolate the classifi ca-
tion error to full sample size n = 170. To estimate 
parameters (α, β0, β1), we need to obtain at least 
three observations. In our use of 5-fold CV to
estimate classifi cation errors, we fi rst used one 
of the groups as a testing set, which produces a 
training set of N = 170/5*4 = 136 samples. We then 
use two, three and four of the groups as testing sets, 
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which will give N = 102, 68, 34. For each N we 
estimate classifi cation errors with M = 5, 6, …, 100 
m/z features. We can estimate the learning curve 
based on these errors.

Results

Classifi cation Error Estimation
Figure 1 displays the 5-fold CV classifi cation 
error estimations for our ovarian cancer data. The 
optimal classification error is about 25% for 
Refl ectron data, and 21% for Linear data. Combining 
Refl ectron and Linear data, the optimal classifi ca-
tion error is reduced to about 19%. For relatively 
smaller sample size (N = 34, 68), the classifi cation 
errors for Linear data increase after adding the 
Refl ectron data, which refl ects the variation due to 
smaller sample size and the impact of noise 
from Reflectron data. For larger sample size 
(N = 102,136), the combination of Refl ectron and 
Linear data outperforms the Linear data. These 
classifi cation error comparisons refl ect that the 
contribution for sample classifi cation mainly comes 
from the Linear data. Overall we can see clearly the 
trend that a larger training set has smaller 
classifi cation errors. And for a fi xed training set, 
classifi cation error drops dramatically from 5 to 
20 m/z features and then it levels off at about 20-40 

m/z features for the combined Refl ectron+Linear 
data. With 136 samples in the training set, we can 
achieve about 19% classifi cation error. We use a 
learning curve to extrapolate Err(170, M) for 
each M. Please see the supplementary website for 
numerical values of the learning curve parameter 
estimations.

Figure 2 displays the estimated classifi cation 
errors for total sample size n=170. We can see that 
there are large improvements when the sample size 
is increased from 34 to 68 and then to 102. But 
there is not much further improvement predicted to 
occur on going from 136 samples to 170 samples. 
Overall, the classifi cation error levels off after 20 
to 40 m/z features at an optimal classifi cation error 
of about 18%.

Identifi cation of m/z Data Points 
Whose Intensities Contribute Towards 
the Correct Classifi cation of Cancer 
versus Control Sera 
One of the major interests in utilizing MS data is to 
identify important m/z features to build molecular 
diagnosis and prognosis tools. As discussed in 
[1], the RF program has some advantages over 
traditional T-statistics for biomarker identifi cation 
in terms of minimizing classifi cation errors. Here 
we apply RF to our 170 ovarian cancer samples to 
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Figure 1. Five-fold CV Estimation of Err(N, M) for Ovarian Cancer MALDI-MS Data. N is the sample size of the training set, and M is the 
number of m/z features selected.



Cancer Informatics 2006: 2128

Wu et al

rank important m/z features. To guard against false 
positives, it is very important to explore the local 
behavior of the identifi ed m/z features. To explore 
the relative intensities of all samples in one fi gure 
will make the plot obscure. Instead, we visually 
compare median, fi rst and third quartile intensities 
of normal and cancer groups in one plot. In the 
following biomarker exploration plots (Fig. 3-6), 
q0.25 is the fi rst quartile intensity, q0.5 the median 
intensity and q0.75 the third quartile intensity. We 
can clearly see the difference between cancer and 
normal groups. However, there is no single m/z 
feature that can completely distinguish cancer 
from normal groups; rather, there are considerable 
overlaps between these two groups. For some m/z 
features the normal group has higher intensities, 
while the cancer group dominates at other m/z 
features.

For the 40 identifi ed m/z features, some of 
them originate from the same peptide ion. In the 
following we show four unique and representative 
m/z features, which (especially in the case of the 
refl ectron data in Fig. 3 and 4) visually appear to 
result from the ionization of biologically mean-

ingful peptides. In Figure 3-6, regions around 4 m/z 
features are plotted, where the green lines indicate 
the exact m/z position of each potential biomarker 
as determined by the RF algorithm. 

Discussion
In this paper we provide an unbiased estimate of 
the classifi cation error rate for an ovarian cancer 
dataset composed of a single refl ectron or merged 
refl ectron + linear MALDI-MS spectrum for each 
serum sample. With Refl ectron data alone, we 
can achieve about 25% classifi cation error. After 
expanding the mass range of the MS data with the 
use of the Linear analyzer, the optimal classifi ca-
tion error achieved with 170 samples decreased 
to about 18%.

Our goal in adding the linear data was to reduce 
the classifi cation error by expanding the mass 
range – which enabled the detection of higher 
mass biomarkers (i.e., see Figures 5-6) that would 
not have been detected with a refl ectron analyzer. 
Rather than using only linear spectra, which also 
could have covered the entire 700 Da to 28,000 
Da range, we decided to use refl ectron data for 
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Figure 2. Classifi cation Error Extrapolation for Refl ectron+Linear MALDI-MS Data. N is the sample size of the training set; and M is the 
number of m/z features selected.
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the low mass region. Our reasoning for taking this 
approach is that if there are overlapping peptide 
spectra, the use of high resolution refl ectron data 
might better enable an m/z datapoint to be found 
(within an individual peptide ion envelope) that 
is not partially compromised by resulting from 
ionization of both the biomarker of interest as 
well as an unrelated peptide ion. In this regard, it 
is interesting to note that the optimal m/z for the 
biomarker whose spectrum is shown in Fig. 4 is 
not at the position of the monoisotopic ion, which 
would be close to 2358. Rather, the optimal m/z 
for this peptide biomarker is close to 2361. Another 
very important message is the correct use of CV 
for estimating prediction errors. While some other 
cancer studies using MS data have reported nearly 
perfect classifi cations, they usually result from 
internal CV which will produce serious under-
estimates of the actual classifi cation error, e.g. 
in our previous study [1], the optimal internal 
classifi cation error is about 8% compared to the 
“external” classifi cation error of 25%.

From our analysis, the number of m/z features 
has a large impact on the prediction accuracy. 
The optimal number of m/z features certainly 
depends on the properties of different datasets. 
For our current ovarian cancer MS data, 20-40 m/z 
features seem to achieve a balance between noise 
and signal. Our proposed CV methods provide a 
general framework for diagnosing the impact of 
the number of m/z features on the classifi cation 
error.

Another neglected aspect in many current 
studies is the justifi cations for numerically identi-
fi ed m/z features as being biologically meaningful. 
We agree that when classifi cation errors begin to 
be suffi ciently low to allow the corresponding m/z 
features to be clinically useful, then it would be 
advisable to identify the protein origin of those 
markers. Since we did not fi nd any signifi cant 
m/z feature that was specifi c to either the cancer 
or control sample spectra, we imagine that many 
of these markers may derive from proteins that are 
not involved in the disease process being studied 
and that they may prove to result from secondary 
effects (e.g., the disease being studied may produce 
higher than normal levels of proteases which 
might be released into the blood stream and cause 
unusually high extents of cleavage of some serum 
proteins). While these types of m/z features may 
have little or no value in furthering our under-

standing of the disease process itself, this would not 
lessen the value of these m/z features for properly 
classifying unknown samples. It also is important 
to point out that we do not currently know if the 
m/z features whose relative intensities enabled 
a >80% success rate at classifying ovarian cancer 
versus control sera samples are indeed specifi c 
to ovarian cancer. Finally, it is important also to 
note that our 80% success rate is applicable only 
to the analyzed sample set which, because it was 
composed of approximately equal numbers of sera 
from ovarian cancer versus control samples, is not 
representative of the general population. Nonethe-
less, we are extremely encouraged by the results of 
these preliminary studies and currently believe that 
the best way to improve the dynamic range of the 
MALDI-MS analyses (and the predictive ability 
of the resulting biomarkers”) upon which our 
classifi cations are based is by pre-fractionation 
of sera samples and the subsequent analysis of 
multiple spectra/sample.
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