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Abstract: The present paper aims at demonstrating clinically oriented applications of the multiscale four dimensional in vivo 
tumor growth simulation model previously developed by our research group. To this end the effect of weekend radiotherapy 
treatment gaps and p53 gene status on two virtual glioblastoma tumors differing only in p53 gene status is investigated in 
silico. Tumor response predictions concerning two rather extreme dose fractionation schedules (daily dose of 4.5 Gy admin-
istered in 3 equal fractions) namely HART (Hyperfractionated Accelerated Radiotherapy weekend less) 54 Gy and CHART 
(Continuous HART) 54 Gy are presented and compared. The model predictions suggest that, for the same p53 status, HART 
54 Gy and CHART 54 Gy have almost the same long term effects on locoregional tumor control. However, no data have 
been located in the literature concerning a comparison of HART and CHART radiotherapy schedules for glioblastoma. As 
non small cell lung carcinoma (NSCLC) may also be a fast growing and radiosensitive tumor, a comparison of the model 
predictions with the outcome of clinical studies concerning the response of NSCLC to HART 54 Gy and CHART 54 Gy is 
made. The model predictions are in accordance with corresponding clinical observations, thus strengthening the potential 
of the model.
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Introduction
The importance of effi cient modeling of biological phenomena related to tumor response to radiotherapy 
is nowadays widely accepted. During the past four decades researchers have enhanced the understanding 
of tumor growth as well as tumor response to radiation therapy by means of various simulation models. 
Representative examples drawn from the extensive corresponding literature have been given in 
(Stamatakos et al. 2002, Dionysiou et al. 2004). The need for novel multi-disciplinary computational 
models simulating tumor growth and response to therapy has been stressed by many researchers.

The aim of the present paper is to present comparative results of a recently developed model of 
in vivo tumor growth and response to irradiation. Emphasis is placed on weekend treatment gaps in 
conjunction with p53 gene status. The model is based on the available imaging, histopathologic and 
genetic data of the patient and numerous fundamental biological mechanisms are incorporated and 
explicitly described. The long-term goal of this work is twofold: the development of a computer tool 
for getting insight into cancer biology and of an advanced patient-specifi c decision support system.

A brief outline of the in silico model
In the following paragraphs a brief outline of the in silico model is presented through the consideration 
of the glioblastoma (GB) paradigm. Two of the main reasons for the GB consideration have been the 
availability of adequate imaging data and the existence of reliable molecular-radiobiological data for 
two glioblastoma lines differing only in p53 status.
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In the general case, the available imaging, 
histopathologic and genetic data of the patient are 
appropriately collected. The clinician delineates 
the tumor and its metabolic subregions by using a 
dedicated computer tool. In the case of radiother-
apy, the distribution of the absorbed dose in the 
region of interest is also acquired. Random num-
ber generators are used in order to simulate the 
statistical nature of various phenomena. For a 
detailed description refer to (Stamatakos et al. 
2002; Dionysiou et al. 2004). For the purpose of the 
3D reconstruction and visualization the 3D visu-
alization package AVS/Express is used (Dionysiou 
et al. 2003).

A three-dimensional discretizing mesh covers 
the region of interest. The elementary cubic volume 
of the mesh is called “Geometrical Cell (GC)”. 
During the simulation procedure the geometrical 
mesh is scanned every T units of time. In each time 
step, the updated state of a given GC is determined 
on the basis of a number of algorithms describing 
the behavior of the cells constituting the tumor, 
which are briefl y presented in the following para-
graphs. Each GC of the mesh initially accommo-
dates a Number of Biological Cells (NBC). NBC 
apparently depends on the chosen size of the GC 
and determines the quantization error of the model. 
Each GC of the mesh belonging to the tumor con-
tains biological cells, which are distributed in a 
number of “classes” (compartments), each one 
characterized by the phase in which its cells are 
found (within or out of the cell cycle: G1, S, G2, 
M, G0, Necrosis, Apoptosis).

The cytokinetic model of Figure 1, originally 
introduced in (Dionysiou et al. 2005), is used. 
Proliferating tumor cells pass through the phases 
G1 (gap 1), S (DNA synthesis), G2 (gap 2), and 
M(mitosis). After mitosis, each one of the daugh-
ter cells re-enters G1 if the oxygen and nutrient 
supply in its position is adequate. Otherwise, it 
enters the resting G0 phase, where it can stay for a 
limited time, TG0; it then enters the necrotic phase 
leading to cell lysis, unless in the meantime the 
local environment has become favorable. In the 
latter case, the cell re-enters G1. Two basic mecha-
nisms of radiation-induced cell death are being 
treated: apoptotic and necrotic cell death. Apoptotic 
cell death is subdivided into radiation-induced 
inter-phase death (RI-ID) (direct death through 
apoptosis) and radiation-induced mitotic apoptotic 
death (RI-MAD) (Dewey 1995, Steel 2001). In 
most solid tumors the majority of lethally damaged 

cells dies through a radiation-induced mitotic 
necrotic mechanism (RI-MND) and is considered 
to undergo a few mitotic divisions prior to death 
and disappearance from the tumor. In the present 
model these cells are assumed to complete two 
mitotic divisions before dying. The assumption of 
two mitotic divisions as a typical division number 
before the death of lethally injured irradiated cells 
is based on relevant data derived from the literature 
(Denekamp 1986, Perez and Brady, 1998, p.87), 
which states that cells irradiated with low radiation 
doses (e.g. 1–10 Gy) may successfully complete 
one or two divisions before death, whereas after 
high doses they die at the fi rst attempted division. 
The fraction dose of 1.5 Gy used in HART and 
CHART radiotherapy schedules is at the lower 
limit of the above-mentioned low-dose interval 
(1–10 Gy), so the assumption of two mitotic 
divisions instead of one seems more biologically 
relevant.

Cell loss from the tumor due to apoptosis and 
necrosis is estimated based on the the cell loss 
factor due to necrosis (CLFN) and apoptosis 
(CLFA) according to [Steel 2002, p. 13]. Specifi -
cally, the probability of cell loss per hour due to 
necrosis/apoptosis represents the cell loss rate due 
to necrosis/apoptosis and is the product of the cell 
loss factor due to necrosis/apoptosis and the cell 
birth rate. The cell birth rate (CBR) can be consid-
ered as the ratio of the growth fraction (GF) to the 
cell cycle duration (TC), i.e.: CLF = CLR/CBR, 
CBR = GF/ TC.

The distribution of the initial NBC cells of a 
GC in each phase class is estimated according to 
the position of the corresponding GC, namely 
based on the estimated local metabolic activity 
(e.g. through PET or SPECT or indirectly through 
the use of contrast enhanced T1 weighted MRI). 
Furthermore, the initial distribution of the prolif-
erating cells within each one of the proliferating 
phases (G1, S, G2, M) is estimated using the mean 
duration of each cell cycle phase for the specifi c 
tumor.

Cell killing by irradiation is described by the 
Linear Quadratic or LQ Model (Steel 2002):

 S(D) = exp[−(αD + βD2)] (1)

where S(D) is the surviving fraction after a 
(uniform) dose D (Gy) of radiation to a population 
of cells. The parameters α (Gy-1) and β (Gy-2) are 
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called the radiosensitivity parameters of the LQ 
model. Cell radiosensitivity varies considerably 
throughout the cell cycle. The S phase is regarded 
as the most resistant. Cells in any proliferating phase 
are more radiosensitive than hypoxic cells residing 
in G0 (Steel 2002). Based on these observations we 
have used different values for the radiosensitivity 
parameters of the LQ model for the S phase (αS, βS), 
the proliferating phases G1, G2, M (αP, βP), and the 
G0 phase (αG0, βG0). Specifi cally, the values of αS, 
βS and αG0, βG0 have been derived as perturbations 
of the (αP , βP) values.

The basis of the tumor expansion-shrinkage 
algorithms is described below: In case that the 
actual number of alive and dead tumor cells 
contained within a given GC is reduced to less 
than NBC/10, then a procedure which attempts 
to “unload” the remaining biological cells in the 
neighboring GCs takes place. The basic criterion 
of the unloading procedure is the available free 
space within the neighboring GCs, so that the 
biological cell density is approximately uniform 
throughout the geometrical mesh. Therefore, 
cells are preferentially placed within the neigh-
boring GCs with the maximum available free 
space. In case that at the end of the unloading 
procedure the given GC becomes empty, it is 
assumed to disappear from the tumor. An appro-
priate shift of a chain of GCs, intended to fi ll the 

“vacuum”, leads to tumor shrinkage. This can 
happen after the killing of a number of cells by 
irradiation.

On the other hand, if the number of alive and 
dead cells within a given GC exceeds NBC + 
NBC/10, then a similar procedure attempting to 
unload the excess cells in the surrounding GCs 
takes place. In case that the unloading procedure 
fails to reduce the number of cells to less than 
NBC + NBC/10, then a new GC emerges. Its posi-
tion relative to the “mother” GC is determined 
using a random number generator. An appropriate 
shifting of a chain of adjacent GCs leads to a dif-
ferential expansion of the tumor. The “newborn” 
GC initially contains the excess number of bio-
logical cells, which are distributed in the various 
phase classes proportionally to the distribution in 
the “mother” GC. The procedure for choosing 
the appropriate shifting direction and the reason 
for choosing the cutoff values NBC/10 and NBC + 
NBC/10 are analytically presented in (Dionysiou 
et al. 2005).

Simulation Executions

p53 gene status and radiosensitivity
The role of oncogenes and tumor suppressor genes 
in modulating GB radiosensitivity constitutes the 

Cell
disappearance 
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Figure 1. Cytokinetic model of a tumour cell. G1: G1 (gap1) phase, S: DNA synthesis phase, G2: G2 (gap 2) phase, M (mitosis), G0: resting 
phase, N: necrosis, SA: spontaneous apoptosis, RI-ID: radiation-induced interphase death, RI-MAD: radiation-induced mitotic apoptotic 
death, RI-MND: radiation-induced mitotic necrotic death.
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subject of intense research efforts. Perhaps the 
best-studied tumor-suppressor gene in the case of 
GB is p53. The roles of wild-type (wt) p53 in 
modulating DNA repair, apoptosis, and the G1 cell 
cycle arrest have each been implicated in the 
regulation of cellular response to ionizing radia-
tion. An abnormal p53 has been related to a wide 
variety of tumors throughout the body. p53 muta-
tions in human malignancies are frequently being 
associated with poor prognosis, poor response to 
therapy and advanced stage of disease (D’Avenia 
et al. 2006).

The parameters α and β of the LQ Model 
constitute one possible way to incorporate the 
infl uence of genetic determinants, such as the p53 
gene status, into the simulation model. As we 
have already described (Dionysiou et al. 2004, 
Dionysiou et al. 2005), a remarkable number of 
studies associate p53 mutations with increased 
radioresistance and poor clinical outcome for 
patients with GB. (Haas-Kogan et al. 1996) 
observed an increased radioresistance in irradi-
ated GB G1 cells lacking functional wild type (wt) 
p53, manifested by a relatively lower a and α/β. 
More precisely this observation refers only to two 
isogenic glioblastoma cell lines (U87-LUX.8 
demonstrating wt p53 function and U87-175.4 
lacking wt p53 function henceforth denoted by 
“mt p53”) differing only in p53 status. The fol-
lowing analysis refers to those two genetic pro-
fi les. Furthermore, in (Haas-Kogan et al. 1999) 
they studied the infl uence of p53 function on the 
effect of fractionated radiotherapy of GB tumors 
and concluded that fractionated radiotherapy 
provides a selective advantage to GB cells 
expressing mutant p53 (mt p53).

Based on these studies, we considered two 
hypothetical GB tumors with different p53 status, 
in order to do a comparative study of the effect 
of weekend treatment gaps in their response to 
radiotherapy:

a) a GB tumor with wild type p53 (Haas-Kogan 
et al. 1996 and perturbations):
α p = 0.61Gy-1, αS = 0.4472Gy-1, αG0 = 0.203Gy-1

β p = 0.02Gy-2, βS = 0.0128Gy-2, βG0 = 0.002Gy-2

b) a GB tumor with mutant p53 (Haas-Kogan et al. 
1996 and perturbations):
α p = 0.17Gy-1, αS = 0.1248Gy-1, αG0 = 0.057Gy-1

β p = 0.022Gy-2, βS = 0.0128Gy-2, βG0 = 0.002Gy-2

where: αp, βp: the LQ Model parameters for G1,G2, 
M phases, αS, βS: the LQ Model parameters 

for S phase, αG0, βG0: the LQ Model parameters 
for G0 phase.

In consistence with experimental biology, we 
assumed αG0 = αp/OER and βG0 = βp /OER2, where 
OER: the Oxygen Enhancement Ratio, taken equal 
to 3 (Perez and Brandy 1998; Kocher et al. 2000; 
Steel 2002), and αS = 0.6αp+ 0.4αG0, βS = 0.6 βp + 
0.4 βG0.

Other model parameters
A 3D mesh quantizing the anatomical region of 
interest has been considered. The dimensions of 
each GC are 1mm × 1mm × 1mm. Such a volume 
contains roughly 106 biological cells (NBC = 106) 
(Steel 2002). Since GB is generally considered a 
poorly differentiated tumor (Curran R.C. and 
Crocker J. 2000), as a fi rst approximation all non-
clonogenic cells are considered to be necrotic 
(sterile cells are not taken into account). A typical 
clonogenic cell density is 104 cells/mm3 (Jones and 
Dale 1999). Since GB tumors are highly aggressive 
and rapidly growing, we assume a clonogenic cell 
density of 2 × 105 cells/mm3 in the proliferating cell 
region (a 6 mm thick layer from the outer boundary 
of the tumor towards its interior), 105 cells/mm3 in 
the G0 cell region (a 1 mm thick layer surrounding 
the central necrotic region) and 0.2 × 105 cells/mm3 
in the dead cell region of the tumor. In the prolif-
erating cell region, 70% of the clonogenic cells are 
assumed to be in the cycling phases and 30% in 
the G0 phase. In the G0 cell region, 30% of the 
clonogenic cells are in the cycling phases and 70% 
in the G0 phase. Finally, in the dead cell region, 
10% of the clonogenic cells are in the cycling 
phases and 90% in the G0 phase. The cell cycle 
duration, TC, is taken equal to 40h. The approxi-
mate percentage of the cell cycle time spent in each 
phase by a typical malignant cell can be given by: 
TG1 = 0.4TC, TS = 0.39TC, TG2 = 0.19TC, TM = 0.02TC 
(Salmon and Sartorelli 2001). The duration of 
the G0 phase is taken to be TG0 = 25h (Duechting 
et al. 1994).

The total cell loss factor (CLF), the sum of the 
cell loss factor due to necrosis and the cell loss 
factor due to apoptosis, has been taken equal to 
0.3 at the simulations presented, as this is a reason-
able value for glioblastoma multiforme tumors 
[Huang et al. 1995]. Futhermore, in glioblastoma 
tumors treated by irradiation there generally are 
low levels of apoptotic cells [Yew et al. 1998, 
Salmon and Sartorelli 2001]. Therefore we have 
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used CLFN = 0.27 and CLFA= 0.03, or in general 
CLFN = 0.9 CLF, CLFA = 0.1CLF.

The Hyperfractionated Accelerated Radio-
therapy (HART) scheme (dose fraction 1.5 Gy, 
three fractions per day, 6h interval between any 
two consecutive fractions in the same day, 5 days 
per week, 54 Gy in total) and the Continuous 
Hyperfractionated Accelerated Radiotherapy 
(CHART) scheme (dose fraction 1.5 Gy, three 
fractions per day, 6h interval between any two 
consecutive fractions in the same day, 7 days 
per week, 54 Gy in total) have been simulated. 
The distribution of the absorbed dose in the 
tumor region is assumed to be uniform. HART 
and CHART were considered because they are 
convenient for the study of the effect of weekend 
treatment gaps on tumor response to radio-
therapy.

The simulation is assumed to begin (t = 0) on 
Monday 00:00 a.m. and end on Sunday 24:00, 
12 weeks later. The computer code has been devel-
oped in Microsoft Visual C++ 6 and Visual Basic 
6 programming languages. An execution of a 
radiation therapy simulation of 6 weeks (96 × 96 × 
96 GCs, each one of dimensions 1mm × 1mm × 
1mm) on an Intel Pentium 4, 2.8GHz HT (512MB 
RAM) takes about 10min.

Results
Fig. 2 and Fig. 3 depict the number of alive and 
total tumor cells respectively, as a function of time, 
for the HART and CHART fractionation schemes, 
and for the two hypothetical GB tumors differing 
in their p53 status. In Fig. 4 the 3D reconstruction 
of the tumor with wt p53 6 weeks after the begin-
ning of the simulation of the HART and CHART 
schedules is presented. Fig. 5 depicts the same 3D 
reconstructions for the tumor with mt p53. As 
expected, 3D visualization offers improved insight 
into the macroscopic geometry and structure of 
the tumor.

The results of the comparative simulations, as 
depicted in the cell number diagrams and the 3D 
reconstructions of the tumors, are biologically 
reasonable. In the case of the tumor with wt p53, 
which is considered to be more radiosensitive 
compared with the tumor with mt p53, the trend for 
reduction of the number of living tumor cells is 
clearly pronounced. In fact, the tumor with wt p53 
is so radiosensitive that both HART and CHART 
fractionation schedules seem to eliminate “all” the 

clonogenic cells that the tumor initially contained. 
Obviously the apparent complete elimination of 
living cells is to be considered more a consequence 
of the model quantization than a quantitatively 
exact prediction. On the contrary, the tumor with 
mt p53 is very radioresistant and as a result the 
reduction in the number of tumor cells during 
radiotherapy is modest. After the end of both 
radiotherapy schedules the surviving tumor cells 
begin to repopulate the tumor.

As has already been mentioned, no data have 
been located in the literature concerning a 
comparison of HART and CHART radiotherapy 
schedules for glioblastoma. However, as NSCLC 
may also be a fast growing and considerably 
radiosensitive tumor, we resorted to a rough 
comparison of the simulation model predictions 
with the outcome of clinical studies concerning 
the response of NSCLC to CHART 54 Gy and 
CHARTWEL (=HART) 54 Gy (Turrisi 1999). 
The model predictions suggest that for the same 
p53 status HART and CHART have almost the 
same long term effects on locoregional tumor 
control. This is in accordance with Turrisi’s clini-
cal studies’ observations as well as with common 
intuition. Obviously well designed experimental 
work on tumor spheroids developed from the glio-
blastoma cell lines considered might be a clear 
path to refi ne model validation and to provide 
feedback for optimization. As for the same p53 
status HART and CHART seem to produce similar 
long term effects on locoregional tumor control, 
the main criterion for selecting one out of the two 
schemes considered is sparing of the adjacent 
normal tissues.

The effect of the treatment gap on the number 
of alive tumor cells is evident. Both schemes 
employ the same total dose and fraction dose, but 
in the case of CHART there is no treatment gap 
during the weekend; the irradiation of the tumor 
takes place twelve consecutive days. Therefore, 
CHART seems to be advantageous in terms of 
tumor cell repopulation restrain during therapy. 
Nevertheless, since CHART’s duration is shorter, 
if it does not succeed in eliminating all clonogenic 
tumor cells – as in the case of tumor with mt p53- 
repopulation of the tumor begins earlier.

Finally, to investigate the effect of the cell loss 
factor value on the model’s output we performed 
a series of explorative HART and CHART radio-
therapy simulations presented in the following 
fi gures (fi g. 6-8).
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CLF value mainly influences the tumor 
shrinkage rate, since it relates to the speed by which 
dead cells disappear from the tumor. The higher is 
the value of CLF, the higher the shrinkage rate of 
the tumor during radiotherapy. CLF’s effect on the 

number of living cells (proliferating and G0) 
throughout radiotherapy it’s minimal. Therefore 
its effect on the comparative outcome of the HART 
and CHART schedules is minimal as well. In the 
diagrams of the number of dead cells and the total 
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Figure 2. The number of alive tumor cells as a function of time for two hypothetical tumors differing in their p53 status. HART and CHART 
dose fractionation schedules. The curves corresponding to HART and CHART practically coincide over substantial time intervals for the 
same p53 gene status.
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Figure 3. The number of total tumor cells as a function of time for two hypothetical tumors differing in their p53 status. HART and CHART 
dose fractionation schedules. The curves corresponding to HART and CHART practically coincide for the same p53 gene status.
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number of cells in the tumor the lines representing 
HART or CHART schedules with the same CLF 
value almost coincide.

Conclusion
The simulation results concerning locoregional 
tumor control are in agreement with experimental 
observations and clinical experience. Since no data 
have been located in the literature concerning a 
comparison of HART and CHART radiotherapy 
schedules for glioblastoma multiforme, we resorted 
to a comparison of the simulation model predictions 

with the outcome of clinical studies concerning 
the response of NSCLC to CHART 54 Gy and 
CHARTWEL (=HART) 54 Gy, guided by the fact 
that NSCLC is a fast growing and considerably 
radiosensitive tumor, as glioblastoma generally is 
considered. The model predictions suggest that, 
for the same p53 status, HART and CHART have 
almost the same long term effects on locoregional 
tumor control. Apart from intuitive, this is also in 
accordance with clinical observations.

The model satisfactorily simulates characteris-
tics of tumor behavior such as tumor shrinkage, 
repopulation and expansion and offers the 

(a) (b)

Figure 4. 3D reconstruction of the tumor with wt p53, 6 weeks after 
the beginning of the simulation: (a) HART radiotherapy scheme, (b) 
CHART radiotherapy scheme. Color code: red: proliferating cell 
region, green: G0 cell region, blue: dead cell region.

(a) (b)

Figure 5. 3D reconstruction of the tumor with mt p53, 6 weeks after 
the beginning of the simulation: (a) HART radiotherapy scheme, (b) 
CHART radiotherapy scheme. Color code: red: proliferating cell 
region, green: G0 cell region, blue: dead cell region.
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Figure 6. Explorative HART and CHART radiotherapy simulations. Number of living tumor cells as a function of time, various CLF values.
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advantage of readily adapting the parameters that 
take into account the infl uence of genetic determi-
nants such as the p53 gene status. Information 
about numerous genetic determinants for various 
tumors is ever-accumulating (e.g. through the use 
of microarrays). Once reliable results are available 
and the prognostic value of specifi c genetic data 
becomes well established, the status of the relevant 
genetic indicators can be easily incorporated into 

the simulation model, leading to its substantial 
clinical refi nement.

Obviously, experimental and clinical feedback 
should always be used in order to improve the 
reliability of the model. The software system is 
undergoing a clinical adaptation procedure, by 
comparing the model “predictions” with clinical 
data before, during and after a radiotherapy 
course. In parallel, all the involved phenomena are 
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constantly being studied, in order to keep pace with 
the ever-accumulating scientifi c knowledge. The 
model’s discrete and modular character facilitates 
signifi cantly this procedure.

A simulation model of tumor response to other 
treatment modalities, such as chemotherapy has 
already been presented by our group (Stamatakos 
et al. 2005). The chemotherapy model presented 
in this article provides a theoretical support for the 
observed superiority of the standard administration 
schedule of the Temozolomide agent commonly 
used to treat glioblastoma multiforme. A good 
qualitative agreement of the model’s predictions 
with clinical experience supports the applicability 
of the presented approach to chemotherapy opti-
mization. Furthermore, simulation of the response 
of the adjacent normal tissues to irradiation and 
other treatment schemes is under development.

It should be stressed that a statistical-probabilistic 
component will always be an innate characteristic 
of any oncological simulation model, as cancer 
itself is a highly complex and partly unpredictable 
disease. Nevertheless, the use of advanced com-
puter simulation models is a valuable tool to study 
the involved biological phenomena in an objective 
and functional way.
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