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Abstract: Sound data analysis is critical to the success of modern molecular medicine research that involves collection and 
interpretation of mass-throughput data. The novel nature and high-dimensionality in such datasets pose a series of non-
trivial data analysis problems. This technical commentary discusses the problems of over-fi tting, error estimation, curse of 
dimensionality, causal versus predictive modeling, integration of heterogeneous types of data, and lack of standard protocols 
for data analysis. We attempt to shed light on the nature and causes of these problems and to outline viable methodological 
approaches to overcome them.

1. Introduction
Recent developments in mass-throughput molecular biology techniques have captured the attention of 
the medical community in the last few years and promise to revolutionize all aspects of medicine 
including radically improving medical prevention, diagnosis, development of novel targeted therapeutic 
agents, personalized treatments, and the ability to predict and monitor the course of the patient. A few 
characteristic examples of such assaying methods with substantial research applications in the study of 
cancer prevention, diagnosis and treatment are gene expression microarrays, mass spectrometry, SNP 
arrays, tissue arrays, array comparative genomic hybridization, and newer variants such as tiled 
expression arrays, high-resolution mass spectrometry, liquid chromatography-mass spectrometry and 
others. ([Fortina, 2002], [Valle, 2004], [Khoury, 2003], [Diamandis, 2004], and [Petricoin, 2002]). 
These methods are capable of producing genotypic, transcriptional, proteomic, and other measurements 
about cellular function on a massive scale. In the near future such techniques are expected to be combined 
with novel very-high resolution imaging methods as well as with traditional phenotypic, genetic, and 
environmental information to create a completely new landscape for biological discovery and improved 
healthcare.

While the excitement surrounding these developments is growing, researchers have also come to 
realize that the volume and nature of the data produced pose severe challenges for making biological 
and medical sense of the data and using it optimally. Sound and comprehensive data analysis is critical 
to the success of modern molecular medicine research that involves collection and interpretation of 
mass-throughput assays. For example, the high dimensionality of the data (indicative examples are 
10,000, 50,000 and 500,000 gene and SNP microarrays, 10,000 and 300,000 m/z value mass spectrom-
etry data, and �5,000,000 variable liquid chromatography-mass spectrometry data) combined with 
limited samples has challenged traditional multivariate analysis methods, has often incurred large 
numbers of false positives for statistical tests, and has brought into sharp focus the need for multidis-
ciplinary teams to address aspects of the data analysis (eg, engineers and applied mathematicians to 
process signals and extract features from arrays and mass spectrometry data, machine learning and 
pattern recognition experts to derive complex multivariate "signatures", and biostatisticians to conduct 
power-size analyses or to design appropriate data collection study designs).

In this technical commentary, we review and discuss some recurring problems in the analysis of such 
data. We believe that it is necessary that not only analysts but also all members of research teams and 
other parties involved with such studies (eg, biologists and physicians, members of funding and regula-
tory agencies) should possess at least a fundamental understanding of the major data analytic issues. 
These challenges (that are independent of the specifi c mass-throughput platform) include: over-fi tting, 
that is the phenomenon whereby an apparently good model fails to generalize well in future samples; 
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estimating the generalization error for predictive 
models; the “curse of dimensionality”, ie, the set 
of data analysis problems deriving from large 
numbers of predictors especially when combined 
with small samples; and building causal in addition 
to predictive models. Other challenges relate to the 
integration of heterogeneous types of data and 
addressing the lack of standard protocols and the 
proliferation of alternatives for data analysis, espe-
cially in high dimensions. We attempt to shed light 
on the nature and causes of these problems and to 
outline viable conceptual and methodological 
approaches to overcome them. To make the paper 
as simple as possible, we illustrate these problems 
by simplifi ed examples that hold independently of 
the context of application. We further provide 
references to published studies that apply these 
principles in real-world cancer as well as other 
biological data.

Clearly some other technical, organizational, 
ethical and science culture-related issues exist, that 
although important, they are not addressed in the 
present paper. Such issues, for example, involve 
challenges that deal with specifi c platform assay 
validity and reproducibility, the study of how to 
optimally deliver the results of the respective lit-
erature to physicians at the bedside, regulating 
molecular medicine modalities for safety, explain-
ing complex models to practitioners, exploring 
proper ways to build and maintain interdisciplinary 
teams, storing, protecting, and retrieving patient 
data, etc. We choose to focus on only the platform-
independent data analysis challenges in the present 
paper, not only because of the enormity of the 
combined problem landscape which would render 
any single paper addressing the totality of all the 
mentioned problems shallow and operationally 
weak, but also because, conceptually, method-
ological data analysis challenges cut across the 
spectrum of molecular medicine research, and they 
can be addressed in a coherent manner fairly 
independently from the remaining challenges. For 
examples of reviews of platform-specifi c data 
analysis challenges, we refer the reader to 
[Listgarten, 2005] and [Simon, 2003].

In the present paper we adopt a statistical 
machine learning perspective, not only because a 

great deal of work in the literature so far has been 
accomplished using such techniques1, but primar-
ily because as we show in the paper this perspective 
is well-suited to illuminate the issues surrounding 
mass-throughput data analysis.

In section 2 we provide a brief introduction to 
statistical machine learning, while in Appendix I a 
complementary glossary explains all major techni-
cal terms and abbreviations used in the paper but 
not defi ned explicitly in the text. Section 3 contains 
the substantive part of the paper (problems, their 
causes and possible ways to address them), while 
section 4 offers concluding remarks.

2. Statistical Machine Learning: 
A Brief Introduction
Machine Learning is the broad fi eld of computer 
science that studies the theory and practice of 
algorithms and systems that learn. A learning 
algorithm or system is one that improves perfor-
mance with experience. Such algorithms are called 
“learners”. Learners may learn symbolic (eg, fi rst-
order logic) or non-symbolic models of data. The 
latter are studied by Statistical Machine Learning 
(as opposed to general machine learning that deals 
with symbolic learning as well)2. In genomics and 
molecular medicine for example, a statistical 
machine learning diagnostic system may improve 
its ability to diagnose patients with experience 
provided and encoded as the results of micro-
array profi les (or profi les from another assaying 
technology) of past patients. Examples of well-
established learning methods with applications in 
biomedicine are: Artificial Neural Networks, 
Bayesian Networks, restricted Bayesian Classi-
fiers (eg, simple Bayesian Classifier, Tree-
Augmented Networks), Decision Tree Induction, 
Genetic Algorithms, Clustering methods, Rule 
Induction, Ensemble Classifi cation (eg, Voting, 
Bagging, Boosting, Bayesian Model Averaging), 
Support Vector Machines, Hidden Markov 
Models, Causal Inference methods, and many 
others (see [Mitchell, 1997], [Hastie, 2001], 
[Duda, 2001], and [Weiss, 1991]).

An important concept in Statistical Machine 
Learning is the distinction between supervised and 

1An indicative search performed on 11-2-2005 in PubMed yielded 14,932 articles mentioning “Oligonucleotide Array Sequence Analysis” as a MeSH 
term. Out of those articles 1,105 references were made to statistical machine learning methods and specifi c classifi ers such as SVMs, Neural Networks, 
Clustering, etc. while 353 references were made to the predominant classical statistical methods of Linear regression, ANOVA and Discriminant function 
analysis. 
2In the remainder of this paper we deal with statistical machine learning concepts exclusively.
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unsupervised learning. In supervised learning we 
give to the learning algorithm a set of instances of 
input-output pairs; the algorithm learns to predict 
the correct output that corresponds to some inputs 
(not only previously seen ones but also previously 
unseen ones (we call this “generalization”)). For 
example, a researcher/analyst may present to a 
learning algorithm array gene expression measure-
ments from several cancer patient cases as well as 
normal subjects; then the learning algorithm 
induces a classifi er that can classify a previously 
unseen subject to the correct diagnostic category 
given the gene expression values observed in that 
subject. Figure 1 outlines supervised learning dia-
grammatically. An important thing to notice is that 
the learning algorithm induces from data a model 
(classifi er or regression model) that is capable of 
predicting discrete classes for unlabeled patients 
(classifi cation) or of predicting the unknown con-
tinuous values of a continuous response variable 
of interest (regression). The model is not the learner 
but the output of the learner.

In unsupervised learning, the researcher/analyst 
typically seeks to discover categories or other 
structural properties of the domain. For example, 
a researcher may give to a learning algorithm gene 
expression measurements of patients with cancer 
as well as normal subjects; the algorithm then fi nds 
sub-types (“molecular profi les”) of patients that 

are very similar to each other, and different to the 
rest of the sub-types (eg, see [Bhattacharya, 2003]). 
Or another algorithm may discover how various 
genes interact with each other to affect develop-
ment of cancer. Figure 2 outlines unsupervised 
learning diagrammatically.

The branch of Machine Learning that deals 
with the theoretical properties and feasibility of 
learning under various conditions is called Com-
putational Learning Theory (COLT). Sometimes 
Machine Learning explores questions that fall 
outside the traditional scope of classical Statistics, 
for example learning with continuous feedback 
from the environment in autonomous robotic 
agents (reinforcement learning), learning from 
relational databases (relational learning), or learn-
ing interesting patterns with no pre-specified 
outcome of interest (clustering, and more gener-
ally, concept formation and unsupervised learning). 
Conversely, sometimes Statistics deals with ques-
tions that fall outside the traditional scope of 
Machine Learning, for example constructing spe-
cialized research designs that minimize sample or 
maximize statistical power, or estimating the 
confi dence limits of quantities of interest in spe-
cifi c sampling contexts. Often both Statistics and 
Machine Learning solve the same type of problem 
using different approaches, for example deriving 
classifi cation models using a generative model 
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Figure 1. Diagrammatic representation of supervised learning. A biological or experimental causal process generates data. From this 
population of data a dataset of training instances is sampled randomly. An inductive algorithm learns a classifi cation or regression model 
from the training data. The model is applied (or tested) in independently sampled application (or test) data.
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approach (the statistical approach, as embodied 
in logistic regression), or finding a highly 
predictive decision surface (the machine learn-
ing approach, as embodied in Support Vector 
Machines). In addition, numerous Machine 
Learning methods build upon statistical theory 
and techniques. Thus Machine Learning and 
Statistical approaches are quite often synergistic 
for attacking hard modeling and discovery data 
analysis problems. An accessible and extensive 
on-line tutorial on Machine Learning methods and 
biomedical case studies is available from http:// 
www.dsl-lab.org. Some excellent introductory 
texts are [Mitchell, 1997], [Hastie, 2001], [Duda, 
2001], and [Weiss, 1991].

3. Methodological Challenges & 
Solutions

3.1. Over-fi tting & estimation 
of a model’s generalization error

(a) What is Over-fi tting?
With the term “over-fitting” we denote the 
phenomenon in which a classifi cation or a regression 
model is exhibiting small prediction error in the 
training data but much larger generalization error 
in unseen future data. Intuitively, a learning method 

over-fits when it does not learn the general 
characteristics of the function that predicts the data 
but the non-reproducible peculiarities of the 
specifi c sample available for analysis. An example 
is shown in Figure 3 where a regression model for 
Y is build from predictor variable X. The true rela-
tionship is linear with Gaussian noise and is shown 
with the dashed line while the solid line represents 
a regression model learned from the training data 
shown with solid circles. The training error is zero 
because the model fi ts exactly (“predicts”) each 
training case but the true generalization error (ie, 
the error in the general population where the data 
came from) is much higher. As an example, we 
show some likely future data denoted by the white 
circles. The generalization error of the over-fi tted 
model is also higher than the one achieved by the 
optimal linear model. Obviously, in any non-trivial 
data analysis we can never exactly estimate with 
absolute certainty the true generalization error of 
a model. However, modeling principles exist 
that one should follow to reduce the likelihood of 
over-fi tting. Moreover, methods also exist that 
provide bounds and confi dence intervals on the 
estimation error allowing detection of over-fi tting. 
Both of these methods are explained in detail in 
Section 3.2.

The training error is typically a misleading 
estimate of the generalization error, unless treated 
appropriately as we will discuss in more detail 

Figure 2. Diagrammatic representation of unsupervised learning. A biological or experimental causal process generates data. From this 
population of data a dataset of training instances is sampled randomly. An inductive algorithm learns a structural model from the training 
data. The model is verifi ed by experiments, comparison to known biological knowledge, or other means.
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later in the present section. In mass-throughput 
data, such as microarray gene expression data 
for example, we are dealing with thousands of 
variables (eg, gene probes) used as continuous 
predictors and a much smaller sample (typically 
at the order of a few hundred patients in the best 
case). In such situations each specifi c sample has 
a unique combination of predictor values that 
can be used to identify that sample (and its asso-
ciated known phenotype or outcome). Hence 
even the weakest of learning methods, a lookup 
table (also known as “rote learner”) achieves 
100% classifi cation accuracy in the training data. 
Future applications of that learner to other inde-
pendently and identically distributed samples 
would be uninformative (ie, no better than 
chance) however.

Unless special precautions are taken, over-
fi tting is easier to occur when using learning meth-
ods capable of approximating very complex 
functions, and when the data has a large number 
of predictors and small sample size. Some authors 
define loosely over-fitting as synonymous or 
equivalent to having too many free parameters, or 
“over-specifying” the model space by having many 
more predictors than samples (another term for this 
phenomenon is “overparameterization”). However 

these factors are merely facilitating factors, and 
strictly speaking they are neither necessary nor 
suffi cient for over-fi tting, as we will show below.

(b) What causes over-fi tting? 
The Bias-Variance Error Decomposition 
Analysis View
One way to study the problem of over-fi tting is 
by the bias-variance decomposition analysis. 
According to this analysis, for any predictive 
model produced by a classifi er given a specifi c 
dataset, the (expected) generalization error can be 
decomposed into three components: the bias, the 
variance, and the noise. Let us denote by O the 
optimal prediction model that can be obtained for 
this task (over all possible learners), L the optimal 
model for the problem that can be generated by a 
specifi c learner (ie, this model among the models 
that can be produced by the specifi c learner exhib-
its the least error over the whole sampling popu-
lation), and A the actual model the classifi er has 
learned with the given dataset.

The noise component corresponds to the inherent 
uncertainty of the relationship we try to learn from 
data, ie, the error of the optimal model O, and so it 
is irreducible by defi nition. When the target is a 

Predictor X

Outcome of
Interest Y 

Training Data

Test Data

Figure 3. An example of over-fi tting. The solid line represents a (non-linear) regression model of Y given predictor variable X, where the 
training data are represented by the solid circles. This model perfectly fi ts (“predicts”) the training data (ie, the training error is zero). The 
true relationship however is linear with Gaussian noise (shown by a dashed line). Prediction error on future data (shown with white circles) 
is likely to be both higher than zero and higher than the prediction by the optimal linear model.
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deterministic function of the data the noise 
component of the error is zero, and it is non-zero 
otherwise. The bias component corresponds to the 
difference of O and L. For example, if a learner 
produces linear classifi er models only, the bias 
component is the expected error of the difference 
of the optimal linear model relative to the overall 
optimal prediction model (that may be non-linear 
for example). The bias is zero for a learner that is 
capable of learning an optimal model for the 
learning task. The variance component is the 
difference of L and A. The variance component is 
a refl ection of randomness in the sample available 
for training, is independent of the true value of the 
predicted example, and zero for a learner that 
always makes the same prediction independent of 
the training dataset. In summary, the error of a 
model is decomposed to the error of the learnt 
model relative to the optimal model the specifi c 
classifi er is capable of producing (variance) (L-A), 
the error of the latter model relative to the optimal 
model (bias) (O-L), and the error of the optimal 
model O (see [Domingos, 2000] and [Friedman, 
1997] for mathematical details and examples of 
analyses of specifi c learners).

An example is shown in Figure 4. The true 
relationship (optimal model) between the predictor 
X and the outcome Y is shown with the bold line. 
It is deterministic, so there is no noise component. 
The error is measured by mean squared difference. 
The optimal linear least-squares fi t is shown with the 
dashed line. The bias component for this task is the 
mean least-squares difference between these two 
models. The linear least-squares fi t given a specifi c 
training dataset (shown with the circles) is denoted 
by the dotted line. The variance component for this 
task and dataset is the mean squared-difference 
between the dotted and the dashed lines.

The bias-variance decomposition helps us 
understand the conditions under which a classifi er 
is likely to over-fi t. Notice that the bias is a function 
of the classifi er and the actual classifi cation task, 
while the variance is a function of the classifi er and 
the given dataset. A classifi er with high-bias (eg, 
Simple Bayes) is not able to learn as complicated 
functions as one with low-bias (eg, k-Nearest 
Neighbors and the rote-learner described above). 
However, when learning from a small number of 
training examples, the high-bias classifi er may 
often out-perform the low-bias one because the 

Predictor X

Outcome of 
Interest Y

Optimal Model

Optimal Linear 
Approximation Model

Least Squares fit of 
given dataset

Training sample 

Bias: Average error of 
approximating line   with line 

Variance: Average error of
approximating line  with line 

Figure 4. An example of bias-variance decomposition. The true relationship (optimal model) between the predictor X and outcome Y is 
shown with the bold line. It is deterministic so there is no noise component. The optimal linear least-squares fi t is shown with the dashed 
line. The bias component for this task is the least-squares difference between these two models (averaged out on all values of X). The linear 
least-squares fi t given a specifi c training dataset (shown with the circles) is denoted by the dotted line. The variance component for this task 
and dataset is the difference (averaged out on all values of X) between the dotted and the dashed lines.
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latter may have a much larger variance component. 
This observation is particularly important in 
analyzing mass-throughput data as currently such 
datasets have relatively few training cases. It 
readily explains, for example, the success of high-
bias (eg, linear) classifi ers in such datasets. The 
bias-variance decomposition may also explain why 
ensemble methods work well: while they increase 
the complexity of the learned decision surface 
relatively to a single classifi er, ensembling typically 
reduces the variance component of the error. In 
addition, the decomposition partially explains why 
modern methods such as Support Vector Machines 
are as successful across many datasets and tasks: 
these methods control the bias-variance trade-off 
relative to the available sample by not allowing the 
decision surface complexity to grow out of propor-
tion to the available sample (more on Support 
Vector Machines and this issue in the sections 
below). In contrast, the bias of the Simple Bayes 
classifi er is independent of the sample size.

(c) What causes over-fi tting? 
The Computational Learning Theory 
perspective
A second perspective on over-fi tting is provided 
by Computational Learning Theory (COLT), which 
formally studies under which conditions learning 
is feasible and provides several bounds for the 
generalization error depending on the classifi er 
used, the defi nition of error to be minimized (eg, 
number of misclassifi cations), and other assump-
tions. While theoretical results in classical statistics 
typically make distributional assumptions about 
the data (ie, the probability distribution of the data 
belongs to a certain class of distributions), COLT 
results typically make assumptions only about the 
class of discriminative model considered. Notice 
though, that it may be the case that an optimal 
discriminative model never converges to the prob-
ability distribution of the data.

COLT research has defi ned several mathemati-
cal models of learning. These are formalisms for 
studying the convergence of the errors of a learning 
method. The most widely-used formalisms are the 
VC (Vapnik-Chervonenkis) and the PAC (probabi-
listically approximately correct) analysis. A VC or 
PAC analysis provides bounds on the error given 
a specifi c classifi er, the size of the training set, the 
error on the training set, and a set of assumptions, 
eg, in the case of PAC, that an optimal model is 

learnable by that classifi er. Typical PAC bounds, 
for example, dictate that for a specifi c context 
(classifi er, training error, etc.) the error will be 
larger than epsilon with probability less than 
delta, for some given epsilon or delta. Unlike bias-
variance decomposition, COLT bounds are inde-
pendent of the learning task. From the large fi eld 
of COLT we suggest [Anthony, 1992] and [Kearns, 
1994] and the recent tutorial by [Langford, 2005] 
as accessible introductions.

It is worth noting one interesting theoretical 
concept from COLT that is pertinent to over-fi tting. 
The VC (Vapnik-Chervonenkis) dimension (not to 
be confused with the VC model of learning above) 
is (informally) defi ned as the maximum number of 
training examples that can be correctly classifi ed 
by a learner for any possible assignment of class 
labels. The VC dimension of the classifi er is a 
quantity that frequently appears in estimation 
bounds in a way that all else being constant, higher 
VC dimension leads to increased generalization 
error. Intuitively, a high-bias classifi er has low VC 
dimension and vice-versa. An example of VC bound 
follows: if VC dimension h is smaller than l, then 
with probability of at least 1-η, the generalization 
error of a learner will be bounded by the sum of its 
empirical error and a confi dence term defi ned as 

 

h l
h

l

log log( / )2 1 4+⎛
⎝⎜

⎞
⎠⎟

− η

 

(notice that this bound is independent of dimen-
sionality of the problem; this is an important 
observation that we revisit when we discuss 
how to overcome the curse of dimensionality) 
[Schölkopf, 1999].

The number of parameters of a classifi er does 
not necessarily correspond to its VC dimension. In 
[Herbrich, 2002] (Chapter 4) examples are given 
of a classifi er with a single parameter that has 
infinite VC dimension and classifiers with an 
unbounded number of parameters but with VC 
dimension of 1. Thus, a classifi er with a large 
number of parameters (but a low VC dimension) 
can still have low error estimates and provide 
guarantees of non-over-fi tting. In addition, some 
of these bounds are non-trivial (ie, less than 1) 
even when the number of dimensions is much 
higher than the number of training cases. This 
proves unequivocally that learning is possible in 
the situation common in mass-throughput data 
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where the number of observed variables is much 
higher than the number of available training 
sample. Many popular classical statistical predic-
tive modeling methods in contrast break down in 
such situations. The mentioned COLT results also 
justify our prior assertion that over-fi tting is not 
equivalent to a high number of parameters. Finally, 
certain heuristics used in practice, such as the 
Occam’s razor which can be stated as “everything 
else being equal, choose the simplest explanation 
(model) that fi ts the data”, are naturally explained 
using computational learning theory since the 
simplest models provide the smallest error bounds 
[Langford, 2005].

Unfortunately, many of the estimation bounds 
provided by COLT are not tight for the number of 
samples available in mass-throughput data analysis, 
but current research is promising in deriving 
bounds that are more relevant in practice. In addi-
tion, COLT results often drive the design of clas-
sifiers with interesting theoretical properties, 
robust to the curse of dimensionality, and empiri-
cally proven successful, such as Support Vector 
Machines (discussed in detail later).

(d) What causes over-fi tting? 
Multiple Validation
Our discussion so far has dealt with estimation of 
the error of a single predictive model. Another 
major source of over-fi tting, not encapsulated by 
the single-learning setting of the theoretical frame-
works mentioned above is multiple validation3. 
In this situation the researcher builds a series of 
models using a fi xed training sample and esti-
mates the error of each one of them using either 
a fi xed test dataset or using the training error and 
theoretical bounds. Then the researcher chooses 
the model that has the lowest estimated error. 
Unfortunately, the variance of the generalization 
error estimates by the empirical error in a small-
sample validation set is high, thus the model 
with the lowest validation error may not be the 
model with the lowest (true) generalization error 
([Braga-Neto, 2004], [Weiss, 1991]).

Over-fi tting by multiple validation can occur 
both by means of computationally intensive data 
fi tting schemes (eg, genetic algorithm search with 
no special precautions against over-fi tting) but also 
by repeated manual analysis of the data (by the 
same or other research groups even, as happens for 
example in data analysis competitions and repeat-
edly analyzed datasets in the public domain) in 
which the data is analyzed by many different 
approaches (or different parameter settings of the 
same approach) until a model with low error in the 
training or validation data is identifi ed4.

In Figure 5 we examine some typical over-
fi tting scenarios via multiple validation. Assume 
the very common situation of a researcher who 
is interested in developing a model that is highly 
discriminatory for cancer (or some other response 
variable of interest, such as clinical outcome, 
metastasis, response to treatment etc.). Without 
loss of generality, and for clarity of presentation 
let us assume that only 3 models can be built to 
fi t the data and that in the general population, 
model_2 is the best and has a true (ie, population-
wide) area under the ROC curve (AUC) of 0.85. 
The researcher has access to one sample set 
sampled from the general population uniformly 
randomly. For any population of non-trivial size 
n and given enough predictor variables there is 
a very large number of non-equivalent samples 
of size k such that k is much smaller than n. 
Assume that the one sample the researcher sees 
is “1” on the left top corner (all other samples 
like “2” are not available to the researcher). The 
researcher fits all three possible models and 
estimates their error in the general population by 
some variant of cross-validation (see section 
3.2(a)). If the sample size is small then all these 
procedures will produce an error estimate that 
varies a lot from sample to sample. In our exam-
ple the estimate for model_1 is 88% instead of 
the true 65%, the estimate for model_2 is 76% 
instead of 85%, and for model_3 is 63% instead 
of 55%. On the basis of these estimates the 
researcher chooses model_1 as the best model and 
expects that model_1 will exhibit AUC of 88% 

3A widely-recognized form of over-fi tting due to multiple validation is false univariate associations of a variable of interest (eg, a gene expression value) 
with the response variable (eg, survival) due to multiple statistical comparisons. It is a special sub-case of over-fi tting in the sense that any valid (ie, non-
random and thus, given enough sample, statistically signifi cant) univariate association corresponds to a univariate predictive model for the response 
variable that should generalize to fresh samples from the same population of patients. False discovery rate (FDR) techniques such as ones introduced in 
[Storey, 2003] and variants can and have been used to address the problem for the univariate case as and thus will not be repeated here. We will focus 
instead on the issue of over-fi tted multivariate models.
4This has also called ‘overtuning’ when multiple predictive models are evaluated on the same test set.
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in future applications. Since however the true 
AUC for this model is only 65%, the model is 
over-fi tted, that is, it matches well the sample but 
not the population.
Now let us assume that our researcher is aware of 
this possibility and decides to accept the model 
only if in addition to good cross-validation error 
the model also exhibits good performance in a 
completely independent sample. Unfortunately as 
long as the independent sample is small, the same 
problems regarding high variance of the error 
estimate may well affect the researcher’s conclu-
sions. Specifi cally if out of the many possible 
independent test samples (depicting to the right 
hand-side of Figure 5) the independent sample seen 
by the researcher is “3”, model_1 has an AUC 
closer to the true (ie, population) one, and the over-
fi tting will be detected. However if the researcher 
is unlucky enough to see dataset “4” as the inde-
pendent data (but not “3” or any other), she will 
not detect over-fi tting since in test sample “4” 
model_1 exhibits higher AUC than the true one. 
The researcher will confi dently publish model_1 
with the claim of no over-fi tting. These examples 

show that although some believe that a completely 
independent validation with low-error precludes 
over-fi tting this is not always the case. Further-
more, if the researcher has access to dataset “3” 
over-fi tting will be established but not prevented. 
The researcher will face then the following set of 
hard decisions: (a) publish a negative fi nding; or 
(b) repeat training and try to develop/evaluate a 
new set of models (in our example we assumed 
three possible models only but typically there is 
an infi nity of them); or (c) return to training and 
use different modeling methods; or (d) abandon 
the hypothesis without trying to publish. Options 
(b), and (c) are prone to over-fi tting the (formerly 
but no longer) “independent” dataset in a subsequent 
round of model building and validation since, 
assuming enough modeling fl exibility, eventually 
some model that is good for both the training and 
the (formerly but no longer) “independent” datasets 
will be found. Option (d) does not disclose poten-
tially valuable information (eg, other researchers 
may attempt to test the same hypothesis/model 
building but the current experiment at a minimum 
suggests a way not to do the analysis and is thus 

Figure 5. Independent sample validation does not always detect over-fi tting (see text for details).
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of use as long as subsequent analyses are not done 
on the same data (to avoid over-fi tting by other 
groups as in cases (b), (c) above). We return our 
attention to option (a) and show (Figure 6) that, 
unfortunately, a negative fi nding is not unequivo-
cally supported by this experiment either.

In this second example scenario set, the 
researcher has access to sample set “2” (instead of 
“1”) for training and validation and to either 
sample set “3” or “4” for independent validation. 
In this example the estimate for model_1 is 61% 
instead of the true 65%, the estimate for model_2 
is 87% instead of 85%, and for model_3 is 67% 
instead of 55%. On the basis of these estimates the 
researcher chooses model_2 as the best model and 
expects that model_2 will exhibit AUC of 87% in 
future applications. Since the true AUC is 85%, 
the modeling is minimally over-fi tted, and thus it 
matches well the sample and the population. 
Notice however that an independent validation of 
model_2 in independent sample “3” gives AUC of 
only 74%, while in independent sample “4” AUC 
is 90%. If the researcher has access to “3”, she 

will conclude that model_2 is over-fi tted, while if 
she has access to “4” she will conclude that the 
model is not over-fi tted. This example shows that 
indication of over-fi tting via independent sample 
validation is only an indication, not proof for over-
fi tting. The two sets of scenarios taken together 
show that validation by independent prospective 
testing is neither suffi cient nor necessary for either 
preventing or detecting over-fi tting when training 
and/or testing sample size is small.

3.2. Methods to prevent or detect 
over-fi tting and to estimate error 
accurately
The following have been used with varying degrees 
of success in biomedicine and other fi elds to detect 
and prevent over-fi tting and to estimate error:

(a) Cross-validation & bootstrap schemes
In cross validation, the available data is split and a 
part of the data is used to fi t a model while another 
part is used to estimate generalization error. There are 
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Figure 6. Independent sample validation may falsely conclude over-fi tting (see text for details).
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at least three maj or variants of cross-validation: 
(1) the holdout estimator (single training/testing 
split method), (2) the N-fold cross-validation 
(divides the data in N non-overlapping subsets such 
that their union is the full data and uses each sub-
set for testing (testing set) and its complement for 
training (training set); the reported error is the 
average error over N testing sets), (3) the leave-one-
out cross-validation procedure (same as N-fold 
cross-validation with N = sample size) [Weiss, 
1991]. The above three methods have different 
characteristics depending on the data distribution 
(eg, see [Kohavi, 1995], [Azuaje, 2003], and 
[Braga-Neto, 2004]). Usually, when the sample 
size is small, the cross-validation methods may 
suffer from high variance making the performance 
estimates unreliable. Recent work [Braga-Neto, 
2004] proposes to repeat N-fold cross-validation 
multiple times over different cross-validation splits 
of the data and report the average performance over 
multiple runs of N-fold cross-validation. This 
strategy allows to reduce the split variance of the 
data which is due to different cross-validation splits 
(some of which may accidentally be “good” while 
others may be “bad” in terms of classifi cation 
performance).

It is also worthwhile to mention nested N-fold 
cross-validation as a variant of  N-fold cross-validation 
that encapsulates one layer of cross-validation 
inside another one. The inner layer is used to try 
out different parameters (corresponding to models) 
and choose ones that work best for the given dis-
tribution; the outer layer is used to evaluate the best 
parameters found in the inner layer. See Figure 7 
for an example. This method is quite powerful for 
detecting over-fi tting and estimating the general-
ization error conservatively. It works very well in 
microarray and other high-dimensionality data 
(see [Statnikov, 2005b], and [Aliferis, 2003c]). 
However in very small samples it is subject to 
the same high-variance issues that regular cross-
validation faces.

Contrary to cross-validation, bootstrap estima-
tors require sampling with replacement of a large 
number of bootstrap samples; several methods exist 
to estimate the generalization error thereafter (see 
[Efron, 1983], [Efron, 1994], and [Efron, 1997]). 
While bootstrap methods have lower variance of 

the predictions, their computational cost is typically 
high and they often suffer from increased bias5 (see 
[Braga-Neto, 2004], and [Efron, 1997]).

Finally, we would like to note that any form of 
cross-validation or bootstrap estimation does not 
prevent over-fi tting, but detects it. However, proper 
application of cross-validation procedures prevents 
publication of over-fi tted models.

(b) Theoretical bounds on error
Analysis of the type of classifi er employed, or 
distributional assumptions about the data can be 
used to provide bounds of the generalization error 
based on the training error. Such bounds are pro-
vided by Statistical Theory for statistical predictive 
models and by Computational Learning Theory for 
machine learning predictive models ([Vapnik, 1998], 
[Anthony, 1992], [Kearns, 1994], and [Herbrich, 
2002]). Typically, statistical methods attempt to 
estimate the probability distribution of the data. 
The distribution estimate can then be used to create 
a predictive model. Theoretical results from statis-
tics can then sometimes provide bounds on how 
good is the approximation of the true distribution 
by the learned one based on the training sample 
and a bound on the generalization error. However, 
there are cases where knowledge of the data dis-
tribution is not necessary for optimal classifi cation 
or regression. For example, when the task is to 
minimize the number of mistakes a classifi cation 
model makes on discriminating cancerous tissue 
from normals given gene expression data, there is 
no need to predict the exact probability of the tissue 
being cancerous: any such probability higher than 
50% leads to the same optimal classifi cation. This 
“common sense” idea is captured in the following 
quote by Vapnik: “When solving a given problem 
one should avoid solving a more general problem 
as an intermediate step” [Vapnik, 1998].

(c) Feature selection
Contrary to simply detecting over-fi tting, feature 
selection methods, when appropriately applied, 
prevent it: the smaller the number of available 
predictors, the harder it is for most learners to over-
fi t, thus elimination of irrelevant (hence redundant) 
predictors in general reduces the risk for over-fi tting. 

5In gene expression and many high-throughput datasets, every patient has a unique profi le. Thus, its bootstrap sample contains multiple instances of the 
same patients, which is not representative of the general population. This leads to a bias that is not currently known how to correct for.
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This is because all other things being equal, smaller 
number of predictors leads to classifiers with 
smaller complexity (eg, in order to construct a 
classifi er from one predictor, one often has less 
modeling choices than for construction a classifi er 
from 1,000 predictors). Starting from formalized 
or heuristic notions of relevancy, numerous algo-
rithms have been invented to choose only the 
variables that are relevant to the predictive task in 
question (eg, predict response to treatment from 
mass spectrometry or gene expression microarray 
data) while discarding the irrelevant (or relevant 
but redundant) predictors. Algorithms that do so by 
examining the structure of the joint distribution of 
the data only are known as fi lters, algorithms that 
perform search and test subsets of predictors via 
application of a validation sample and a classifi er 

of choice are known as wrappers, algorithms that 
perform predictor selection as part of fi tting the 
classifi er are known as embedded feature selection 
algorithms, while combinations also exist (see 
[Guyon, 2003] and [Tsamardinos, 2003a]). Out of 
numerous algorithms that have been devised and 
tested in mass-throughput data analysis we discuss 
here Markov Blanket induction algorithms as a 
particularly well-motivated theoretically and 
practically powerful family of methods for vari-
able selection. The Markov Blanket of a response 
variable is the smallest set of predictors which 
renders all other predictors (outside the Markov 
Blanket) independent of the response variable 
conditioned on the Markov Blanket. The Markov 
Blanket of the response variable has been shown 
(under broad assumptions) to be the smallest set 
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Figure 7. Pictorial simplifi ed example of nested 3-fold cross-validation. The data are split into 3 mutually exclusive sets of samples: P1, P2 
and P3. The performance is estimated in the outer loop by training on all sample sets but one, using the remaining one for testing. The 
average performance over testing sets is reported. The inner loop is used to determine the optimal value of the classifi er’s parameter C that 
takes values “1” and “2” (in a cross-validated fashion). This value of parameter C is used for training in the outer loop. A detail algorithmic 
description is provided in [Statnikov, 2005b].



145

Challenges in the Analysis of Mass-Throughput Data

Cancer Informatics 2006: 2 

of predictors required for optimal response 
prediction (Figure 8). Theoretical details are pro-
vided in [Tsamardinos, 2003a]. The Markov Blan-
ket not only solves provably the feature selection 
problem but also addresses in a principled manner 
the massive redundancy of predictors that charac-
terizes bioinformatics mass-throughput data. 
Recent algorithmic developments in the fi eld of 
Markov Blanket induction have produced algo-
rithms that can identify the Markov Blanket cor-
rectly, in a sample and computationally tractable 
manner in mass-throughput datasets ([Aliferis, 
2003a] and implemented in [Aliferis, 2003b], and 
[Statnikov, 2005b]).

These latest Markov Blanket algorithms are 
very robust to high-dimensionality. This is because 
they contain an elimination phase in which any 
predictor that is a candidate for Markov Blanket 
inclusion (candidates determined by strength of 
association with the response variable) is admitted 
to the Markov Blanket if it cannot be rendered 

statistically conditionally independent given any 
subset of the other candidates in an iterative 
process6. This is a powerful control mechanism 
against false positives due to multiple testing (ie, 
while many predictors will have univariate and 
multivariate associations with the response strictly 
due to chance, it is in practice extremely unlikely 
that these chance associations persist when we 
condition on multiple other subsets of predictors 
that likely belong to the Markov Blanket). This has 
been verifi ed in experiments with both real and 
simulated datasets, see for example [Aliferis, 
2003a], [Tsamardinos, 2003b], and [Tsamardinos, 
2003c]. The Markov Blanket admits both linear and 
non-linear multivariate functions of the response 
given the selected predictors. Perhaps most impor-
tantly from a biological interpretability perspec-
tive, under broad distributional assumptions the 
Markov Blanket has a localized mechanistic 
interpretation (ie, it contains the measured local 
causes and effects as well as local causes of local 
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Figure 8. Markov Blanket of response variable T. All variables (except O) in the above graph are univariately associated to the response 
variable T (and thus predictive of T) and O is also multivariately predictive of T (in all models with at least one among {E, J, N, K, Q, L} as a 
covariate). Such situations can be very confusing to feature selection algorithms. However, the Markov Blanket of T, depicted as the gray-
shaded nodes within the circle around T, is provably (under broad conditions) the minimal set of predictors required for optimal prediction 
of  T. The Markov Blanket eliminates redundancies thoroughly and systematically and connects structural with predictive models in a formalized 
manner (see text).

6This description is by necessity somewhat over-simplifi ed. For technical details please see [Aliferis, 2003a], and [Tsamardinos, 2003c].
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effects of the response variable, see Figure 8 and 
[Tsamardinos, 2003a]).

We repeat for emphasis that a feature selection 
procedure (especially of the wrapper variety, see 
[Tsamardinos, 2003a]) itself can be over-fi tted to 
the data (ie, predictors can be selected in such a 
manner that the selection conveys information 
about the test data thus contaminating the model 
fi tting process and leading to over-fi tting) (see 
[Simon, 2003] and [Ambroise, 2002]). For this 
reason, feature selection (and as a general rule 
any data analysis preparation step that needs 
more than one sample instance at a time) must be 
accomplished in training data only. This directly 
follows from our discussion of over-fi tting by 
multiple validation.

Finally, we note that any modeling choice with 
a free parameter can be over-fi tted. For example, 
selection of genes for a concise model can be 
thought of a specifi c parameterization of the 
model (see [Ambroise, 2002] and [Zhu, 2006]). 
These authors have popularized in the bioinfor-
matics literature the term “selection bias” for the 
over-fi tting of the gene selection parameter. In 
our discussion we use the term “over-fi tting of 
gene selection” instead, in order to avoid pos-
sible confusion with the broader meaning of 
“selection bias” in the statistical literature where 
it denotes non-random sampling of the data from 
the population.

(d) Dimensionality reduction
This set of techniques reduces the number of 
predictors not by discarding some of them as in 
feature selection but by projecting all predictors to 
a new and typically more compact space that has 
some attractive properties. These properties typi-
cally are: (1) a few of the predictors (dimensions) 
in the new space can maintain essentially all dynam-
ics observed in the full data; (2) the predictors in 
the new space can be independent from each other 
thus facilitating classical regression techniques by 
means of eliminating multicollinearity; (3) the 
number of predictors in the new space is constrained 
by the minimum of the number of samples and 
number of predictors in the original space thus 
allowing to restore over-specifi city necessary for 
the regression modeling. The most established tools 
for dimensionality reduction are: Principal 
Component Analysis (abbreviated as PCA; also 
known as Singular Value Decomposition in linear 

algebra) [Shlens, 2003], Independent Component 
Analysis [Hyvärinen, 1999], and related methods. 
A simple example of use of PCA for the reduction 
of dimensionality is shown in Figure 9. We would 
like to emphasize that PC A is not designed to 
be used for feature selection. As it is seen from 
Figure 9, just one gene by itself is suffi cient to 
perfectly discriminate cancer patients from normal 
subjects. However, both genes receive nonzero 
weights (also known as “loadings”) in the 1st 
principal component defi ned as 0.949*X-0.316*Y 
= 0, where X and Y denote genes X and Y, respec-
tively (see Figure 9). Therefore, selection of genes 
that receive nonzero weights in a principal com-
ponent will not in general provide a minimal-size 
set of optimally-predictive set of predictors. This 
is expected, in a way, since PCA is inherently an 
unsupervised technique not optimized for predic-
tion of any one outcome, but rather tries to com-
pactly represent the joint distribution of all 
variables. Furthermore, given that each principal 
component is a linear combination of predictors, 
it is diffi cult to interpret principal components 
biologically (ie, what does it mean that a gene 
appears with different loadings in several princi-
pal components, and how different loadings in 
different principal components compare across 
genes?). Another point is that while some authors 
have proposed that PCA is inherently resistant to 
over-fi tting, in small samples principal compo-
nents are themselves subject to estimation prob-
lems. This results in principal components that 
are inaccurate estimates of the true (ie, general 
population) ones, hence multiple validation search 
strategies for fi nding optimal principal component 
sets may need be applied to optimize classifi cation 
performance opening the door to over-fitting 
[Nguyen 2002].

It is worthwhile to mention that some machine 
learning methods such as Neural networks can be 
confi gured to exploit dimensionality reduction 
implicitly (eg, by using fewer hidden units than 
input units in multi-layered feed-forward NN 
architectures) [Bishop, 1995].

Forward and backward model selection (which 
is a special form of “wrapper”-style feature selec-
tion) procedures have been criticized unfavorably 
to PCA by some authors on the basis of several 
accounts the most important of which is over-fi tting 
the data (for example see the discussion in [Harrell, 
2001]). Indeed if extensive model selection and 
fi tting are performed at the same time (as often 
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done by widely-used statistical software), the 
resulting model will be likely over-fi tted in selected 
predictors parameter values and overall fi t (or clas-
sifi cation error) estimates. However, as long as the 
stepwise procedure is conducted separately from 
model fi tting and error estimation the fi nal model 
and its error estimates (respectively) will not be 
over-fi tted [Reunanen, 2003].

(e) Penalizing complexity/parameters
One method for avoiding over-fitting without 
resorting to low-performance high-bias classifi ers 
is to design and apply learners that trade-off com-
plexity for “goodness-of-fi t” of the data. Such 
learners are able to produce models that capture 
complicated functions of the data, however, they 
penalize for this extra complexity. Thus, everything 
else being equal, they exhibit a preference for 
simpler models and only generate a more compli-
cated model if the additional complexity is justifi ed 

by a substantial increase in explaining (fi tting) the 
data. Notice that this practice is common in manual 
model selection in statistics. In Machine Learning 
however (and some statistical procedures that 
employ parameter shrinkage), it is embedded and 
formalized within the classifi er. Examples of this 
practice is the Bayesian scoring for selecting a 
Bayesian Network to use for classifi cation (or other 
Bayesian classifi ers), the minimum description 
length principle applied to many different classi-
fi ers, the weight-decay strategy in training artifi cial 
neural networks, and others.

It is worth mentioning here kernel methods and 
specifi cally the case ofSupport Vector Machines 
[Vapnik, 1998] as prototypical examples of learn-
ers that penalize complexity. The term used for 
penalization of complexity in the literature for such 
methods is regularization. There are three main 
ideas in the Support Vector Machine classifi er. The 
fi rst is to use for discrimination a linear classifi er 
(a line in two dimensions, a plane in three dimensions, 
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Figure 9. Reduction of dimensionality by Principal Component Analysis. We are given data for two genes X and Y for cancer patients and 
normal subjects. We are rotating the original axes to obtain new directions (principal components) corresponding to a more parsimonious 
description of data. The principal components lie along the directions of maximal covariance. The 1st principal component (PC1) is shown 
on the fi gure and is defi ned as0.949*X-0.316*Y=0. This principal component accounts for more than 90% of variance observed in the data. 
Thus one can replace values of the two genes X and Y by a single principal component. Notice that principal component analysis is not 
designed for feature selection since just one gene by itself is suffi cient to discriminate cancer patients from normal subjects, however both 
genes receive nonzero weights in the 1st principal component.
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and a hyperplane in general); specifi cally to use 
the hyperplane that maximizes the margin of 
separation between the classes. An example is 
shown in Figure 10. The second idea is to map the 
data to a much higher dimensional space called 
feature space before constructing the separating 
hyperplane, where they are linearly separable, ie, 
able to be separated by a hyperplane. The break-
through achieved by kernel methods is that this 
mapping is done implicitly via a kernel function 
and thus it is extremely effi cient: it is possible to 
classify new data using hyperplanes in feature 
spaces of billions of dimensions in times typically 
of less than a second. The third important idea in 
SVMs is to allow for misclassifi cations when the 
data are not linearly separable and trade-off 
misclassifi cation for a wider margin of separation 
of the rest of the data (this is the “soft-margin” 
formulation of SVMs). Extensions of the standard 
SVM exist for multi-class and regression problems 
(eg, see [Platt, 2000], [Kressel, 1999], [Weston, 
1999], [Crammer, 2000], and [Smola, 2004]).

An important technical detail of the SVMs is 
that the hyperplane produced is a linear combina-
tion of the training samples. A hyperplane can be 

described by its normal vector w and so the previous 
statement means that w = Σαi φ(xi), where ai are the 
coefficients that produce the hyperplane that 
maximizes the margin, xi are the input training 
sample vectors, and φ(xi) are their images in feature 
space. Since, as we mentioned the feature space 
typically has billions of dimensions (eg, mass-
throughput analysis where the original dimensionality 
is tens of thousands and the kernel may be a poly-
nomial of degree 2 or 3) the weight vector w has 
billions of parameters. However, the free parameters 
are actually the Lagrange multipliers that are as 
many as the training samples. In other words, for 
each extra training sample an SVM gets, it allows 
itself an extra free parameter. In addition, it can be 
shown that the vector w is a linear combination of 
only the support vectors, ie, “boundary” data points 
that are relevant for defi nition of the SVM classifi er, 
ie, the training samples lying exactly on the margin. 
Since this number is typically much less than the 
total number of training samples, the SVM (in a 
practical sense) also minimizes the number of free 
parameters that it tries to estimate. The above 
properties are corroborated by signifi cant empirical 
evidence showing the success of SVMs in many 
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Figure 10. An example of a Support Vector Machine model. The model is denoted by the bold dashed line. The predictors are the expression 
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149

Challenges in the Analysis of Mass-Throughput Data

Cancer Informatics 2006: 2 

data analysis tasks of mass-throughput and other 
data ([Statnikov, 2005a], [Joachims, 1999], and 
[Schölkopf, 1997]).

In contrast, classical statistical models do not 
only seek means to correctly classify the data but 
also an estimate of the process that generates 
our data (the so-called “generative model”). As a 
result in a classical regression framework we may 
not have enough data to estimate a model unless 
the number of training cases is at least an order of 
magnitude as large as the number of free 
parameters in our model (and the number of such 
parameters grows worst-case exponentially to the 
number of predictors, depending on how severe 
non-linearity the analyst is willing to admit in the 
model selection process).

(f) Label re-shuffl ing
Several permutation tests have been recently 
proposed to test significance of the achieved 
classifi cation error (eg, see [Radmacher, 2002], 
[Mukherjee, 2003], and [Lyons-Weiler, 2005]). 
Here we are presenting a method not for signifi -
cance testing of the achieved classifi cation error, 
but for detecting and quantifying over-fi tting. The 
method works as follows: Once a model is fi t and 
its generalization error is estimated, the original 
response variable labels are randomly re-shuffl ed. 
The data analysis process is repeated a large 

number of times, each time with newly-permuted 
labels for the response variable. If the mean error 
estimate is better than uninformative (eg, 0.5 area 
under the ROC curve) more often than what 
expected by chance, then the data analysis process 
is over-fi tted [Aliferis, 2003c]. The difference 
between the mean error estimate and uninformative 
classifi cation error value can be used as a measure 
of over-fi tting. See Figure 11 for an example.

3.3. Curse of Dimensionality
The term “Curse of Dimensionality” refers to the 
increased diffi culty (or even, in the worst case, 
collapse) of statistical or machine learning methods 
due to very large number of predictors. In addition 
to the problem of large number of falsely positive 
associations and to over-fi tting (both described in 
section 3.1) that are related to (and partially caused 
by) large predictor numbers, several additional 
problems are incurred as described below:

(a) Under-specifi ed models
Certain methods inherently require the number of 
samples to be larger than the number of dimensions. 
Otherwise, the model to be generated by the method 
is under-specifi ed, ie, there is an infi nite number of 
solutions, eg, a least-squares-based linear regres-
sion method in d dimensions with k � d available 
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Figure 11. Results of label re-shuffl ing experiment indicative of over-fi tting. The histogram describes the distribution of performance estimates 
using re-shuffl ed labels of the response variable for a hypothetical data analysis procedure. The mean performance is 0.75 area under ROC 
curve which is better than uninformative prediction (0.5 area under ROC curve).
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training samples. To make the example concrete let 
d = 2 and k = 1 as shown in Figure 12. Any line that 
crosses through the training example minimizes 
the least squares error of the regression. While 
additional constraints and preferences can be added 
to select a model, this is not trivial for all methods. 
Thus, many statistical modeling methods fail 
due to infeasibility of solving the linear system of 
equations (as a part of the model fi tting stage).

(b) Exponential sample requirements
Some learning methods such as decision trees 
require sample that grows exponentially to the 
depth of the tree. Since the depth of the tree typi-
cally grows very fast to the number of available 
predictors, the more such predictors available, and 
especially if each predictor’s contribution to the 
fi nal classifi cation is relatively small (a situation 
that is not uncommon in bioinformatics datasets) 
then standard (greedy) decision tree learning algo-
rithms (eg, ID3 and offspring) run out of sample 
before a tree with small error is fi tted.

(c) Computational intractability to fully 
explore interaction effects/non-linearities
When considering interaction effects to capture 
non-linearities of the predictor-response functional 

form, as the predictors number increases, the 
number of nth order interaction effects grows expo-
nentially (assuming n is bounded only by the 
number of predictors and not by other consider-
ations such as sample), rendering infeasible 
exhaustive examination of the interaction effects 
(see Figure 13). In predictor spaces with 10,000 
predictors for example even 2nd order effects 
become impractical to be examined exhaustively 
in tractable computational time [Agresti, 2002].

(d) Irrelevant of superfl uous dimensions 
may severely affect methods that calculate 
distances in the input space
It is easy to see for example why the k-Nearest 
Neighbors as a learning method is sensitive to the 
number of dimensions of the problem. In order 
to classify a new case, k-Nearest Neighbors 
selects the k “closest” or “most similar” training 
examples to the new case. The case is then clas-
sified to the most common label among its 
k neighbors [Mitchell, 1997]. The distance 
between cases is typically measured by the 
Euclidean distance (or some other metric). Let us 
consider the task of predicting cancer in subjects 
using 1-nearest neighbor where the data contains 
the following predictors: smoking status, color of 

Predictor X

Outcome of
Interest Y

Figure 12. An example of an under-specifi ed model. When there are two dimensions (the predictor X and the outcome Y) but only one 
training sample (denoted by the circle), an infi nite number of minimum least-squares lines is possible.
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eyes, brand of car, and name of spouse. It is easy 
to see that when predicting a new case a neighbor-
ing training case that looks very similar across 
the (presumed irrelevant in our example) dimen-
sions of color of eyes, brand of car, and name of 
spouse is the one that will determine the classifi -
cation. Similarity in the relevant dimension gets 
diluted by the presence of numerous irrelevant 
variables.

By the same token, if there are many “equiva-
lent” variables and multicollinarity, ie, correlations 
among predictors, similarity across these dimen-
sions will weight heavier in determining classifi ca-
tion while the other dimensions will be relatively 
ignored. Consider the case of the above example 
where the predictors are now smoking status (yes/
no), yellow stains on fi ngers, daily costs of ciga-
rettes smoked, and occupational exposure to car-
cinogens. The first three variables essentially 
convey the same information for the target but 
because they are repeated, similarity across these 

dimensions weights heavier than similarity across 
the last variable.

(e) Severely impeded heuristic search 
and optimization
Methods like Artificial Neural Networks and 
Genetic Algorithms that rely heavily on gradient-
based (the former) or heuristic search (the latter) 
optimization of a data-fi tting objective function, 
have higher chances of being trapped in a local 
optimum of the fi tness space ([Mitchell, 1997], 
[Bishop, 1995]).

3.4. Methods to deal with the curse 
of dimensionality
A number of powerful counter-measures have 
been devised to the curse of dimensionality. 
Most of these methods tend to address all the 
adverse effects of the curse of dimensionality 
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Figure 13. 1st, 2nd and 3rd order effects of a non-linear predictor-response function with three predictors and up to 3rd order effects (a “fully 
saturated” model that captures any non-linearity can be built from the set containing all the effects terms). Notice that the number of interac-
tion terms grows faster than 2n and thus for any modeling task with more than two or three dozen variables, exhaustive estimation of the 
high-order effects cannot be accomplished in tractable computational time.
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namely increased danger of over-fi tting, increased 
sample requirements, and increased computational 
complexity.

(a) Feature selection
Feature selection was discussed in section 3.2(c) 
Apart from reducing the propensity to over-fi t, 
feature selection also improves computational 
effi ciency as well as reduces sample size require-
ments for analysis. It also enables easier biological 
interpretation and focusing subsequent experimen-
tation on a more manageable set of features (eg, 
molecules) and biological hypotheses about their 
roles and interactions.

(b) Dimensionality reduction
Just like feature selection, dimensionality reduction 
(explained in section 3.2(d)) reduces the propensity 
to over-fi t, improves computational effi ciency, 
eliminates unwanted predictor multicollinearity, 
reduces sample size requirements and restores 
conditions for fi tting classical regression models. 
However it does not lend itself to a convenient 
biological interpretation as explained in section 
3.2(d). In addition, practical dimensionality reduc-
tion methods may not be fully immune to the curse 
of dimensionality. For example [Nguyen, 2002] 
shows empirical results suggesting that PCA is not 
fully insensitive to many irrelevant features in 
microarray analysis.

(c) Methods robust to high dimensionality
We showed in section 3.2(e) how kernel-based 
methods, the primary practical exemplar of which 
are Support Vector Machines (SVMs) control 
over-fi tting by regularization and control of the 
complexity of the learned classifi er to adjust for 
the available data. We also described in section 
3.1(c) one of several bounds for SVMs that are 
independent of the dimensionality of the learning 
problem [Schölkopf, 1999]. To intuitively under-
stand how this can be the case and how it is pos-
sible to learn good classifi cation and regression 
models with many more predictors than samples 
with SVMs, recall that an SVM classifi er is a 
decision surface that separates the data classes 
well. However the surface is not defi ned by esti-
mating some population parameter estimated by 
the data samples (that would be a “generative 
model” – oriented classical statistical approach). 

Instead the surface is fully defi ned by a subset of 
the samples (represented geometrically as vectors 
of instantiated predictor variables, and denoted as 
“support vectors”). Because the complexity of the 
model is always bound by the available sample 
(since one cannot have more support vectors than 
the available samples) the model complexity is 
inherently controlled by the learning method’s 
structure and does not have to be retro-fi tted by 
feature selection or dimensionality reduction 
schemes (such as PCA for classical regression 
models). In addition, SVMs possess additional 
attractive properties such that (i) the optimization 
of their objective function is not heuristic (as for 
example in ANNs [Duda, 2001] or GAs [Hart, 
1991]) but guaranteed optimal via effi cient qua-
dratic optimization, (ii) they examine high-order 
interaction effects not exhaustively but implicitly, 
and thus tractably, by means of the “kernel trick” 
whereby the data is projected to a higher-dimen-
sional space, an optimal decision surface is iden-
tifi ed there, and the solution is projected back to 
the original predictor space [Vapnik, 1998]. Since 
the projection is achieved via kernel functions 
utilizing dot products of the data, the operation is 
quadratic to the sample, and only linear to the 
dimensionality for an arbitrarily large interaction 
effect order. Further, since the kernels can be 
organized in mutually subsuming classes of pro-
gressively increasing complexity, the analyst 
(typically using a small number of cross-validation 
or theoretical error estimates) can effi ciently iden-
tify the smallest-complexity decision surface that 
is likely to yield optimal generalization error. 
Despite all these attractive properties, SVMs can 
still in some cases be sensitive to the curse of 
dimensionality (see [Hastie 2001] for an example) 
and can benefi t by additional feature selection to 
their regularization (see [Hardin 2004], [Guyon, 
2002], and [Rakotomamonjy, 2003]).

(d) Heuristic methods
Various techniques from the fi elds of Operations 
Research and Non-Linear Optimization have been 
applied to neural network optimization as alterna-
tives to the standard gradient descent optimiza-
tion (for example, see [Fletcher, 1964], [Powell, 
1997], [Beale, 1972], [Moller, 1993], [MacCay, 
1992], and [Foresee, 1997]). Also weight decay, 
momentum, random restarts and other heuristic 
and quasi-heuristic methods have been devised to 
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augment ANN fi tting with very large dimensionalities 
(see [Mitchell, 1997] and [Hagan, 1996]).

(e) Expert fi ltering based on domain knowledge
If in some area of research experts can guarantee 
that some predictors are irrelevant or very likely 
to be insignificant, then the data analyst can 
eliminate those. Unfortunately in molecular med-
icine, where very often so little is known about the 
processes studied, this entails the danger of miss-
ing potentially signifi cant determinants of disease 
or outcome. However under special circumstances, 
for example in SNP arrays, SNPs belonging to a 
specifi c haplotype can be replaced safely by the 
“tagSNP” of that haplotype as long as the tagSNPs 
are identifi ed with stringent statistical criteria 
[Gibbs, 2003].

(f) Newer algorithms to fi t regression models
Several newer algorithms have been introduced to 
fi t classical regression models using very high-
dimensional data, eg, [Komarek, 2005], [Komarek, 
2003], [Zhu, 2005], [Shevade, 2003], [Genkin, 
2004], [Zhang, 2003]. The above methods are fairly 
insensitive to the curse of dimensionality.

3.5. Causality versus Predictiveness
While often purely predictive models are quite 
satisfactory for supporting decision making, (eg, 
biomarkers that are predictive of outcome are valu-
able since they can be used as surrogate endpoints 
in clinical trials) a signifi cant part of the data 
analysis endeavor is geared toward discovery of 
mechanistic, ie, causal knowledge. Thus the impor-
tance of causal discovery from observational data 
such as typical case-control mass-throughput data 
cannot be understated.

In the biomedical and biostatistical communities 
it is widely accepted that the fi nal judge of causal 
(as opposed to predictive or associational) knowl-
edge is the randomized controlled experiment. Such 
experiments can help discover causal structure: 
for example, if smoking is enforced to a random 
group of subjects that later exhibits increased lung 
cancer rates relative to a comparable random group 
that does not smoke, then smoking must be causing 
cancer, and the association cannot be attributed 
solely to other factors, eg, a gene that causes 
propensity to smoking and susceptibility to lung 
cancer. However, quite often experimentation 

is impossible, impractical, and/or unethical. For 
example, it is unethical to force people to smoke 
and it is impractical in the context of our discussion 
to perform thousands of experiments manipulating 
single and combinations of genes at a time in order 
to discover which genes cause disease and how 
they interact in doing so.

For these reasons some researchers have been 
using a number of heuristic methods for causal 
discovery. Typically, heuristic methods used are 
based on classifi cation, concept formation, and 
regression methods (rule learning [Mitchell, 1997] 
and [Holmes, 2000], clustering [Eisen, 1998], 
logistic regression [Agresti, 2002]). The resulting 
models are interpreted causally in a variety of 
subjective ways. From our survey of the litera-
ture, the four most prominent heuristics for causal 
discovery in biomedicine are:

• Heuristic 1 = “If  they cluster together they have 
similar or related function.”

• Heuristic 2 = “If  A is a robust and strong predic-
tor of T then A is likely a cause of T.”

• Heuristic 3 = “The closer A and T are in a causal 
sense, the stronger their correlation.”

• Heuristic 4 = Surgeon’s General’s Epidemio-
logical Criteria for Causality [U. S. Department 
of Health, Education, and Welfare, 1964]: “A is 
causing B with high likelihood if: (i) A precedes 
B; (ii) A is strongly associated with B; (iii) A is 
consistently associated with B in a variety of 
research studies, populations, and settings; (iv) 
A is the only available explanation for B 
(“coherence”); (v) A is specifi cally associated 
with B (but with few other factors).”

It can be shown that all these heuristic methods are 
not sound and may produce misleading results 
[Spirtes 2000]. Fortunately, it was shown, rela-
tively recently (1980’s), that it is possible to 
soundly infer causal relations from observational 
data in many practical cases (see [Pearl, 1988], 
[Spirtes, 2000], and [Glymour, 1999]). Since then, 
algorithms that infer such causal relations have 
been developed that can greatly reduce the number 
of experiments required to discover the causal 
structure. Several empirical studies have verifi ed 
their applicability: [Glymour, 1999], [Spirtes, 
2000], [Tsamardinos, 2003 c], and [Aliferis, 1994]. 
In 2003 the Nobel Prize in Economics was awarded 
to C.W.J. Granger for his causal methods for time 
series analysis (fi rst introduced in the late 60s). 
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While the econometrics community has embraced 
computational causal discovery from observational 
data, research in the fi eld is just beginning in 
biomedicine. In mass-throughput exploratory data 
analysis the need for causally informative methods 
is particularly pressing because the number of the 
available molecules is so large and their plausible 
interconnections so complex that a reductionistic 
single-molecule-by-experiment approach alone is 
woefully ineffi cient and expensive to address the 
overabundance of biological questions we can 
generate. For example, a set of 50 genes that are 
closely correlated with AML and ALL distinc-
tion were selected in [Golub, 1999]. However, the 
same authors acknowledge that both a smaller and 
larger set of genes can be used for AML/ALL clas-
sifi cation as well. When it comes to biological 
validation of the obtained results, one usually has 
to focus on some specifi c subset of genes (ideally, 
of the small size). As discussed above, the causal 
discovery techniques provide this focused hint to 
the researchers.

In such datasets a number of formidable chal-
lenges still exist, such as how to scale-up existing 
algorithms for causal discovery from observation 
data to the number of variables encountered in 
biomedical domains, and the question to what 
degree the assumptions of the algorithms hold in 
these domains.

In general, formal methods defi ne a proper 
language for representing, reasoning, and talking 
about causality. This language has so far been 
established well for Bayesian Networks (and 
variations), which are directed acyclic graphs 
annotated with probability tables and coupled with 
a requirement (the “Causal Markov Condition”) 
that relates causal graph structure to independencies 
among variables in the data distribution modeled 
by the Bayesian Network (for technical details see 
[Pearl, 2000]). Interpretation of causation in such 
graphs is intuitive: a variable in the graph causes 
another variable directly if and only if there is an 
edge from the former to the latter (provided the 
graph does not contain unnecessary edges). While 
several algorithms have appeared that canprovably 
discover the full network of causal relationships 
of variables (eg, regulatory gene networks) under 
certain assumptions and given only observational 
data, these methods do not theoretically (in the 
worst case) [Chickering, 1994] or practically 
[Friedman, 1999] scale-up to more than a few 
hundred variables.

Researchers in our group have recently developed 
new principled causal discovery methods that 
soundly and provably induce causal relationships 
(under certain assumptions) from observational 
data and that scale up to hundreds of thousands of 
variables (see [Aliferis, 2003a], [Tsamardinos, 
2003c], and [Tsamardinos, 2006]). Scaling-up is 
possible if one focuses on learning local causal 
structure, eg, the direct causes and effects of a 
disease or a gene of interest. The local methods are 
able to discover parts of a large network of rela-
tions, which can be pieced together to provide a 
partial map of the full, global network. The advan-
tages are scalability, and the ability to at least be 
able to learn the parts of the network for which this 
is practically feasible given the computational 
resources and available sample, and for which the 
assumptions hold.

In [Aliferis, 2003a], [Tsamardinos, 2003c], and 
[Tsamardinos, 2006] extensive experiments sub-
stantiating these statements are presented. In 
simulated experiments the causal structure that 
created the data is known and this makes it pos-
sible to compare the hypothesized causal structure 
output by the algorithms to the true structure. In 
these experiments, causal discovery methods have 
given very promising results.

Typical assumptions of causal discovery algo-
rithms are (i) that all confounders of all variables 
connected directly to the response variable are 
observed (this property is called local causal 
suffi ciency); if local causal suffi ciency does not 
hold, then it is assumed that the information in the 
local neighborhood is enough to infer the presence 
or absence of specifi c confounding via existing 
algorithms (eg, the FCI algorithm [Spirtes, 2000] 
and the IC* algorithm [Pearl, 2000]); (ii) that 
dependences and independences in the data are 
completely captured by the causal Markov Prop-
erty (a detailed explanation of what this principle 
entails is given in [Pearl, 2000]), and (iii) that there 
is enough sample relative to the functional forms 
among variables and the size of the causal 
neighbourhood (since the largest the latter is, the 
more sample is needed). While these assumptions 
are suffi cient, there are not necessary and depar-
tures from them can be tolerated to various degrees 
depending on the nature of the data analysed 
([Pearl, 1996]). It is also worthwhile to mention 
that one of the current challenges in application of 
causal inference algorithms to mass-throughput 
datasets is that statistical decision that are at core 
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of these methods are sensitive to the measurement 
imprecision in the such datasets.

While it is certainly too early to conclude with 
certainty which existing or yet-to-be-discovered 
causal inference algorithms will prove to be most 
effective for mass-throughput data, it is safe to say 
that formal theories of causal inference, well-
characterized algorithmic frameworks and result-
ing practical algorithms for computational causal 
discovery will play a signifi cant role in deciphering 
mechanistic and structural aspects of mass-
throughput data as opposed to strictly associational 
and predictive methods (for example, see a com-
prehensive bibliography on learning causal net-
works of gene interactions via formalized causal 
as well as heuristic regulatory induction algorithms 
[Markowetz, 2005]). As emerging examples of 
formal computational causal discovery tools, we 
cite the Causal Explorer toolkit (http://www.dsl-
lab.org) or the Tetrad IV (http://www.phil.cmu. 
edu/proj ects/tetrad/).

3.6. Integrating heterogeneous data
Many researchers believe that the next generation 
of mass-throughput clinical molecular medicine 
models will rely on integrated analysis of the 
effects of clinical, demographic, microarray gene 
expression, SNP, proteomic, and other types of data 
on phenotypes of interest [Troyanskaya, 2005]. In 
particular, it makes sense to integrate distinct data 
sources when they provide additional information 
about the response variable. For example, when 
building models to predict disease outcomes, one 
should not solely rely on gene expression data, but 
can also include demographic and clinical data (eg, 
age of patient, gender, smoking status, stage of 
disease, medication data, etc.) and possible other 
data sources [Pittman, 2004]. The reason for doing 
this is the following: Apriori it is unknown what 
is the information content of different types of data 
with respect to the problem at hand. That is why 
the fi nal model will be chosen among models that 
are constructed with different combinations of 
data types. For example, a study can evaluate and 
select the best among several models: Model 1 
based on gene expression data, Model 2 based on 
gene expression and clinical data, and Model 3 
based on gene expression, clinical, and imaging 
data, and so on.

Usually, distinct data types are analyzed individu-
ally in the literature via quite dissimilar approaches. 

The bioinformatics literature in particular exhibits 
a high degree of method specialization to the idio-
syncrasies of specifi c molecular assaying platforms 
(especially microarrays). There exist at least two 
fundamentally different frameworks for integrated 
analysis of heterogeneous data (Figure 14): (a) 
tightly-integrated (simultaneous) analysis, and (b) 
loosely-integrated (sequential) analysis. The former 
applies data modeling methods capable of handling 
the variety of data types while the later employs 
data-specifi c methods and then integrates the data-
specifi c results. The advantages of tightly-integrated 
methods (wherever applicable) are that they lead to 
semantically coherent conclusions and, moreover, 
interactions of predictors belonging to separate 
assay/observational modalities (eg, interaction 
between expression abundance and SNPs) will not 
be missed. Loosely-integrated analyses can be 
attractive due to the existence of established and 
well-studied techniques for each type of dataset. 
However, they may miss interactions among predic-
tors analyzed separately, they may lead to sub-
optimal prediction performance and may not control 
for data pre-processing (or other data-specifi c) 
incompatibilities between data types.

As one of several conceivable loosely-integrated 
frameworks we cite here using voting schemes 
to combine the results of data-specialized models 
since such schemes have been shown to perform 
well in general machine learning research. As 
one of several conceivable tightly-integrated 
frameworks we propose here the combination 
of SVMs with Markov Blanket induction algo-
rithms. The rationale for this combination 
(in addition to the benefi ts related to preventing 
over-fi tting and avoiding the curse of dimension-
ality conferred by feature selection and SVMs as 
explained earlier) is that under the condition of 
faithful distributions (which is the vast maj ority 
of distributions with very few known deviations 
known so far [Meek, 1995]), universal approxi-
mator learners (such as SVMs), and standard loss 
functions (ie, mean squared error, area under the 
ROC curve) the Markov Blanket predictors are 
guaranteed to be the smallest optimal predictor 
set and guaranteed to yield soundly local causal 
determinants as well [Tsamardinos, 2003a]. It 
does not matter what are the individual variables 
(clinical, demographic, gene expression, SNPs 
or other), as long as these assumptions hold, the 
predictors can be analyzed together. Further-
more, SVMs are general-purpose classifiers. 



156

Aliferis et al

Cancer Informatics 2006: 2 

While specialized kernels have been devised for 
analysis of specifi c data types (ie, special kernels 
for text or for sequence matching) valid combina-
tion kernels can be easily derived for the combined 
data by combining the data-specifi c sub-kernels 
[Briggs, 2005]. In practice simply rescaling the 
data linearly to the [0, 1] or [-1, 1] interval while 
breaking up nominal variables to “dummy” binary 
variables is often suffi cient to achieve excellent 
results [Hsu, 2005]. Besides aforementioned theo-
retical benefi ts of using Markov Blanket and SVM 
methods for tightly-integrated analysis of hetero-
geneous data, we review the recent work of 
[Aliferis, 2003a] that proposed a new Markov 
Blanket method HITON and evaluated it across 
many types of biomedical data: biochemical (bind-
ing to thrombin), micro-array gene expression 
(lung cancer diagnosis), proteomics (prostate can-
cer diagnosis), clinical (arrhythmia diagnosis), and 
text. The authors found that (1) HITON reduces 
the number of variables in the prediction models 

by three orders of magnitude relative to the original 
variable set while improving or maintaining 
accuracy and (2) HITON outperforms the baseline 
algori thms by select ing more than two 
orders-of-magnitude smaller variable sets than the 
baselines, in the selected tasks and datasets.

3.7. Lack of standard protocols 
for data analysis
Finally, one of the major challenges in working 
with mass-throughput data is the absence of stan-
dard protocols for data analysis. Atypical analysis 
of such data involves a number of steps, for exam-
ple mass spectrometry supervised data analysis 
may involve (but not limited to) the following 
steps: M/Z range restriction, baseline subtraction, 
normalization, peak detection, peak alignment, 
binning, feature selection, classifier construc-
tion, and classifi er evaluation. However, research-
ers often have agreement neither on methods 
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Figure 14. Two fundamentally different frameworks for integrated analysis of heterogeneous data: (a) simultaneous (tightly-integrated) 
analysis, and (b) sequential (loosely-integrated) analysis.
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(and corresponding parameters) to be used in 
each step of data analysis nor on the specific 
sequence of steps (eg, see [Coombes, 2003], 
[Coombes, 2005], [Yasui, 2003a], [Yasui, 2003b], 
[Malyarenko, 2005], [Randolph, 2004], [Jeffries, 
2005], [Wong, 2005], [Sauve, 2004], [Ressom, 
2005], and [Hastings, 2002]). For example, while 
building classifi cation models from mass spec-
trometry data some studies apply Decision Trees 
[Qu, 2002], others apply Support Vector Machines 
[Wagner, 2003]; some studies perform baseline 
subtraction and peak detection as a single inte-
grated step ([Coombes, 2003] and [Koomen, 
2005]), others perform these operations sequen-
tially [Coombes, 2005], yet others do not perform 
baseline subtraction at all [Yu, 2005].

The lack of  standard protocols for mass-throughput 
data analysis is also refl ected in the available soft-
ware (both academic and commercial). In a recent 
review of software systems for supervised microar-
ray data analysis [Statnikov, 2005b], it was con-
cluded that almost every software offers different 
methods and no system enforces unbiased error 
estimation while optimizing classifi cation models 
and selecting relevant genes. This increases the risk 
of over-fi tting and may lead to non-reproducible 
models and error estimates. Two attempts to cir-
cumvent these problems are GEMS [Statnikov, 
2005b] and FAST-AIMS [Fananapazir, 2005] that 
we discuss below.

While considerable efforts have been made to 
develop data storage and dissemination standards 
(eg, the MIAME standard for microarray gene 
expression data [Brazma, 2001] and the Human 
Proteome Organization’s PSI for mass spectrom-
etry data [Orchard, 2004], [Hermjakob, 2004]) 
there is limited agreement as to which are the best 
methods to process, analyze, and interpret data and 
which are high-performance protocols for putting 
together component techniques for a unified 
analysis. We believe that development and avail-
ability of standard protocols will facilitate high-
quality analysis of high-throughput data similar to 
other areas of biomedical research (eg, clinical 
trials [Piantadosi, 1997]). We specifi cally propose 
that robust high-quality protocols for data analysis 
can be developed in a series of three consecutive 
and independent steps:

• Step 1 involves thorough evaluation of 
component algorithms, model selection schemes 
and error estimation procedures across many 

representative datasets for a specifi c problem 
area (eg, diagnosis of cancer from microarray 
or mass spectrometry data). For an exam-
ple of such algorithmic evaluation, refer to 
[Statnikov, 2005a].

• Step 2 involves implementation and validation 
of the protocols in independent datasets and 
comparison to published analyses and new 
ones, including cross-dataset experiments. 
For an example of such an evaluation, refer 
to [Statnikov, 2005b] (note that this protocol 
is fully automated in the GEMS system in that 
study), [Semmes, 2005], [Paik, 2004], and 
[Li, 2005].

• Because standard protocols can ideally be 
automated to produce powerful software to help 
the biomedical researchers, Step 3 involves 
usability testing of the resulting software. For 
an example of such an evaluation, refer to a 
preliminary usability evaluation of the FAST-
AIMS system for mass spectrometry analysis 
by [Fananapazir, 2005].

We emphasize that the above steps 1-3 should be 
iterated periodically to include new developments 
in the fi eld.

Also notice that the process developed and 
evaluated above is by design independent of the 
problem context or specifi cs of the assay and can, 
in principle, be applied to various types of data. 
Promising results for this process have been 
obtained in the domains of microarray gene expres-
sion [Statnikov, 2005b] and mass-spectrometry 
[Fananapazir, 2005].

4. Conclusions
This paper is predicated on the thesis that sound, 
scaleable and reproducible data analysis of 
“-omics” mass-throughput data is essential for 
delivering the promise of molecular medicine both 
for cancer research and beyond. We have identifi ed 
a handful of recurrent core challenges facing every 
research group entrusted with the analysis of such 
data. These include error estimation and over-
fi tting, the curse of dimensionality, the fundamen-
tal distinction of causal versus predictive modeling, 
the integration of heterogeneous types of data, and 
the lack of standard protocols for data analysis.

In an effort to shed light on the problems and 
indicate possible solutions we explained the 
basic factors leading to these problems and out-
lined established and emerging theoretical 
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frameworks, focused methods and practical tools 
to address them.

In summary our main points can be stated as 
follows:

• All current error estimation procedures are 
sensitive to extremely small samples.

• Given a fi xed sample size, avoiding over-fi tting 
relies on techniques that control the complexity 
of the model and match it well to the available 
sample and complexity of modeling task.

• As a general rule, to avoid over-fi tting, any data 
analysis preparation step that needs more than 
one sample instance at a time must be accom-
plished in training data only. For example, it is 
not advisable to perform feature selection with 
all (ie, training plus test) data.

• Contrary to wide-spread belief, when sample 
size is very small, “independent dataset valida-
tion” is not a thorough solution to the over-
fi tting problem: it neither prevents over-fi tting 
nor always detects it.

• For all the above reasons, having suffi ciently 
large sample is a critical factor in designing 
mass-throughput studies.

• Machine learning departs from classical sta-
tistics in mass-throughput data analysis and 
offers robust and computationally scaleable 
solutions often not currently feasible via tra-
ditional statistical modeling. Data analysts 
working with mass-throughput data should be 
aware of the relative strengths and weaknesses 
of statistical machine learning versus classical 
statistical techniques in order to produce the 
best possible analyses. Drawing from our 
experience, we recommend a collaborative 
team of biostatisti-cians and machine learning 
experts working together on challenging data 
analysis tasks not only to provide alternative 
models on the same data but also to combine 
the two. For example, these collaborative teams 
can provide unbiased error estimates from 
statistical theory for powerful machine learn-
ing methods, or allow to base decisions of the 
machine learning techniques on the appropriate 
statistical tests.

• Another aspect of data interpretation, that of 
separating mechanistic (causal) from predictive 
modeling is necessary but quite undeveloped 
currently. We discussed recent algorithmic work 
in computational causal discovery that has great 
promise for such analyses.

• In the near future many different types of clinical, 
molecular and imaging data will have to be 
analyzed in an integrated fashion. We described 
two fundamentally distinct approaches with dif-
ferent strengths and weaknesses: the tightly-
integrated and the loosely-integrated frameworks. 
We suggested that the Markov Blanket feature 
selection & SVM classifi er framework is one 
promising approach for tightly integrated analy-
sis, while voting schemes a promising approach 
for loosely-integrated analysis.

• Finally we emphasized the need for standard-
ized analysis protocols and benchmarks. We 
discussed a three-step process for the develop-
ment, validation and automation of such proto-
cols and gave early examples from the literature 
that employed it as well as evaluated its results 
by validating the produced models in indepen-
dent datasets, a gold standard that applies to all 
scientifi c claims.

As the collective knowledge in the fi eld improves, 
the problems we identifi ed will surely become less 
salient but always important to address because of 
their fundamental nature. We believe thus that no 
successful analysis can overlook these fundamen-
tal aspects of making sense of mass-throughput 
datasets. Existing and new yet-to-be-developed 
methods will certainly succeed or fail in large part 
to the extent by which we address these challenges 
successfully.
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Appendix I: Glossary & 
Abbreviations
• Accuracy – a very commonly used performance 

metric. It is defi ned as the number of correctly 
classifi ed samples divided by the total number 
of classifi ed samples. Sometimes “accuracy” is 
used as a synonym for “performance.”

• ANN – Artifi cial Neural Networks.
• AUC – Area under ROC curve.
• Causal mechanism – a special type of relation-

ship connecting two or more variables. Infor-
mally, “A causes B” is an example such 
mechanism and means that manipulations (ie, 
forcing or guaranteeing a specifi c value for) 
A will have a predictable effect on (ie, will 
constrain in a well-defi ned way) the distribution 
of B. Note that the specifi c manner in which the 
distribution of B changes is semantically (ie, 
functionally or biologically) unconstrained.

• Classifi cation (or regression) error – error 
produced by a classification (or regression) 
model in prediction of the outcome variable in a 
set of samples. This error indicates how well the 
model classifies discrete outcome variable 
(classifi cation) or how well the model approximates 
a continuous outcome variable (regression).

• Classifi cation learning algorithm – an algo-
rithm that creates models from data capable of 
predicting a discrete outcome variable as a func-
tion of predictor variables.

• Dimensionality (of a dataset) – the number of 
variables in the dataset.

• Empirical error – the error obtained in train-
ing data.

• Feature (or variable) – a coded descriptor of 
a quantitative or qualitative characteristic 
recorded for each observational unit of interest. 
For example: age, cancer status, expression 
value of BRCA1 gene, recorded for each patient 
in a cohort.

• GA – Genetic Algorithm.
• Generalization error – the error in the popula-

tion where all data comes from.
• Generative model – a model that captures 

conditional probability of class given input pat-
terns. Alternatively, a model that captures a joint 
probability distribution of the input and class 
variables.

• Heuristic – a rule of thumb or method that does 
not guarantee optimal solutions to a problem all of 
the time, but passable solutions some of the time.
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• Hyperplane – a sub space V of a vector space 
W, such that V has one less dimension than W. 
In 2D space a hyperplane is a line; in 3D space 
a hyperplane is a plane, etc. A hyperplane can 
also be thought as a surface that separates a 
geometrical space in two parts. The hyperplane 
can be used as a decision surface that indicates 
in which part of the space data points with a 
particular value for the response variable 
belong to.

• KNN – K-Nearest Neighbors.
• Learner performance (or error metric) – a 

function that expresses how well the learner 
performs. Examples are: accuracy, area under 
the ROC curve, mean squared error, relative 
classifi er information, positive and negative 
predictive values, etc.

• Linearly separable data – set of data samples 
that can be separated (according to categories 
of the outcome variable) by a hyperplane. The 
hyperplane is defi ned in the space with dimen-
sions corresponding to the predictor variables.

• Multivariate association – association between 
two sets of variables (such that at least one set 
has 2 or more variables).

• Observational data – data that is not produced 
by experiments but occur naturally and are 
simply observed and recorded. A case-control 
dataset with cancer patients and normal controls 
chosen from a hospital population is an example 
of observational dataset.

• Outcome (or response, or target, or dependent) 
variable – A variable that researchers are inter-
ested in predicting as a function of predictor 
variables.

• Predictor variable (or predictor, or indepen-
dent variable) – A variable used for prediction/
modeling of an outcome (ie, response) variable, 
alone or in combination with other predictors.

• Randomized controlled experiments – a 
special kind of experiment in which the exper-
imenter attempts to establish causal mechanism 
knowledge of the form “A causes B” by forcing 
A to take various values from its possible value 
range randomly and then observing whether B 
differs among groups that have different values 
for A. Typically observational units with values 
of variable A that denote absence of A are 
considered “controls” for units with values of 
variable A denoting presence of A.

• Regression learning algorithm – an algorithm 
that creates models from data capable of predict-
ing a continuous outcome variable as a function 
of predictor variables.

• ROC curve – Receiver Operating Characteristic 
curve.

• Sample (or data point, or instance, or data 
vector) – a vector containing values for all mea-
sured features. Also: a set of data points sampled 
from (ie, either chosen randomly or selected non-
randomly) the general population (ie, the set of all 
possible data points). Which of the two meanings 
is intended can be inferred from the context.

• SVM – Support Vector Machines.
• Testing set/data/dataset/sample – portion of 

the data (subset of samples) used to estimate 
how well a previously trained and validated 
model will perform in future independent 
samples from the same population.

• Training set/data/dataset/sample – portion of 
the data (subset of samples) used to develop (ie, 
“train” or fi t parameter values for) a classifi ca-
tion or regression algorithm.

• Univariate association – association between 
a pair of variables.

• Validation set/data/dataset/sample – portion of 
the data (subset of samples) used to estimate how 
well a previously trained model fi ts the data.
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