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Abstract: Machine learning is a branch of artifi cial intelligence that employs a variety of statistical, probabilistic and 
optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from 
large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that 
depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diag-
nosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach 
is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review 
we conducted a broad survey of the different types of machine learning methods being used, the types of data being inte-
grated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including 
a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast 
cancer, and a heavy reliance on “older” technologies such artifi cial neural networks (ANNs) instead of more recently devel-
oped or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropri-
ate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods 
can be used to substantially (15-25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. 
At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of 
cancer development and progression.
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Introduction
Machine learning is not new to cancer research. Artifi cial neural networks (ANNs) and decision trees 
(DTs) have been used in cancer detection and diagnosis for nearly 20 years (Simes 1985; Maclin et al. 
1991; Ciccheti 1992). Today machine learning methods are being used in a wide range of applications 
ranging from detecting and classifying tumors via X-ray and CRT images (Petricoin and Liotta 2004; 
Bocchi et al. 2004) to the classifi cation of malignancies from proteomic and genomic (microarray) 
assays (Zhou et al. 2004; Dettling 2004; Wang et al. 2005). According to the latest PubMed statistics, 
more than 1500 papers have been published on the subject of machine learning and cancer. However, 
the vast majority of these papers are concerned with using machine learning methods to identify, clas-
sify, detect, or distinguish tumors and other malignancies. In other words machine learning has been 
used primarily as an aid to cancer diagnosis and detection (McCarthy et al. 2004). It has only been 
relatively recently that cancer researchers have attempted to apply machine learning towards cancer 
prediction and prognosis. As a consequence the body of literature in the fi eld of machine learning and 
cancer prediction/prognosis is relatively small (�120 papers).

The fundamental goals of cancer prediction and prognosis are distinct from the goals of cancer 
detection and diagnosis. In cancer prediction/prognosis one is concerned with three predictive foci: 1) 
the prediction of cancer susceptibility (i.e. risk assessment); 2) the prediction of cancer recurrence and 
3) the prediction of cancer survivability. In the fi rst case, one is trying to predict the likelihood of devel-
oping a type of cancer prior to the occurrence of the disease. In the second case one is trying to predict 
the likelihood of redeveloping cancer after to the apparent resolution of the disease. In the third case 
one is trying to predict an outcome (life expectancy, survivability, progression, tumor-drug sensitivity) 
after the diagnosis of the disease. In the latter two situations the success of the prognostic prediction is 
obviously dependent, in part, on the success or quality of the diagnosis. However a disease prognosis 
can only come after a medical diagnosis and a prognostic prediction must take into account more than 
just a simple diagnosis (Hagerty et al. 2005).
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Indeed, a cancer prognosis typically involves 
multiple physicians from different specialties using 
different subsets of biomarkers and multiple clini-
cal factors, including the age and general health of 
the patient, the location and type of cancer, as well 
as the grade and size of the tumor (Fielding et al. 
1992; Cochran 1997; Burke et al. 2005). Typically 
histological (cell-based), clinical (patient-based) 
and demographic (population-based) information 
must all be carefully integrated by the attending 
physician to come up with a reasonable prognosis. 
Even for the most skilled clinician, this is not easy 
to do. Similar challenges also exist for both physi-
cians and patients alike when it comes to the issues 
of cancer prevention and cancer susceptibility pre-
diction. Family history, age, diet, weight (obesity), 
high-risk habits (smoking, heavy drinking), and 
exposure to environmental carcinogens (UV radia-
tion, radon, asbestos, PCBs) all play a role in pre-
dicting an individual’s risk for developing cancer 
(Leenhouts 1999; Bach et al. 2003; Gascon et al. 
2004; Claus 2001; Domchek et al. 2003). Unfortu-
nately these conventional “macro-scale” clinical, 
environmental and behavioral parameters generally 
do not provide enough information to make robust 
predictions or prognoses. Ideally what is needed is 
some very specifi c molecular details about either 
the tumor or the patient’s own genetic make-up 
(Colozza et al. 2005).

With the rapid development of genomic (DNA 
sequencing, microarrays), proteomic (protein chips, 
tissue arrays, immuno-histology) and imaging 
(fMRI, PET, micro-CT) technologies, this kind of 
molecular-scale information about patients or 
tumors can now be readily acquired. Molecular 
biomarkers, such as somatic mutations in certain 
genes (p53, BRCA1, BRCA2), the appearance or 
expression of certain tumor proteins (MUC1, 
HER2, PSA) or the chemical environment of the 
tumor (anoxic, hypoxic) have been shown to serve 
as very powerful prognostic or predictive indicators 
(Piccart et al. 2001; Duffy 2001; Baldus et al. 
2004). More recently, combinations or patterns of 
multiple molecular biomarkers have been found to 
be even more predictive than single component 
tests or readouts (Savage and Gascoyne 2004; Pet-
ricoin and Liotta 2004; Duffy 2005; Vendrell et al. 
2005) If these molecular patterns are combined with 
macro-scale clinical data (tumor type, hereditary 
aspects, risk factors), the robustness and accuracy 
of cancer prognoses and predictions improves even 
more. However, as the number of parameters we 

measure grows, so too does the challenge of trying 
to make sense of all this information.

In the past, our dependency on macro-scale 
information (tumor, patient, population, and envi-
ronmental data) generally kept the numbers of 
variables small enough so that standard statistical 
methods or even a physician’s own intuition could 
be used to predict cancer risks and outcomes. 
However, with today’s high-throughput diagnostic 
and imaging technologies we now fi nd ourselves 
overwhelmed with dozens or even hundreds of 
molecular, cellular and clinical parameters. In these 
situations, human intuition and standard statistics 
don’t generally work. Instead we must increasingly 
rely on non-traditional, intensively computational 
approaches such as machine learning. The use of 
computers (and machine learning) in disease pre-
diction and prognosis is part of a growing trend 
towards personalized, predictive medicine (Weston 
and Hood 2004). This movement towards predic-
tive medicine is important, not only for patients 
(in terms of lifestyle and quality-of-life decisions) 
but also for physicians (in making treatment deci-
sions) as well as health economists and policy 
planners (in implementing large scale cancer pre-
vention or cancer treatment policies).

Given the growing importance of predictive 
medicine and the growing reliance on machine 
learning to make predictions, we believed it would 
be of interest to conduct a detailed review of pub-
lished studies employing machine learning meth-
ods in cancer prediction and prognosis. The intent 
is to identify key trends with respect to the types 
of machine learning methods being used, the types 
of training data being integrated, the kinds of end-
point predictions being made, the types of cancers 
being studied and the overall performance of these 
methods in predicting cancer susceptibility or 
patient outcomes. Interestingly, when referring to 
cancer prediction and prognosis we found that most 
studies were concerned with three “predictive” foci 
or clinical endpoints: 1) the prediction of cancer 
susceptibility (i.e. risk assessment); 2) the predic-
tion of cancer recurrence and 3) the prediction of 
cancer survivability. We also found that almost all 
predictions are made using just four types of input 
data: genomic data (SNPs, mutations, microarrays), 
proteomic data (specifi c protein biomarkers, 2D 
gel data, mass spectral analyses), clinical data 
(histology, tumor staging, tumor size, age, weight, 
risk behavior, etc.) or combinations of these three. 
In comparing and evaluating the existing studies 
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a number of general trends were noted and a 
number of common problems detected. Some of 
the more obvious trends include a rapidly growing 
use of machine learning methods in cancer predic-
tion and prognosis (Figure 1), a growing reliance 
on protein markers and microarray data, a trend 
towards using mixed (proteomic + clinical) data, 
a strong bias towards applications in prostate and 
breast cancer, and an unexpected dependency on 
older technologies such as artifi cial neural net-
works (ANNs). Among the more commonly noted 
problems was an imbalance of predictive events 
with parameters (too few events, too many param-
eters), overtraining, and a lack of external valida-
tion or testing. Nevertheless, among the better 
designed and better validated studies it was clear 
that machine learning methods, relative to simple 
statistical methods, could substantially (15-25%) 
improve the accuracy of cancer susceptibility and 
cancer outcome prediction. In other words, 
machine learning has an important role to play in 
cancer prediction and prognosis.

Machine Learning Methods
Before beginning with a detailed analysis of what 
machine learning methods work best for which 
kinds of situations, it is important to have a good 
understanding of what machine learning is – and what 
it isn’t. Machine learning is a branch of artifi cial 

intelligence research that employs a variety of 
statistical, probabilistic and optimization tools to 
“learn” from past examples and to then use that prior 
training to classify new data, identify new patterns 
or predict novel trends (Mitchell 1997). Machine 
learning, like statistics, is used to analyze and inter-
pret data. Unlike statistics, though, machine learn-
ing methods can employ Boolean logic (AND, OR, 
NOT), absolute conditionality (IF, THEN, ELSE), 
conditional probabilities (the probability of X given 
Y) and unconventional optimization strategies to 
model data or classify patterns. These latter methods 
actually resemble the approaches humans typically 
use to learn and classify. Machine learning still 
draws heavily from statistics and probability, but it 
is fundamentally more powerful because it allows 
inferences or decisions to be made that could not 
otherwise be made using conventional statistical 
methodologies (Mitchell 1997; Duda et al. 2001). 
For instance, many statistical methods are based on 
multivariate regression or correlation analysis. 
While generally very powerful, these approaches 
assume that the variables are independent and that 
data can be modeled using linear combinations of 
these variables. When the relationships are nonlin-
ear and the variables are interdependent (or condi-
tionally dependent) conventional statistics usually 
fl ounders. It is in these situations where machine 
learning tends to shine. Many biological systems 
are fundamentally nonlinear and their parameters 
conditionally dependent. Many simple physical 
systems are linear and their parameters are essen-
tially independent.

Success in machine learning is not always guar-
anteed. As with any method, a good understanding 
of the problem and an appreciation of the limitations 
of the data is important. So too is an understanding 
of the assumptions and limitations of the algorithms 
being applied. If a machine learning experiment is 
properly designed, the learners correctly imple-
mented and the results robustly validated, then one 
usually has a good chance at success. Obviously if 
the data is of poor quality, the result will be of poor 
quality (garbage in = garbage out). Likewise if there 
are more variables than events to predict then it is 
also possible to create a series of redundant learners. 
This is a set of learning algorithms that seems to 
perform at the same (low) level regardless of the 
choice of input data. The problem of too many 
variables and too few examples is called the “curse 
of dimensionality” (Bellman 1961). This curse is 
not restricted to machine learning. It also affects 
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Figure 1. A histogram showing the steady increase in published 
papers using machine learning methods to predict cancer risk, recur-
rence and outcome. The data were collected using a variety of 
keyword searches through PubMed, CiteSeer, Google Scholar, 
Science Citation Index and other online resources. Each bar 
represents the cumulative total of papers published over a two year 
period. The earliest papers appeared in the early 1990’s.
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many statistical methods as well. The only solution 
is to reduce the number of variables (features) or 
increase the number of training examples. As a 
general rule, the sample-per-feature ratio should 
always exceed 5:1 (Somorjai et al. 2003). Not only 
is the size of the training set important, so too is the 
variety of the training set. Training examples should 
be selected to span a representative portion of the 
data the learner expects to encounter. Training too 
many times on too few examples with too little 
variety leads to the phenomenon of over-training 
or simply training on noise (Rodvold et al. 2001). 
An over-trained learner, just like an overtired 
student, will generally perform poorly when it tries 
to process or classify novel data.

Sometimes conventional statistics proves to be 
more powerful or more accurate than machine 
learning. In these casesthe user's initial determina-
tions about the interdependence and nonlinearity 
of the data would have been wrong. This is not 
necessarily a weakness to machine learning, it is 
just a matter of choosing the right tool for the right 
job. Likewise, not all machine learning methods 
are created equal. Some are better for certain kinds 
of problems while others are better for other kinds 
of problems. For instance some machine learning 
algorithms scale nicely to the size of the biological 
domains, others do not. Likewise some methods 
may have assumptions or data requirements that 
render them inapplicable to the problem at hand. 
Knowing which method is best for a given problem 
is not inherently obvious. This is why it is critically 
important to try more than one machine learning 
method on any given training set. Another common 
misunderstanding about machine learning is that 
the patterns a machine learning tool fi nds or the 
trends it detects are non-obvious or not intrinsically 
detectable. On the contrary, many patterns or trends 
could be detected by a human expert – if they 
looked hard enough at the data. Machine learning 
simply saves on the time and effort needed to dis-
cover the pattern or to develop the classifi cation 
scheme. Recall that with any interesting discovery, 
it is frequently obvious to the casual observer – 
particularly after the discovery has been made.

There are three general types of machine learning 
algorithms: 1) supervised learning; 2) unsupervised 
learning and 3) reinforcement learning. They are 
essentially classifi ed on the basis of desired out-
come of the algorithm (Mitchell, 1997; Duda et al. 
2001). In supervised learning algorithms a 
“prescient provider” or teacher gives the learning 

algorithm a labeled set of training data or examples. 
These labeled examples are the training set that the 
program tries to learn about or to learn how to map 
the input data to the desired output. For instance a 
labeled training set might be a set of corrupted 
images of the number “8” (Figure 2). Since all the 
images are labeled as being the number “8” and the 
desired output is the uncorrupted “8”, the learner is 
able to train under the supervision of a teacher tell-
ing it what it is supposed to fi nd. This is the process 
by which most school children learn. In unsuper-
vised learning, a set of examples are given, but no 
labels are provided. Instead it is up to the learner to 
fi nd the pattern or discover the groups. This is 
somewhat analogous to the process by which most 
graduate students learn. Unsupervised learning 
algorithms include such methods as self-organizing 
feature maps (SOMs), hierarchical clustering and 
K-means clustering algorithms. These approaches 
create clusters from raw, unlabeled or unclassifi ed 
data. These clusters can be used later to develop 
classifi cation schemes or classifi ers.

The SOM approach (Kohonen 1982) is a spe-
cialized form of a neural network or ANN. It is 
based on using a grid of artifi cial neurons whose 
weights are adapted to match input vectors in a 
training set. In fact, the SOM was originally 
designed to model biological brain function (Koho-
nen 1982). A SOM begins with a set of artifi cial 
neurons, each havingits own physical location on 
the output map, which take part in a winner-take-
all process (a competitive network) where a node 
with its weight vector closest to the vector of inputs 
is declared the winner and its weights are adjusted 
making them closer to the input vector. Each node 
has a set of neighbors. When this node wins a 
competition, the neighbors’ weights are also 
changed, albeit to a lesser extent. The further the 
neighbor is from the winner, the smaller its weight 
change. This process is then repeated for each input 
vector for a large number of cycles. Different inputs 
produce different winners. The net result is a SOM 
which is capable of associating output nodes with 
specifi c groups or patterns in the input data set.

Interestingly, almost all machine learning algo-
rithms used in cancer prediction and prognosis 
employ supervised learning. Furthermore, most of 
these supervised learning algorithms belong to a 
specifi c category of classifi ers that classify on the 
basis of conditional probabilities or conditional 
decisions. The major types of conditional algo-
rithms include: 1) artificial neural networks 
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(ANN – Rummelhart et al. 1986); 2) decision trees 
(DT – Quinlan, 1986); 3) genetic algorithms 
(GA – Holland 1975); 4) linear discriminant 
analysis (LDA) methods; 5) k-nearest neighbor 
algorithms prognosis with more than 820 of 1585 
surveyed papers using or referring to ANNs. First 
developed by McCulloch and Pitts (1943) and later 
popularized in the 1980’s by Rumelhart et al. 
(1986), ANNs are capable of handling a wide range 
of classifi cation or pattern recognition problems. 
Their strength lies in being able to perform a range 
of statistical (linear, logistic and nonlinear regres-
sion) and logical operations or inferences (AND, 
OR, XOR, NOT, IF-THEN) as part of the classifi -
cation process (Rodvold et al. 2001; Mitchell 
1997). ANNs were originally designed to model 
the way the brain works with multiple neurons 
being interconnected to each other through mul-
tiple axon junctions. Just as with biological 
learning, the strength of the neural connections is 
strengthened or weakened through repeated 
training or reinforcement on labeled training data. 
Mathematically, these neural connections can be 
represented as a wiring table or matrix (i.e. neuron 
1 is connected to neuron 2, 4 and 7; neuron 2 is 
connected to neuron 1, 5, 6 and 8, etc.). This weight 
matrix is called a layer, in analogy to the cortical 
layers in the brain. Neural networks typically use 

multiple layers (called hidden layers) to process their 
input and generate an output (Figure 2). To comply 
with the mathematical structure of each layer, input 
and output data is normally structured as a string, 
or vector, of numbers. One of the challenges in using 
ANNs is mapping how the real-world input/output 
(an image, a physical characteristic, a list of gene 
names, a prognosis) can be mapped to a numeric 
vector. In ANNs the adjustment of neural connection 
strengths is usually done via an optimization tech-
nique called back-propagation (short for backwards 
propagation of errors – Rumelhart et al. 1986). This 
is a derivative-based process that compares the 
output of one layer to the preceding layer’s table. In 
very simple terms the answers or labeled training 
data are used to progressively modify the numbers 
in the neural network’s weight matrices. A learning 
or information-transfer function (usually a sigmoi-
dal curve) that is easily differentiable is required for 
back propagation. Most ANNs are structured using 
a multi-layered feedforward architecture, meaning 
they have no feedback, or no connections that loop. 
The design and structure of an ANN must be cus-
tomized or optimized for each application. Simply 
choosing a generic ANN architecture or naively 
structuring a generic input/output schema can lead 
to very poor performance or extremely slow training. 
Another disadvantage of ANNs is the fact that they 

Training           Layer 1   Layer 2       Output 
Set 

nodes 

Figure 2. An example of how a machine learner is trained to recognize images using a training set (a corrupted image of the number “8”) 
which is labeled or identifi ed as the number “8”.
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are a “black-box” technology. Trying to fi gure out 
why an ANN didn't work or how it performs its 
classifi cation is almost impossible to discern. In 
other words, the logic of a trained ANN is not easy 
to decipher.

In contrast to ANNs, the logic of decision trees 
(DTs) is very easy to discern. Formally a decision 
tree is a structured graph or fl ow chart of decisions 
(nodes) and their possible consequences (leaves or 
branches) used to create a plan to reach a goal 
(Quinlan, 1986; Mitchell 1997). Decision trees have 
been around for centuries (especially in taxonomy) 
and are a common component to many medical 
diagnostic protocols. An outline of a simple decision 
tree for breast cancer diagnosis is given in Figure 3. 
Normally decision trees are designed through con-
sultation with experts and refi ned through years of 
experience or modifi ed to comply with resource 
limitations or to limit risk. However decision tree 
learners also exist which can automatically construct 
decision trees given a labeled set of training data. 
When decision tree learners are used to classify data 
the leaves in the tree represent classifi cations and 
branches represent conjunctions of features that lead 
to those classifi cations. A decision tree can be learned 
by progressively splitting the labeled training data 

into subsets based on a numerical or logical test 
(Quinlan 1986). This process is repeated on each 
derived subset in a recursive manner until further 
splitting is either not possible, or a singular classifi -
cation is achieved. Decision trees have many advan-
tages: they are simple to understand and interpret, 
they require little data preparation, they can handle 
many types of data including numeric, nominal 
(named) and categorical data, they generate robust 
classifi ers, they are quick to “learn” and they can be 
validated using statistical tests. However DTs do not 
generally perform as well as ANNs in more complex 
classifi cation problems (Atlas et al. 1990).

A somewhat newer machine learning technique 
is called a support vector machine or SVM (Vapnik, 
1982; Cortes and Vapnik 1995; Duda et al. 2001). 
SVMs are well known in the world of machine 
learning but almost unknown in the fi eld of cancer 
prediction and prognosis (see Table 2). How an 
SVM works can best be understood if one is given 
a scatter plot of points, say of tumor mass versus 
number of axillary metastases (for breast cancer) 
among patients with excellent prognoses and poor 
prognoses (Figure 4). Two clusters are obviously 
evident. What the SVM machine learner would do 
is fi nd the equation for a line that would separate 

Lump detected
by self exam

Mammogram
suspicious 

Biopsy shows
malignancy

Self exam 
in 1 month

No biopsy

Non-malignant
cyst 

Lumpectomy +
Chemo 

No                                        Yes

No                                        Yes

No                                        Yes 

Figure 3. An example of a simple decision tree that might be used in breast cancer diagnosis and treatment. This is an example of a tree 
that might be formulated via expert assessment. Similar tree structures can be generated by decision tree learners.
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the two clusters maximally. If one was plotting more 
variables (say volume, metastases and estrogen 
receptor content) the line of separation would 
become a plane. If more variables were included the 
separation would be defi ned by a hyperplane. The 
hyperplane is determined by a subset of the points 
of the two classes, called support vectors. Formally, 
the SVM algorithm creates a hyperplane that sepa-
rates the data into two classes with the maximum 
margin – meaning that the distance between the 
hyperplane and the closest examples (the margin) 
is maximized. SVMs can be used to perform non-
linear classifi cation using what is called a non-linear 
kernel. A non-linear kernel is a mathematical func-
tion that transforms the data from a linear feature 
space to a non-linear feature space. Applying dif-
ferent kernels to different data sets can dramatically 
improve the performance of an SVM classifi er. 
LikeANNs, SVMs can be used in a wide range of 
pattern recognition and classifi cation problems rang-
ing from hand writing analysis, speech and text 
recognition, protein function prediction and medical 
diagnosis (Duda et al. 2001). SVMs are particularly 
well suited to non-linear classifi cation problems, as 
are k-nearest neighbor approaches (see Table 1).

A Survey of Machine Learning 
Applications in Cancer Prediction
In preparing this review several electronic databases 
were accessed including PubMed (biomedical 

literature), the Science Citation Index (biomedical, 
engineering, computing and physico-chemical 
literature), CiteSeer (computing literature), Google 
and Google Scholar (web-accessible scientific 
literature). Query terms included “cancer and 
machine learning”, “cancer prediction and machine 
learning”, “cancer prognosis and machine learning”, 
“cancer risk assessment and machine learning” as 
well as multiple sub-queries with specifi c types of 
machine learning algorithms. The relevance of the 
individual papers was assessed by reading the titles 
and abstracts and identifying papers that used rec-
ognizable machine learning methods as well as 
molecular, clinical, histological, physiological or 
epidemiological data in carrying out a cancer prog-
nosis or prediction. Papers that focused on diagno-
ses or simple tumor classifi cations were excluded 
as were papers that had coincidental appearances of 
the words “machine” or “learning” in their abstracts. 
A PubMed search of “cancer and machine learning” 
yielded 1585 results, while searches of “cancer 
prediction and machine learning” and “cancer prog-
nosis and machine learning” yielded 174 and 240 
hits respectively. A detailed review of these abstracts 
led to the identifi cation of 103 relevant papers of 
which 71 could be accessed through various library 
holdings. Using CiteSeer, a search with the terms 
“cancer and machine learning” yielded 349 results, 
of which 12 (3.4%) were deemed relevant to cancer 
prognosis. Using Google Scholar, a search using 
“cancer prognosis and ‘machine learning’” yielded 
996 results, of which 49 (4.9%) were judged relevant 
to cancer prognosis. Many of these papers were 
previously identifi ed in the PubMed searches as 
were the vast majority of the hits in the Science 
Citation Index searches. From the initial group of 
papers identifi ed from these electronic searches, 
their reference lists were further consulted to iden-
tify additional papers of interest or relevance. In the 
end more than 120 relevant papers, going as far back 
as 1989, were identifi ed. Of these, 79 papers could 
be accessed from existing library holdings and were 
selected for more detailed analysis (Table 2). While 
it is impossible to be certain that we achieved com-
plete coverage of all literature on machine learning 
and cancer prediction/prognosis, we believe that a 
signifi cant portion of the relevant literature has been 
assessed for this review.

From our analysis of the literature several trends 
were noted. As has been remarked previously, the use 
of machine learning in cancer prediction and progno-
sis is growing rapidly, with the number of papers 
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Figure 4. A simplifi ed illustration of how an SVM might work in 
distinguishing between basketball players and weightlifters using 
height/weight support vectors. In this simple case the SVM has 
identifi ed a hyperplane (actually a line) which maximizes the separa-
tion between the two clusters.
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Table 1. Summary of benefi ts, assumptions and limitations of different machine learning algorithms

Machine Learning 
Algorithm Benefi ts Assumptions and/or Limitations
Decision Tree 
(Quinlan 1986)

•  easy to understand and effi cient
training algorithm

•  order of training instances has 
no effect on training

•  pruning can deal with the 
problem of overfi tting

•  classes must be mutually exclusive
•  fi nal decision tree dependent upon order 

of attribute selection
•  errors in training set can result in overly 

complex decision trees
•  missing values for an attribute make it 

unclear about which branch to take when 
that attribute is tested

Naïve Bayes 
(Langley et al 1992)

•  foundation based on statistical 
modelling

•  easy to understand and effi cient 
training algorithm

•  order of training instances has
no effect on training

•  useful across multiple domains

•  assumes attributes are statistically 
independent*

•  assumes normal distribution on numeric 
attributes

•  classes must be mutually exclusive
•  redundant attributes mislead classifi cation
•  attribute and class frequencies affect 

accuracy
k-Nearest Neighbour 
(Patrick & Fischer 1970; 
Aha 1992)

•  fast classifi cation of instances
•  useful for non-linear

classifi cation problems
•  robust with respect to irrelevant

or novel attributes
•  tolerant of noisy instances or

instances with missing attribute
values

•  can be used for both regression
and classifi cation

•  slower to update concept description
•  assumes that instances with similar 

attributes will have similar classifi cations
•  assumes that attributes will be equally 

relevant
•  too computationally complex as number of 

attributes increases

Neural Network 
(Rummelhart et al 1986)

•  can be used for classifi cation
or regression

•  able to represent Boolean
functions (AND, OR, NOT)

•  tolerant of noisy inputs
•  instances can be classifi ed by

more than one output

•  diffi cult to understand structure of 
algorithm

•  too many attributes can result in 
overfi tting

•  optimal network structure can only be 
determined by experimentation

Support Vector Machine 
(Vapnik 1982; Russell and 
Norvig, p 749-52)

•  models nonlinear class
boundaries

•  overfi tting is unlikely to occur
•  computational complexity

reduced to quadratic optimization 
problem

•  easy to control complexity of
decision rule and frequency 
of error

•  training is slow compared to Bayes and 
Decision Trees

•  diffi cult to determine optimal parameters 
when training data is not linearly 
separable

•  diffi cult to understand structure of 
algorithm

Genetic Algorithm 
(Holland 1975)

•  simple algorithm, easy to
implement

•  can be used in feature
classifi cation and feature
selection

•  primarily used in optimization
•  always fi nds a “good” solution 

(not always the best solution)

•  computation ordevelopment of scoring 
function is non trivial

•  not the most effi cient method to fi nd some 
optima, tends to fi nd local optima 
rather than global

•  complications involved in the 
representation of training/output data

increasing by 25% per year (Figure 1). While it is clear 
that machine learning applications in cancer predic-
tion and prognosis are growing, so too is the use of 
standard statistically-based predictive methods.

In particular, we looked at the frequency with 
which “cancer prediction prognosis methods” and 

“cancer risk assessment prediction methods” 
occurred in PubMed. These queries yielded 
1061 and 157 hits respectively, giving a non-
overlapping set of 1174 papers. Removing the 53 
papers with machine learning components in this 
set, we were left with 1121 papers. While a detailed 
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review of each abstract was not possible, a random 
sampling indicated that ~80% of these papers were 
relevant (890 papers) in that they used statistical 
approaches to predict or prognosticate cancer 
outcomes. Therefore these data suggest that 
machine learning methods account for 103/890 
(11%) of all PubMed papers describing cancer 
prediction or prognosis methodology. Overall, the 
same yearly growth trends (i.e. near exponential) 
in prediction and prognosis were observed for the 
statistical methods as for the machine learning 
methods.

When looking at the types of predictions or 
prognoses being made, the vast majority (86%) are 
associated with predicting cancer mortality (44%) 
and cancer recurrence (42%). However, a growing 
number of more recent studies are now aimed at 
predicting the occurrence of cancer or the risk fac-
tors associated with developing cancer. As a gen-
eral rule, regardless of the machine learning 
method used, the type of prediction being made or 
the type of cancer being evaluated, machine learn-
ing methods appear to improve the accuracy of 
predictions by and average of 15-25% over alterna-
tive or conventional approaches (Table 2).

In assessing how these predictions were made 
it appears that the majority (53%) studies relied 
on clinical (cancer staging, cellular histology, 
nuclear markers) or demographic data (age, 
weight, smoking) – either alone or in combination 
with other molecular biomarkers. While histo-
logical data is generally more accessible, the 
ambiguity or pathologist-specifi c peculiarities of 
many histopathological assessments almost 
always makes it diffi cult to generalize or transfer 
a machine learning tool trained on this kind of data 
to other clinical settings. Given the limitations of 
using histological assessments in machine learn-
ing, there is an encouraging trend among more 
recent studies to use more robustly measurable 
features such as specifi c protein markers, gene 
mutations and gene expression values as input 
data. Approximately 47% of studies used this 
molecular (i.e. proteomic or genomic) data either 
alone (25%) or in combination (22%) with clinical 
data. Given the precision of most molecular assays 
(with the possible exception of microarray data), 
we believe the results from these studies should 
be more easily or robustly transferable to other 
clinical settings.

As seen in Figure 5, there is strong bias among 
scientists to use machine learning towards predicting 

outcomes or risks associated with breast (24%) 
and prostate (20%) cancer. This, no doubt, refl ects 
the higher frequency of these cancers among 
patients in Europe and North America. Neverthe-
less, machine learning methods appear to have 
been successfully used in predicting outcomes or 
risks in nearly a dozen different kinds of cancer. 
This suggests that machine learning methods can 
be quite generally applied to cancer prediction and 
prognosis. Figure 5 also illustrates the distribution 
of the types of machine learning methods applied 
to different kinds of cancer predictions. Almost 
70% of all reported studies use neural networks 
as their primary (and sometimes only) predictor. 
Support vector machines are a distant second with 
9%, while clustering and decision trees each 
account for about 6%. Genetic algorithms and 
other methods (naïve Bayes, fuzzy logic) are rarely 
used (Table 2). This is both surprising and a bit 
disappointing. ANNs are relatively old machine 
learning technologies which yield so-called 
“black-box” results. That is, their performance and 
classifi cation processes are not easily explained or 
rationalized. The existence of other methods 
(SVMs, DTs, NBs) which inherently provide easily 
accessible explanations appears not to be widely 
known among cancer informaticians. Overall, 
many of the papers reviewed for this survey were 
of generally high quality. Some of the better papers 
are discussed in more detail under the “Case Stud-
ies” section of this review. However, a disturbing 
number of studies lacked suffi cient internal or 
external validation, were trained on far too few 
examples, tested on only a single machine learner 
or had no well-defi ned standard with which to 
compare the performance of the reported algo-
rithm. These problems are discussed in more 
detail under the section entitled “Limitations and 
Lessons”.

Case Study 1 – Cancer Risk 
or Susceptibility Prediction
Of the 79 papers surveyed in this review, relatively 
few papers (just 3) employed machine learning to 
predict cancer risk susceptibility. One of the more 
interesting papers (Listgarten et al. 2004), used 
single nucleotide polymorphism (SNP) profi les 
of steroid metabolizing enzymes (CYP450s) 
to develop a method to retrospectively predict 
the occurrence of “spontaneous” breast cancer. 
Spontaneous or non-familial breast cancer accounts 
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for about 90% of all breast cancers (Dumitrescu 
and Cotarla 2005). The hypothesis in this study 
was that certain combinations of steroid-metabo-
lism gene SNPs would lead to the increased accu-
mulation of environmental toxins or hormones in 
breast tissue leading to a higher risk for breast 
cancer. The authors collected SNP data (98 SNPs 
from 45 different cancer-associated genes) for 
63 patients with breast cancer and 74 patients 
without breast cancer (control). Key to the success 
of this study was the fact that the authors employed 
several methods to reduce the sample-per-feature 
ratio and investigated multiple machine learning 
methods to fi nd an optimal classifi er. Specifi cally, 
from a starting set of 98 SNPs the authors quickly 
reduced this set to just 2-3 SNPs that seemed 
maximally informative. This reduced the sample-
per-feature ratio to a respectable 45:1 (for 3 SNPs) 
and 68:1 (for 2 SNPs) instead of close to 3:2 (had 
all 98 SNPs been used). This allowed the study to 
avoid falling victim to the “curse of dimensional-
ity” (Bellman 1961; Somorjai etal. 2003). Once 
the sample size was reduced, several machine 
learning techniques were employed including a 
naïve Bayes model, several decision tree models 
and a sophisticated support vector machine (SVM). 
The SVM and naïve Bayes classifi ers attained the 
highest accuracy using only a set of 3 SNPs and 

the decision tree classifi er attained the highest 
accuracy using a set of 2 SNPs. The SVM classifi er 
performed the best with an accuracy of 69%, while 
the naïve Bayes and decision tree classifiers 
achieved accuracies of 67% and 68%, respectively. 
These results are approximately 23-25% better than 
chance. Another notable feature to this study was 
the extensive level of cross validation and confi r-
mation performed. The predictive power of each 
model was validated in at least three ways. Firstly, 
the training of the models were assessed and 
monitored with 20-fold cross-validation. A boot-
strap resampling method was employed by per-
forming the cross-validation 5 times and averaging 
the results so as to minimize the stochastic element 
involved with partitioning of the samples. Sec-
ondly, to minimize the bias in feature selection (i.e. 
selecting the most informative subset of SNPs), 
the selection process was performed within each 
fold for a total of 100 times (5 times for each of 
the 20 folds). Finally, the results were compared 
against a random permutation test which at best, 
had a predictive accuracy of 50%. While the 
authors attempted to minimize the stochastic ele-
ment involved with partitioning of the samples, a 
better method may have been to use leave-one-out 
cross-validation which would have removed this 
stochastic element completely. That being said, the 
multiple cross-validations resulted in a standard 
deviation that was not more than 4% for any of the 
reported accuracies and since all the methods per-
formed close to 25% better than chance, this stan-
dard deviation is deemed negligible. While no 
external validation set was reported in this study, 
we have recently learned that the results described 
in this paper have been duplicated with a simi-
lar follow-on study of another 200 individuals 
(S. Damaraju, personal communication). Overall, 
this study nicely illustrates how the proper design, 
careful implementation, appropriate data selec-
tion and thorough validation of multiple machine 
learners can produce a robust and accurate cancer-
risk prediction tool. It also highlights how machine 
learning can reveal important insights into the 
biology and polygenic risk factors associated with 
spontaneous or non-familial breast cancer.

Case Study 2: Prediction of Cancer 
Survivability
Nearly half of all machine learning studies on 
cancer prediction were focused on predicting 
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Figure 5. A histogram showing the frequency with which different 
types of machine learning methods are used to predict different types 
of cancer. Breast and prostate cancer dominate, however a good 
range of cancers from different organs or tissues also appear to be 
compatible with machine learning prognoses. The “other” cancers 
include brain, cervical, esophageal, leukemia, head, neck, ocular, 
osteosarcoma, pleural mesothelioma, thoracic, thyroid, and trophob-
lastic (uterine) malignancies. Figure 1.
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patient survivability (either 1 year or 5 year sur-
vival rates). One paper of particular interest (Futs-
chik et al. 2003) used a hybrid machine learning 
approach to predict outcomes for patients with 
diffuse large B-cell lymphoma (DLBCL). Spe-
cifi cally, both clinical and genomic (microarray) 
data were combined to create a single classifi er to 
predict survival of DLBCL patients. This approach 
differs somewhat from the study of Listgarten et al. 
(2004) which only employed genomic (SNP) data 
in its classifi er schema. Futschik et al. hypothe-
sized, correctly, that clinical information could 
enrich microarray data such that a combined pre-
dictor would perform better than a classifi er based 
on either microarray data alone or clinical data 
alone. In assembling the test and training samples, 
the authors collected microarray expression data 
and clinical information for 56 DLBCL patients. 
The clinical information was obtained from the 
International Prediction Index (IPI) which consists 
of a set of risk factors, that when properly assessed, 
allows patients to be separated into groups rang-
ing from low-risk to high-risk. The data from 
the patient’s IPI classifi cations was then used to 
create a simple Bayesian classifi er. This classifi er 
achieved an accuracy of 73.2% in predicting the 
mortality of DLBCL patients. Separately from the 
Bayesian classifier, several different types of 
“evolving fuzzy neural network” (EFuNN) classi-
fi ers were also developed to handle the genomic 
data. The best EFuNN classifi er used a subset of 
17 genes from the microarray data. This optimal 
EFuNN had an accuracy of 78.5%. The EFuNN 
classifi er and the Bayesian classifi er were then 
combined into a hierarchical modular system to 
generate a consensus prediction. This hybrid clas-
sifier attained an accuracy of 87.5%, a clear 
improvement over the performance of either clas-
sifi er alone. This was also 10% better than the 
best performing machine learning classifi er (77.6% 
by SVMs).

The EFuNN classifi er was validated using a 
leave-one-out cross-validation strategy. This was 
likely due to the small sample size. As with Case 
Study #1, no external validation set was available 
to test the generality of the model. With only 
56 patients (samples) being classifi ed via 17 gene 
features, the sample per feature ratio (SFR) is just 
over 3. As a rule, an SFR of less than 5 does not 
necessarily guarantee a robust classifi er (Somorjai 
et al. 2003). However, it is quite evident that 
the authors were aware of this issue and went to 

considerable lengths to justify their approach by 
explaining, in detail, the inner workings of their 
classifi er. This included a description of how the 
Bayesian classifi er was built, how the EFuNN 
works, and how the two classifi ers work together 
to give a single prediction. In addition, the authors 
also investigated, and subsequently confi rmed, the 
independence of the microarray data from the 
clinical data. This attention to detail is particularly 
exemplary for a machine learning investigation of 
this kind. This study nicely demonstrates how the 
power of using both clinical and genomic data in 
cancer prognosis can substantially enhance predic-
tion accuracy.

Case Study 3: Prediction of Cancer 
Recurrence
A total of 43% of the studies analyzed for this 
review applied machine learning towards the 
prediction of cancer relapse or recurrence. One 
particularly good example is the study of De Lau-
rentiis et al. (1999), which actually addresses some 
of the drawbacks noted in the previous studies. 
These authors aimed to predict the probability of 
relapse over a 5 years period for breast cancer 
patients. A combination of 7 prognostic variables 
was used including clinical data such as patient 
age, tumor size, and number of axillary metastases. 
Protein biomarker information such as estrogen 
and progesterone receptor levels was also included. 
The aim of the study was to develop an automatic, 
quantitative prognostic method that was more reli-
able than the classical tumor-node-metastasis 
(TNM) staging system. TNM is a physician-based 
expert system that relies heavily on the subjective 
opinion of a pathologist or expert clinician. The 
authors employed an ANN-based model that used 
data from 2441 breast cancer patients (times 7 data 
points each) yielding a data set with more than 
17,000 data points. This allowed the authors to 
maintain a sample-to-feature ratio of well over the 
suggested minimum of 5 (Somorjai et al. 2003). 
The entire data set was partitioned into three equal 
groups: training (1/3), monitoring (1/3), and test 
sets (1/3) for optimization and validation. In addi-
tion, the authors also obtained a separate set of 310 
breast cancer patient samples from a different 
institution, for external validation. This allowed 
the authors to assess the generalizability of their 
model outside their institution—a process not done 
by the two previously discussed studies.
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This study is particularly notable not only for 
the quantity of data and the thoroughness of valida-
tion, but also for the level of quality assurance 
applied to the data handling and processing. For 
instance, the data was separately entered and stored 
in a relational database and all of it was indepen-
dently verifi ed by the referring physicians to main-
tain quality. With 2441 patients and 17,000 data 
points in the data set, the sample size was suffi -
ciently large that a normal population distribution 
of breast cancer patients could be assumed within 
the data set, even after partitioning. Regardless, 
the authors explicitly verifi ed this assumption by 
looking at the distribution of the data for the 
patients within each set (training, monitoring, test, 
and external) and showed that the distributions 
were relatively similar. This quality assurance and 
attention to detail allowed the authors to develop 
a very accurate and robust classifi er.

Since the aim of the study was to develop a model 
that predicted relapse of breast cancer better than 
the classical TNM staging system, it was important 
for the ANN model to be compared to TNM staging 
predictions. This was done by comparing the per-
formance using a receiver operator characteristic 
(ROC) curve. The ANN model (0.726) was found 
to outperform the TNM system (0.677) as measured 
by the area under the ROC curve. Thi s study is an 
excellent example of a well-designed and well-
tested application of machine learning. A suffi ciently 
large data set was obtained and data for each sample 
was independently verifi ed for quality assurance 
and accuracy. Furthermore, blinded sets for valida-
tion were available from both the original data set 
and from an external source to assess the generality 
of the machine learning model. Finally, the accuracy 
of the model was explicitly compared to that of a 
classical prognostic scheme, TNM staging. Perhaps 
the one drawback to this study was the fact that the 
authors only tested a single kind of machine learning 
(ANN) algorithm. Given the type and quantity of 
data used, it is quite possible that their ANN model 
may have been outperformed by another machine 
learning technique.

Lessons, Limitations 
and Recommendations
The 3 case studies outlined in the preceding pages 
are just a few examples of how well-designed 
machine learning experiments should be conducted 
and how the methods and results should be 

described, validated and assessed – especially in 
cancer prediction and prognosis. There are obvi-
ously many other examples of equally good stud-
ies with equally impressive results (see Table 2). 
However, it is also important to note that not all 
machine learning studies are conducted with the 
same rigor or attention to detail as with these case 
studies. Being able to identify potential problems 
in either the experimental design, validation or 
learner implementation is critical not only for those 
wishing to use machine learning, but also for those 
needing to evaluate different studies or to assess 
different machine learning options.

One of the most common problems seen among 
the studies surveyed in this review was the lack of 
attention paid to data size and learner validation. 
In other words, there are a number of studies with 
sloppy experimental design. A minimum require-
ment for any machine learning exercise is having 
a suffi ciently large data set that can be partitioned 
into disjoint training and test sets or subjected to 
some reasonable form of n-fold cross-validation 
for smaller data sets. Typically 5-fold (iteratively 
taking 20% of the training data out to serve as test-
ing data) or 10-fold cross-validation (iteratively 
taking 10% of the training data out to serve as test-
ing data) is suffi cient to validate most any learning 
algorithm. This kind of rigorous internal validation 
is critical to creating a robust learner that can con-
sistently handle novel data. Beyond the standard 
practice of internal validation, it is particularly 
benefi cial to perform a validation test using an 
external data source. External validation is an 
important “sanity” check and it also helps to catch 
or minimize any bias that may be imposed by site 
or person-specifi c clinical measurement practices. 
Of course, this external validation set must also be 
of suffi ciently large size to ensure reproducibility.

As has been frequently noted before, the size of 
a given training set has several implications per-
taining to robustness, reproducibility and accuracy. 
The fi rst implication is that for a smaller sample 
size, almost any model is prone to overtraining. 
Overtraining can lead to reported accuracies that 
may be misleading or erroneous. For instance, one 
early study reported only a single misclassifi cation 
during the training and testing of an ANN for pre-
dicting the survival of hepatectomized patients 
using 9 separate features (Hamamoto et al. 1995). 
However, the entire data set (training and testing) 
consisted of just 58 patients. This particular study 
then used an external data set to validate the 
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model where the authors prospectively predicted 
the survival outcome with 100% accuracy.

However, the external test set only consisted of 
11 patients. The fact that 100% accuracy is attained 
for a prospective prediction is impressive, but 
given the size of the validation set and the small 
sample-per-feature ratio, some doubt may be cast 
on the robustness of the predictor. Certainly a larger 
validation set would be desirable to reinforce the 
claim of 100% accuracy. In another example, only 
28 cases were used to build an ANN for predicting 
throat cancer recurrence that made use of the 
expression levels of 60 genes from microarray data 
(Kan et al. 2004). The accuracy of the model was 
claimed to be 86%, but this is particularly suspect 
given the very small sample size. Indeed it is quite 
likely that this ANN was over-trained.

The size of a given data set also signifi cantly 
affects the sample-per-feature ratio. As a rule, the 
sample-per-feature ratio should be at least 5-10 
(Somorjai et al. 2003). Small sample-per-feature 
ratios are a particularly big problem for microarray 
studies, which often have thousands of genes (ie 
features), but only hundreds of samples. The study 
by Ohira et al. (2005) provides one such example 
of the problems one may encounter trying to pro-
cess too much microarray data. These authors 
created a probabilistic output statistical classifi er 
to predict prognosis of neuroblastoma patients 
using microarray data from 136 tumor samples. 
Each microarray had 5340 genes, leading to a 
sample-per-feature ratio of ~0.025. A sample-per-
feature ratio this small is highly susceptible to the 
problems of overtraining. Furthermore, with a 
sample-per-feature ratio of this size it is also pos-
sible to develop highly redundant classifi cation 
models which perform equally well despite being 
trained on different subsets of genes. The problem 
with redundant models is that the robustness of any 
one model cannot be guaranteed as more test cases 
become available.

Data size is not the only limitation for effective 
machine learning. Data set quality and careful 
feature selection are also equally important (recall: 
“garbage in=garbage out”). For large data sets data 
entry and data verifi cation are of paramount impor-
tance. Often careless data entry can lead to simple 
off-by-one errors in which all the values for a 
particular variable are shifted up or down by one 
row in a table. This is why independent verifi cation 
by a second data-entry curator or data checker is 
always beneficial. Further verification or spot 

checking of data integrity by a knowledgeable 
expert, not just a data entry clerk, is also a valuable 
exercise. Unfortunately, the methods employed to 
ensure data quality and integrity are rarely dis-
cussed in most machine learning papers.

Just as data quality is important so too is feature 
quality. Certainly the subset of features chosen to 
train a model could mean the difference between 
a robust, accurate model and one that is fl awed and 
inaccurate. Ideally features should be chosen that 
are reproducible and precisely measurable from 
one lab (or clinic) to the next. One study (Delen 
et al. 2005) used “primary site code” and “site 
specifi c surgery code” as features to predict breast 
cancer survivability. While these clinical features 
may be helpful in determining the outcome for 
breast cancer patients at this particular hospital, 
for this moment in time, they may become irrele-
vant overtime. Even worse, if new site codes or 
site specifi c surgery codes are created, the model 
will have to be re-trained to account for the new 
codes. Similar feature selection problems often 
occur with histological assessments. As good as 
many pathologists are there is always some incon-
sistency (up to 30% in many cases) between dif-
ferent histopathological assessments from different 
sites or different pathologists. As a rule, the best 
features are those that are highly reproducible, 
universal or absolute (age, gender, weight, certain 
biomarker measurements, etc). Even with these 
seemingly robust features it is important to remem-
ber that clinical data sets are not static entities. 
With time the importance or relevance of these 
clinical measures may evolve over time with some 
features being added, modifi ed or deleted. There-
fore a classifi er must also be able to adapt to dif-
ferent feature sets over time too.

Another important lesson that was learned from 
assessing many of these machine learning papers 
was the value of using multiple predictor models 
based on different machine learning techniques. 
While ANNs are often considered to be very 
sophisticated and advanced machine learning 
methods, ANNs are not always the best tools for 
the job. Sometimes simpler machine learning 
methods, like the naïve Bayes and decision tree 
methods can substantially outperform ANNs 
(Delen et al. 2005). Assessing the performance 
of a machine learning predictor against other 
predictors is critical to choosing the optimal tool. 
It is also critical to deciding if the method is any 
better than previously existing schemes. Ideally, 
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Table 2: Survey of machine learning methods used in cancer prediction showing the types of cancer, clinical 
endpoints, choice of algorithm, performance and type of training data.

Cancer 
Type

Clinical 
Endpoint

Machine 
Learning 
Algorithm Benchmark

Improvement 
(%)

Training
Data Reference

bladder recurrence fuzzy logic statistics 16 mixed Catto et al, 2003
bladder recurrence ANN N/A N/A clinical Fujikawa et al, 2003
bladder survivability ANN N/A N/A clinical Ji et al, 2003
bladder recurrence ANN N/A N/A clinical Spyridonos et al, 2002
brain survivability ANN statistics N/A genomic Wei et al, 2004
breast recurrence clustering statistics N/A mixed Dai et al, 2005
breast survivability decision 

tree
statistics 4 clinical Delen et al, 2005

breast susceptibility SVM random 19 genomic Listgarten et al, 2004
breast recurrence ANN N/A N/A clinical Mattfeldt et al, 2004
breast recurrence ANN N/A N/A mixed Ripley et al, 2004
breast recurrence ANN statistics 1 clinical Jerez-Aragones et al, 

2003
breast survivability ANN statistics N/A clinical Lisboa et al, 2003
breast treatment 

response
ANN N/A N/A proteomic Mian et al, 2003

breast survivability clustering statistics 0 clinical Seker et al, 2003
breast survivability fuzzy logic statistics N/A proteomic Seker et al, 2002
breast survivability SVM N/A N/A clinical Lee et al, 2000
breast recurrence ANN expert 5 mixed De Laurentiis et al, 

1999
breast survivability ANN statistics 1 clinical Lundin et al, 1999
breast recurrence ANN statistics 23 mixed Marchevsky et al, 1999
breast recurrence ANN N/A N/A clinical Naguib et al, 1999
breast survivability ANN N/A N/A clinical Street, 1998
breast survivability ANN expert 5 clinical Burke et al, 1997
breast recurrence ANN statistics N/A mixed Mariani et al, 1997
breast recurrence ANN expert 10 clinical Naguib et al, 1997
cervical survivability ANN N/A N/A mixed Ochi et al, 2002
colorectal recurrence ANN statistics 12 clinical Grumett et al, 2003
colorectal survivability ANN statistics 9 clinical Snow et al, 2001
colorectal survivability clustering N/A N/A clinical Hamilton et al, 1999
colorectal recurrence ANN statistics 9 mixed Singson et al, 1999
colorectal survivability ANN expert 11 clinical Bottaci et al, 1997
esophageal treatment 

response
SVM N/A N/A proteomic Hayashida et al, 2005

esophageal survivability ANN statistics 3 clinical Sato et al, 2005
leukemia recurrence decision 

tree
N/A N/A proteomic Masic et al, 1998

liver recurrence ANN statistics 25 genomic Rodriguez-Luna et al, 
2005

liver recurrence SVM N/A N/A genomic Iizuka et al, 2003
liver susceptibility ANN statistics -2 clinical Kim et al, 2003
liver survivability ANN N/A N/A clinical Hamamoto et al, 1995
lung survivability ANN N/A N/A clinical Santos-Garcia et al, 

2004
lung survivability ANN statistics 9 mixed Hanai et al, 2003
lung survivability ANN N/A N/A mixed Hsia et al, 2003
lung survivability ANN statistics N/A mixed Marchevsky et al, 1998
lung survivability ANN N/A N/A clinical Jefferson et al, 1997
lymphoma survivability ANN statistics 22 genomic Ando et al, 2003
lymphoma survivability ANN expert 10 mixed Futschik et al, 2003
lymphoma survivability ANN N/A N/A genomic O’Neill and Song, 2003
lymphoma survivability ANN expert N/A genomic Ando et al, 2002
lymphoma survivability clustering N/A N/A genomic Shipp et al, 2002
head/neck survivability ANN statistics 11 clinical Bryce et al, 1998
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Table 2: Continued.

Cancer Type
Clinical 
Endpoint

Machine 
Learning 
Algorithm Benchmark

Improvement 
(%)

Training 
Data Reference

neck treatment 
response

ANN N/A N/A clinical Drago et al, 2002

ocular survivability SVM N/A N/A genomic Ehlers and Harbour, 
2005

osteo-
sarcoma

treatment 
response

SVM N/A N/A genomic Man et al, 2005

pleural 
mesothelioma

survivability clustering N/A N/A genomic Pass et al, 2004

prostate treatment 
response

ANN N/A N/A mixed Michael et al, 2005

prostate recurrence ANN statistics 0 clinical Porter et al, 2005
prostate treatment 

response
ANN N/A N/A clinical Gulliford et al, 2004

prostate recurrence ANN statistics 16 mixed Poulakis et al, 2004a
prostate recurrence ANN statistics 11 mixed Poulakis et al, 2004b
prostate recurrence SVM statistics 6 clinical Teverovskiy et al, 2004
prostate recurrence ANN statistics 0 clinical Kattan, 2003
prostate recurrence genetic 

algorithm
N/A N/A mixed Tewari et al, 2001

prostate recurrence ANN statistics 0 clinical Ziada et al, 2001
prostate susceptibility decision 

tree
N/A N/A clinical Crawford et al, 2000

prostate recurrence ANN statistics 13 clinical Han et al, 2000
prostate treatment 

response
ANN N/A N/A proteomic Murphy et al, 2000

prostate recurrence naïve 
Bayes

statistics 1 clinical Zupan et al, 2000

prostate recurrence ANN N/A N/A clinical Mattfeldt et al, 1999
prostate recurrence ANN statistics 17 clinical Potter et al, 1999
prostate recurrence ANN N/A N/A mixed Naguib et al, 1998
skin survivability ANN expert 14 clinical Kaiserman et al, 2005
skin recurrence ANN expert 27 proteomic Mian et al, 2005
skin survivability ANN expert 0 clinical Taktak et al, 2004
skin survivability genetic 

algorithm
N/A N/A clinical Sierra and Larranga, 

1998
stomach recurrence ANN expert 28 clinical Bollschweiler et al, 

2004
throat recurrence fuzzy logic N/A N/A clinical Nagata et al, 2005
throat recurrence ANN statistics 0 genomic Kan et al, 2004
throat survivability decision 

tree
statistics N/A proteomic Seiwerth et al, 2000

thoracic treatment 
response

ANN N/A N/A clinical Su et al, 2005

thyroid survivability decision 
tree

statistics N/A clinical Kukar et al, 1997

tropho- survivability genetic 
algorithm

N/A N/A clinical Marvin et al, 
blastic 1999

any newly published machine learning model 
should be compared against either another kind of 
learning model, a traditional statistical model or 
an expert-based prognostic scheme such as the 
TNM staging system. As seen in Table 2, some-
times the more sophisticated machine learning 

methods do not lead to the best predictors. In some 
cases, traditional statistics actually outperform 
machine learning methods (Kaiserman et al. 2005; 
Kim et al. 2003). Unfortunately, only about 17% 
of the papers reviewed here tested more than one 
machine learning classifi er.
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It is also important to remember that the 
machine learning process is essentially a compu-
tational experiment. Like any experiment it is 
based on a hypothesis, it follows defi ned proce-
dures and it requires data to be validated. Because 
machine learners represent true experimental pro-
cedures, they should be treated as such. Therefore 
detailed methodological documentation is of para-
mount importance. Ideally, the data sets used for 
training and testing should be described in detail 
and made available to the public. Information 
about training and testing data should also be well-
described including the way in which the sets were 
partitioned. Likewise the details regarding the 
algorithms used and their implementations 
should be provided or recorded to permit others to 
verify and reproduce the results. In principle, the 
results from a good machine learning experiment 
should be as reproducible as any other standard lab 
protocol.

Conclusion
In this review we have attempted to explain, com-
pare and assess the performance of different 
machine learning that are being applied to cancer 
prediction and prognosis. Specifi cally we identifi ed 
a number of trends with respect to the types of 
machine learning methods being used, the types 
of training data being integrated, the kinds of end-
point predictions being made, the types of cancers 
being studied and the overall performance of these 
methods in predicting cancer susceptibility or 
outcomes. While ANNs still predominate it is 
evident that a growing variety of alternate machine 
learning strategies are being used and that they are 
being applied to many types of cancers to predict 
at least three different kinds of outcomes. It is also 
clear that machine learning methods generally 
improve the performance or predictive accuracy 
of most prognoses, especially when compared to 
conventional statistical or expert-based systems. 
While most studies are generally well constructed 
and reasonably well validated, certainly greater 
attention to experimental design and implementa-
tion appears to be warranted, especially with 
respect to the quantity and quality of biological 
data. Improvements in experimental design along 
with improved biological validation would no 
doubt enhance the overall quality, generality and 
reproducibility of many machine-based classifi ers. 
Overall, we believe that if the quality of studies 

continues to improve, it is likely that the use of 
machine learning classifi er will become much 
more commonplace in many clinical and hospital 
settings.

Acknowledgements
The authors wish to thank Genome Prairie, a divi-
sion of Genome Canada, as well as the National 
Research Council’s National Institute for Nano-
technology (NINT) for their fi nancial support.

References
Those papers marked with a “*” represent papers 
of good general interest or relevance, those marked 
with a “**” represent papers of exceptional 
interest or relevance.
Aha D. 1992. Tolerating noisy, irrelevant and novel attributes in instance-

based learning algorithms. International Journal of Man-Machine 
Studies, 36:267-287.

Ando T, Suguro M, Hanai T, et al. 2002. Fuzzy neural network applied to 
gene expression profi ling for predicting the prognosis of diffuse large 
B-cell lymphoma. Jpn J Cancer Res, 93:1207-12.

Ando T, Suguro M, Kobayashi T, et al. 2003. Multiple fuzzy neural network 
system for outcome prediction and classifi cation of 220 lymphoma 
patients on the basis of molecular profi ling. Cancer Sci, 94:906-13.

Atlas L, Cole R, Connor J, et al. 1990. Performance comparisons between 
backpropagation networks and classifi cation trees on three real-
world applications. Advances in Neural Inf. Process. Systems, 
2:622-629.

Bach PB, Kattan MW, Thornquist MD, et al. 2003. Variations in lung cancer 
risk among smokers. J Natl Cancer Inst, 95:470-8.

Baldus SE, Engelmann K, Hanisch FG. 2004. MUC1 and the MUCs: a 
family of human mucins with impact in cancer biology. Crit Rev Clin 
Lab Sci, 41:189-231.

Bellman R. 1961. Adaptive Control Processes: A Guided Tour, Princeton 
University Press.

Bocchi L, Coppini G, Nori J, Valli G. 2004. Detection of single and clustered 
microcalcifi cations in mammograms using fractals models and neural 
networks. Med Eng Phys, 26:303-12.

Bollschweiler EH, Monig SP, Hensler K, et al. 2004. Artifi cial neural 
network for prediction of lymph node metastases in gastric cancer: 
a phase II diagnostic study. Ann Surg Oncol, 11:506-11.

*Bottaci L, Drew PJ, Hartley JE, et al. 1997. Artifi cial neural networks 
applied to outcome prediction for colorectal cancer patients in sepa-
rate institutions. Lancet, 350:469-72.

Bryce TJ, Dewhirst MW, Floyd CE Jr, et al. 1998. Artifi cial neural network 
model of survival in patients treated with irradiation with and without 
concurrent chemotherapy for advanced carcinoma of the head and 
neck. Int J Radiat Oncol Biol Phys, 41:239-45.

Burke HB, Bostwick DG, Meiers I, et al. 2005. Prostate cancer outcome: 
epidemiology and biostatistics. Anal Quant Cytol Histol, 27:211-7.

*Burke HB, Goodman PH, Rosen DB, et al. 1997. Artifi cial neural net-
works improve the accuracy of cancer survival prediction. Cancer, 
79:857-62.

Catto JW, Linkens DA, Abbod MF, et al. 2003. Artifi cial intelligence in pre-
dicting bladder cancer outcome: a comparison of neuro-fuzzy modeling 
and artifi cial neural networks. Clin Cancer Res, 9:4172-7.

*Cicchetti DV. 1992. Neural networks and diagnosis in the clinical labora-
tory: state of the art. Clin Chem, 38:9-10.

Claus EB. 2001. Risk models used to counsel women for breast and ovarian 
cancer: a guide for clinicians. Fam Cancer, 1:197-206. 



75

Cancer prediction and prognosis

Cancer Informatics 2006:2 

Cochran AJ. 1997. Prediction of outcome for patients with cutaneous 
melanoma. Pigment Cell Res, 10:162-7.

*Colozza M, Cardoso F, Sotiriou C, et al. 2005. Bringing molecular 
prognosis and prediction to the clinic. Clin Breast Cancer, 6:61-76.

Cortes C, Vapnik V. 1995. Support-vector networks. Machine Learning, 
20:273-297.

Crawford ED, Batuello JT, Snow P, et al. 2000. The use of artifi cial intel-
ligence technology to predict lymph node spread in men with clini-
cally localized prostate carcinoma. Cancer, 88:2105-9.

Dai H, van’t Veer L, Lamb J, et al. 2005. A cell proliferation signature is a 
marker of extremely poor outcome in a subpopulation of breast 
cancer patients. Cancer Res, 65:4059-66.

**De Laurentiis M, De Placido S, Bianco AR, et al. 1999. A prognostic 
model that makes quantitative estimates of probability of relapse for 
breast cancer patients. Clin Cancer Res, 5:4133-9.

*Delen D, Walker G, Kadam A. 2005. Predicting breast cancer survivabil-
ity: a comparison of three data mining methods. Artif Intell Med, 
34:113-27.

Dettling M. 2004. BagBoosting for tumor classifi cation with gene expression 
data. Bioinformatics, 20:3583-93.

Domchek SM, Eisen A, Calzone K, et al. 2003. Application of breast 
cancer risk prediction models in clinical practice. J Clin Oncol, 
21:593-601.

Drago GP, Setti E, Licitra L, et al. 2002. Forecasting the performance status 
of head and neck cancer patient treatment by an interval arithmetic 
pruned perceptron. IEEE Trans Biomed Eng, 49:782-7.

Duda RO, Hart PE, Stork DG. (2001) Pattern classifi cation (2nd edition). 
New York: Wiley. 

Duffy MJ. 2001. Biochemical markers in breast cancer: which ones are 
clinically useful? Clin Biochem, 34:347-52.

*Duffy MJ. 2005. Predictive markers in breast and other cancers: a review. 
Clin Chem, 51:494-503. 

Dumitrescu RG, Cotarla I. 2005.Understanding breast cancer risk —where 
do we stand in 2005? J Cell Mol Med, 9:208-21.

Ehlers JP, Harbour JW. 2005. NBS1 expression as a prognostic marker in 
uveal melanoma. Clin Cancer Res, 11:1849-53.

Fielding LP, Fenoglio-Preiser CM, Freedman LS. 1992. The future of 
prognostic factors in outcome prediction for patients with cancer. 
Cancer, 70:2367-77 .

Fujikawa K, Matsui Y, Kobayashi T, et al. 2003. Predicting disease outcome 
of non-invasive transitional cell carcinoma of the urinary bladder 
using an artifi cial neural network model: results of patient follow-up 
for 15 years or longer. Int J Urol, 10:149-52.

**Futschik ME, Sullivan M, Reeve A, et al. 2003. Prediction of clinical 
behaviour and treatment for cancers. Appl Bioinformatics, 2(3 Suppl):
S53-8.

Gascon F, Valle M, Martos R, et al. 2004. Childhood obesity and hormonal 
abnormalities associated with cancer risk. Eur J Cancer Prev, 13:
193-7.

Grumett S, Snow P, Kerr D. 2003. Neural networks in the prediction of 
survival in patients with colorectal cancer. Clin Colorectal Cancer, 
2:239-44.

Gulliford SL, Webb S, Rowbottom CG, et al. 2004. Use of artifi cial neural 
networks to predict biological outcomes for patients receiving radical 
radiotherapy of the prostate. Radiother Oncol, 71:3-12.

**Hagerty RG, Butow PN, Ellis PM, et al. 2005. Communicating prognosis 
in cancer care: a systematic review of the literature. Ann Oncol, 16:
1005-53.

*Hamamoto I, Okada S, Hashimoto T, et al. 1995. Prediction of the early 
prognosis of the hepatectomized patient with hepatocellular carci-
noma with a neural network. Comput Biol Med, 25:49-59.

Hamilton PW, Bartels PH, Anderson N, et al. 1999. Case-based prediction 
of survival in colorectal cancer patients. Anal Quant Cytol Histol, 
21:283-91.

Han M, Snow PB, Epstein JI, et al. 2000. A neural network predicts progres-
sion for men with gleason score 3+4 versus 4+3 tumors after radical 
prostatectomy. Urology, 56:994-9.

Hanai T, Yatabe Y, Nakayama Y, et al. 2003. Prognostic models in patients 
with non-small-cell lung cancer using artifi cial neural networks in 
comparison with logistic regression. Cancer Sci, 94:473-7.

Pass HI, Liu Z, Wali A, et al. 2004. Gene expression profi les predict 
survival and progression of pleural mesothelioma. Clin Cancer Res, 
10:849-59.

Patrick EA, Fischer FP. 1970. A generalized k-nearest neighbor rule. 
Information and Control 16:128-152.

Petricoin EF, Liotta LA. 2004. SELDI-TOF-based serum proteomic pattern 
diagnostics for early detection of cancer. Curr Opin Biotechnol, 
15:24-30.

Piccart M, Lohrisch C, Di Leo A, et al. 2001. The predictive value of HER2 
in breast cancer. Oncology, 61 Suppl 2:73-82.

Porter CR, Gamito EJ, Crawford ED. 2005. Model to predict prostate biopsy 
outcome in large screening population with independent validation 
in referral setting. Urology, 65:937-41.

*Potter SR, Miller MC, Mangold LA, et al. 1999. Genetically engineered 
neural networks for predicting prostate cancer progression after 
radical prostatectomy. Urology, 54:791-5.

Poulakis V, Witzsh U, de Vries R, et al. 2004a. Preoperative neural network 
using combined magnetic resonance imaging variables, prostate 
specifi c antigen, and Gleason score to predict prostate cancer recur-
rence after radical prostatectomy. Eur Urol, 46:571-8.

Poulakis V, Witzsch U, de Vries, et al. 2004b. Preoperative neural network 
using combined magnetic resonance imaging variables, prostate-
specifi c antigen, and gleason score for predicting prostate cancer 
biochemical recurrence after radical prostatectomy. Urology, 64:
1165-70.

Quinlan J.R. 1986. Induction of decision trees. Machine Learning, 1:81-106.
Ripley RM, Harris AL, Tarassenko L. 2004. Non-linear survival analysis 

using neural networks. Stat Med, 23:825-42.
Rodriguez-Luna H, Vargas HE, Byrne T, et al. 2005. Artifi cial neural network 

and tissue genotyping of hepatocellular carcinoma in liver-transplant 
recipients: prediction of recurrence. Transplantation, 79:1737-40.

**Rodvold DM, McLeod DG, Brandt JM, et al. 2001. Introduction to 
artifi cial neural networks for physicians: taking the lid off the black 
box. Prostate, 46:39-44.

Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations 
by back-propagating errors. Nature, 323:533-6.

Russell SJ, Norvig P. 2003. Artifi cial Intelligence: A Modern Approach. 2nd 
ed. New Jersey: Pearson Education, Inc. p 733-59.

Santos-Garcia G, Varela G, Novoa N, et al. 2004. Prediction of postopera-
tive morbidity after lung resection using an artifi cial neural network 
ensemble. Artif Intell Med, 30:61-9.

Sato F, Shimada Y, Selaru FM, et al. 2005. Prediction of survival in patients 
with esophageal carcinoma using artifi cial neural networks. Cancer, 
103:1596-605.

Savage KJ, Gascoyne RD. 2004. Molecular signatures of lymphoma. Int J 
Hematol, 80:401-9.

Seiwerth S, Stambuk N, Konjevoda P, et al. 2000. Immunohistochemical 
analysis and prognostic value of cathepsin D determination in laryn-
geal squamous cell carcinoma. J Chem Inf Comput Sci, 40:545-9.

*Seker H, Odetayo MO, Petrovic D, et al. 2002. Assessment of nodal 
involvement and survival analysis in breast cancer patients using 
image cytometric data: statistical, neural network and fuzzy 
approaches. Anticancer Res, 22:433-8.

Seker H, Odetayo MO, Petrovic D, et al. 2003. A fuzzy logic based-method 
for prognostic decision making in breast and prostate cancers. IEEE 
Trans Inf Technol Biomed, 7:114-22.

Shipp MA, Ross KN, Tamayo P, et al. 2002. Diffuse large B-cell lymphoma 
outcome prediction by gene-expression profi ling and supervised 
machine learning. Nat Med, 8:68-74.

Hayashida Y, Honda K, Osaka Y, et al. 2005. Possible prediction of chemo-
radiosensitivity of esophageal cancer by serum protein profi ling. Clin 
Cancer Res, 11:8042-7.

Holland JH. 1975. Adaptation in Natural and Artifi cial Systems. University 
of Michigan Press, Ann Arbor



76

Cruz and Wishart

Cancer Informatics 2006:2 

Hsia TC, Chiang HC, Chiang D. 2003. Prediction of survival in surgical 
unresectable lung cancer by artifi cial neural networks including 
genetic polymorphisms and clinical parameters. J Clin Lab Anal, 
17:229-34.

*Iizuka N, Oka M, Yamada-Okabe H, et al. 2003. Oligonucleotide microar-
ray for prediction of early intrahepatic recurrence of hepatocellular 
carcinoma after curative resection. Lancet, 361:923-9.

Jefferson MF, Pendleton N, Lucas SB, et al. 1997. Comparison of a genetic 
algorithm neural network with logistic regression for predicting 
outcome after surgery for patients with nonsmall cell lung carcinoma. 
Cancer, 79:1338-42.

Jerez-Aragones JM, Gomez-Ruiz JA, Ramos-Jimenez G, et al. 2003. A 
combined neural network and decision trees model for prognosis of 
breast cancer relapse. Artif Intell Med, 27:45-63.

Ji W, Naguib RN, Ghoneim MA. 2003. Neural network-based assessment of 
prognostic markers and outcome prediction in bilharziasis-associated 
bladder cancer. IEEE Trans Inf Technol Biomed, 7:218-24.

*Kaiserman I, Rosner M, Pe’er J. 2005. Forecasting the prognosis of 
choroidal melanoma with an artifi cial neural network. Ophthalmology, 
112:1608.

*Kan T, Shimada Y, Sato F, et al. 2004. Prediction of lymph node metasta-
sis with use of artifi cial neural networks based on gene expression 
profi les in esophageal squamous cell carcinoma. Ann Surg Oncol, 
11:1070-8.

Kattan MW. 2003. Comparison of Cox regression with other methods for 
determining prediction models and nomograms. J Urol, 170:S6-9.

*Kim YS, Sohn SY, Kim DK, et al. 2003. Screening test data analysis for 
liver disease prediction model using growth curve. Biomed Pharma-
cother, 57:482-8.

Kohonen T. 1982. Self-organized formation of topologically correct feature 
maps. Biol Cybernetics, 43:59-69.

Kukar M, Besic N, Konomenko I, et al. 1996. Prognosing the survival time 
of the patients with the anaplastic thyroid carcinoma with machine 
learning. Proc Intelligent Data Analysis in Medicine and Pharmacology, 
50-56.

Langley P, Iba W, Thompson K. 1992. An analysis of Bayesian classifi ers. 
Proceedings of  the Tenth National Conference on Artifi cial Intelligence, 
223-228.

Langley P, Sage S. 1994. Induction of selective Bayesian classifi ers. 
Proceedings of the Tenth Conference on Uncertainty in Artifi cial 
Intelligence, 399-406.

Lee Y, Mangasarian OL, Wolberg WH. 2000. Breast cancer survival and 
chemotherapy: A support vector machine analysis. DIMACS Series in 
Discrete Mathematics and Theoretical Computer Science, 55:1-20.

Leenhouts HP. 1999. Radon-induced lung cancer in smokers and non-
smokers: risk implications using a two-mutation carcinogenesis 
model. Radiat Environ Biophys, 1999 38:57-71.

Lisboa PJ, Wong H, Harris P, et al. 2003. A Bayesian neural network 
approach for modelling censored data with an application to prog-
nosis after surgery for breast cancer. ArtifIntellMed, 28:1-25.

**Listgarten J, Damaraju S, Poulin B et al. 2004. Predictive models for 
breast cancer susceptibility from multiple single nucleotide polymor-
phisms. Clin Cancer Res, 10:2725-37.

*Lundin M, Lundin J, Burke HB, et al. 1999. Artifi cial neural networks 
applied to survival prediction in breast cancer. Oncology, 57:281-6.

Maclin PS, Dempsey J, Brooks J, et al. 1991. Using neural networks to 
diagnose cancer. JMedSyst, 15:11-9.

Man TK, Chintagumpala M, Visvanathan J, et al. 2005. Expression profi les 
of osteosarcoma that can predict response to chemotherapy. Cancer 
Res, 65:8142-50.

Marchevsky AM, Patel S, Wiley KJ, et al. 1998. Artifi cial neural networks and 
logistic regression as tools for prediction of survival in patients with 
Stages I and II non-small cell lung cancer. Mod Pathol, 11:618-25.

Marchevsky AM, Shah S, Patel S. 1999. Reasoning with uncertainty in 
pathology: artifi cial neural networks and logistic regression as tools 
for prediction of lymph node status in breast cancer patients. Mod 
Pathol, 12:505-13.

Mariani L, Coradini D, Biganzoli E, et al. 1997. Prognostic factors for 
metachronous contralateral breast cancer: a comparison of the linear 
Cox regression model and its artifi cial neural network extension. 
44:167-78.

Marvin N, Bower M, Rowe JE. 1999. An evolutionary approach to construct-
ing prognostic models. Artif Intell Med, 15:155-65.

Masic N, Gagro A, Rabatic S, et al. 1998. Decision-tree approach to the 
immunophenotype-based prognosis of the B-cell chronic lymphocytic 
leukemia. Am JHematol, 59:143-8.

Mattfeldt T, Kestler HA, Hautmann R, et al. 1999. Prediction of prostatic 
cancer progression after radical prostatectomy using artifi cial neural 
networks: afeasibility study. BJU Int, 84:316-23.

Mattfeldt T, Kestler HA, Sinn HP. 2004. Prediction of the axillary lymph 
node status in mammary cancer on the basis of clinicopathological 
data and fl ow cytometry. Med Biol Eng Comput, 42:733-9.

McCarthy JF, Marx KA, Hoffman PE, et al. 2004. Applications of machine 
learning and high-dimensional visualization in cancer detection, 
diagnosis, and management. Ann N Y Acad Sci, 1020:239-62

McCulloch W, Pitts W. 1943. A logical calculus of the ideas imminent in 
nervous activity. Bull Math Biophys, 5: 115-33.

Mian S, Ball G, Hornbuckle F, et al. 2003. A prototype methodology com-
bining surface-enhanced laser desorption/ionization protein chip 
technology and artifi cial neural network algorithms to predict the 
chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel 
and Doxorubicin under in vitro conditions. Proteomics, 3:1725-37.

Mian S, Ugurel S, Parkinson E, et al. 2005. Serum proteomic fi ngerprinting 
discriminates between clinical stages and predicts disease progression 
in melanoma patients. J Clin Oncol, 23:5088-93.

Michael A, Ball G, Quatan N, et al. 2005. Delayed disease progression after 
allogeneic cell vaccination in hormone-resistant prostate cancer 
and correlation with immunologic variables. Clin Cancer Res, 
11:4469-78.

*Mitchell T. 1997. Machine Learning. New York: McGraw Hill.
Murphy GP, Snow P, Simmons SJ, et al. 2000. Use of artifi cial neural net-

works in evaluating prognostic factors determining the response to 
dendritic cells pulsed with PSMA peptides in prostate cancer patients. 
Prostate, 42:67-72.

Nagata T, Schmelzeisen R, Mattern D, et al. 2005. Application of fuzzy 
inference to European patients to predict cervical lymph node metas-
tasis in carcinoma of the tongue. Int J Oral Maxillofac Surg, 
34:138-42.

Naguib RN, Adams AE, Horne CH, et al. 1997. Prediction of nodal metas-
tasis and prognosis in breast cancer: a neural model. Anticancer Res, 
17:2735-41.

Naguib RN, Robinson MC, Neal DE, et al. 1998. Neural network analysis 
of combined conventional and experimental prognostic markers in 
prostate cancer: a pilot study. Br J Cancer, 78:246-50.

Naguib RN, Sakim HA, Lakshmi MS, et al. 1999. DNA ploidy and cell 
cycle distribution of breast cancer aspirate cells measured by image 
cytometry and analyzed by artifi cial neural networks for their prog-
nostic signifi cance. IEEE Trans Inf Technol Biomed, 3:61-9.

Ochi T, Murase K, Fujii T, et al. 2002. Survival prediction using artifi cial 
neural networks in patients with uterine cervical cancer treated by 
radiation therapy alone. Int J Clin Oncol, 7:294-300.

*Ohira M, Oba S, Nakamura Y, et al. 2005. Expression profi ling using a 
tumor-specifi c cDNA microarray predicts the prognosis of intermedi-
ate risk neuroblastomas. Cancer Cell, 7:337-50.

O’Neill MC, Song L. 2003. Neural network analysis of lymphoma 
microarray data: prognosis and diagnosis near-perfect. BMC 
Bioinformatics, 4:13.

Sierra B, Larranaga P. 1998. Predicting survival in malignant skin melanoma 
using Bayesian networks automatically induced by genetic algo-
rithms. An empirical comparison between different approaches. 
14:215-30.

*Simes RJ. 1985. Treatment selection for cancer patients: application of 
statistical decision theory to the treatment of advanced ovarian cancer. 
J Chronic Dis, 38:171-86.



77

Cancer prediction and prognosis

Cancer Informatics 2006:2 

Singson RP, Alsabeh R, Geller SA, et al. 1999. Estimation of tumor stage 
and lymph node status in patients with colorectal adenocarcinoma 
using probabilistic neural networks and logistic regression. Mod 
Pathol, 12:479-84.

Snow PB, Kerr DJ, Brandt JM, et al. 2001. Neural network and regression 
predictions of 5-year survival after colon carcinoma treatment. 
Cancer, 91(8 Suppl): 1673-8.

**Somorjai RL, Dolenko B, Baumgartner R. 2003. Class prediction and 
discovery using gene microarray and proteomics mass spectroscopy 
data: curses, caveats, cautions. Bioinformatics, 19:1484-91.

Spyridonos P, Cavouras D, Ravazoula P, et al. 2002. A computer-based diagnostic 
and prognostic system for assessing urinary bladder tumour grade 
and predicting cancer recurrence. Med Inform Internet Med, 27:111-22.

*Street W. 1998. A neural network model for prognostic prediction. 
Proceedings of the Fifteenth International Conference on Machine 
Learning, 540-6.

Su M, Miften M, Whiddon C, et al. 2005. An artifi cial neural network for pre-
dicting the incidence of radiation pneumonitis. Med Phys, 32:318-25.

Taktak AF, Fisher AC, Damato BE. 2004. Modelling survival after treatment 
of intraocular melanoma using artifi cial neural networks and Bayes 
theorem. Phys Med Biol, 49:87-98.

Teverovskiy M, Kumar V, Ma J, et al. 2004. Improved prediction of prostate 
cancer recurrence based on an automated tissue image analysis 
system. Proc IEEE Int Symp Biomed Imaging, 257-60.

Tewari A, Issa M, El-Galley R, et al. 2001. Genetic adaptive neural network 
to predict biochemical failure after radical prostatectomy: a multi-
institutional study. Mol Urol, 5:163-9.

Vapnik V. 1982. Estimation of Dependences Based on Empirical Data. 
Springer Verlag, New York.

Vendrell E, Morales C, Risques RA, et al. 2005. Genomic determinants of 
prognosis in colorectal cancer. Cancer Lett, 221:1-9.

Wang JX, Zhang B, Yu JK, et al. 2005. Application of serum protein fi n-
gerprinting coupled with artifi cial neural network model in diagnosis 
of hepatocellular carcinoma. Chin Med J (Engl), 118:1278-84.

Wei JS, Greer BT, Westermann F, et al. 2004. Prediction of clinical outcome 
using gene expression profi ling and artifi cial neural networks for 
patients with neuroblastoma. Cancer Res, 64(19):6883-91. Erratum 
in: Cancer Res, 65:374.

Weston AD, Hood L. 2004. Systems biology, proteomics, and the future of 
health care: toward predictive, preventative, and personalized medi-
cine. J Proteome Res, 3:179-96.

Zhou X, Liu KY, Wong ST. 2004. Cancer classifi cation and prediction using 
logistic regression with Bayesian gene selection. J Biomed Inform, 
37:249-59.

Ziada AM, Lisle TC, Snow PB, et al. 2001. Impact of different variables on 
the outcome of patients with clinically confi ned prostate carcinoma: 
prediction of pathologic stage and biochemical failure using an 
artifi cial neural network. Cancer, 91(8 Suppl):1653-60.

*Zupan B, Demsar J, Kattan MW, et al. 2000. Machine learning for survival 
analysis: a case study on recurrence of prostate cancer. Artif Intell 
Med, 20:59-75.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


