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Abstract
For modern Time-Of-Flight PET systems, in which the number of possible lines of response and
TOF bins is much larger than the number of acquired events, the most appropriate reconstruction
approaches are considered to be list-mode methods. However, their shortcomings are relatively
high computational costs for reconstruction and for sensitivity matrix calculation. Efficient
treatment of TOF data within the proposed DIRECT approach is obtained by 1) angular
(azimuthal and co-polar) grouping of TOF events to a set of views as given by the angular
sampling requirements for the TOF resolution, and 2) deposition (weighted-histogramming) of
these grouped events, and correction data, into a set of “histo-images”, one histo-image per view.
The histo-images have the same geometry (voxel grid, size and orientation) as the reconstructed
image. The concept is similar to the approach involving binning of the TOF data into angularly
sub-sampled histo-projections -projections expanded in the TOF directions. However, unlike
binning into histo-projections, the deposition of TOF events directly into the image voxels
eliminates the need for tracing and/or interpolation operations during the reconstruction. Together
with the performance of reconstruction operations directly in image space, this leads to a very
efficient implementation of TOF reconstruction algorithms. Furthermore, the resolution properties
are not compromised either, since events are placed into the image elements of the desired size

Copyright (c) 2008 IEEE.

e-mail: matej@mail.med.upenn.edu.
S. Jayanthi is now student at the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI
48109 USA

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 May 01.

Published in final edited form as:
IEEE Trans Med Imaging. 2009 May ; 28(5): 739–751. doi:10.1109/TMI.2008.2012034.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from the beginning. Concepts and efficiency of the proposed data partitioning scheme are
demonstrated in this work by using the DIRECT approach in conjunction with the Row-Action
Maximum-Likelihood (RAMLA) algorithm.
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I. Introduction
THE potential benefit of using Time-Of-Flight (TOF) information for Positron Emission
Tomography (PET) imaging was recognized as early as 1969, as noted in reviews of PET
[1]-[3], but TOF did not receive much attention until the properties of the fast scintillators
CsF and BaF2 were publicized [4], [5], indicating their potential use for TOF-PET. Much
work was done on TOF-PET in the early 1980s, but some properties of these fast
scintillators were far from ideal, and it was soon found that better overall imaging
performance could be obtained by non-TOF scanner designs using other scintillators. For
many years, TOF-PET received little attention, but interest was revived once again by the
introduction of new scintillators with an attractive combination of properties [6]-[9],
including fast timing characteristics, good stopping power, and high light output. There is
now strong interest in TOF-PET because of the significant performance improvements that
are possible, as shown in evaluations using simulated data (including [10], [11]) and
experimental measurements on TOF scanners [12]-[16].

Full realization of the TOF benefits requires proper reconstruction tools. Many important
elements of the theory of image reconstruction from TOF-PET data were published more
than 25 years ago in two seminal papers [17], [18]. With the extra data dimension brought
by TOF information, typical acquired TOF data become very sparse in (histo-)projection
space. Consequently, the most natural TOF reconstruction approaches are list-mode
approaches [19]-[23] that accurately (geometrically and statistically) treat each TOF event
separately. However, for the typical number of acquired events in a clinical patient study,
conventional list-mode reconstructions with accurate modeling are computationally very
expensive.

The computational burdens of list-mode approaches are further exacerbated by the
calculation requirements for the sensitivity matrix, which has to be calculated specifically
for each reconstructed object based on its own attenuation map. The sensitivity matrix is
calculated using all possible lines of response (given by detector crystal pairs) passing
through the reconstruction region, including those for which no events were detected. For
modern PET systems with a large number of possible lines of response (LORs), exact
calculation of the sensitivity matrix using straightforward space-based approaches is not
feasible for routine use. There are several strategies with various levels of approximation
that allow faster computation of the sensitivity matrix, such as using a properly down-
sampled LOR space [24]-[26]. The number of needed LOR samples and the level of
approximations depend on a number of factors (e.g., data statistics, object characteristics,
detector geometry) and have to be carefully chosen so that the errors propagated from the
sensitivity image [26], [27] do not negatively impact image quality. Another option
involving reasonable approximations, which is used in this work, is a Fourier-based
approach. The advantage of such an approach is great computational efficiency without the
need to down-sample the LOR space.
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To make list-mode reconstruction time clinically feasible (even with a multi-node cluster of
computers) various simplifications and/or restrictions are often needed, such as truncating
the TOF and/or resolution kernels, limiting the size of the basis functions and of their
underlying grid density, limiting the number of iterations, limiting the number of counts and
time frames in dynamic, temporal, and motion-synchronized studies, or using simplified
data correction approaches. The goal of the proposed approach is to make TOF
reconstruction efficient without compromising image quality via such restrictions. The
efficiency of the proposed approach - Direct Image Reconstruction for TOF (DIRECT) [28]
- is obtained by directly working in image space. That means that the data and all corrections
are placed directly into (histo-image) voxels in image space, and consequently all
reconstruction operations are performed in image space. At the same time the proposed
approach has the ability to preserve geometrical accuracy (within the limits given by image
and angular sampling) similar to list-mode approaches. Several aspects of the proposed
approach were inspired by concepts introduced into TOF-PET that appeared in papers from
early 1980s. However, our proposed approach involves a new level of use of these concepts.
These include placing events directly into image space rather than into projection space [18],
[19], merging/grouping events into sets of views and tilts [29] (and recently [30]-[32]), and
using maximum-likelihood (ML) based statistical reconstruction [19], [20], [33] (and
recently [12], [21], [22]). We also build on our previous work at the University of
Pennsylvania, including the image space reconstruction approach (ISRA) [34], 3D view-by-
view row-action maximum-likelihood algorithm (RAMLA) [35], Fourier-based
reconstruction approaches [36]-[38], TOF list-mode reconstruction [23], and TOF
reconstruction using histo-projections from limited views [30], [39].

The work presented here describes the principles of the DIRECT approach and gives
preliminary results based on simulation studies to demonstrate the performance and
properties of the proposed technique, compared with list-mode iterative TOF reconstruction.

II. DIRECT Data: View-grouped Histo-images
The DIRECT approach encompasses the data partitioning scheme and the methods needed
to apply a reconstruction algorithm to the given data structure. In this section we outline
basic concepts and operations for transforming (pre-processing) acquired data into the
DIRECT format; in the next section we discuss the operations of a reconstruction algorithm
within the DIRECT framework.

The DIRECT partitioning involves two steps: the acquired events are first sorted (“view-
grouped”) into a set of views and then histogrammed (“deposited”) into histo-image
elements.

1) Angular view-grouping of TOF events
In this step, the acquired TOF events are sorted into a set of “views,” where each view
compromises a range of LOR directions having azimuthal angles within a specified interval
and co-polar angles within a specified interval. Based on the angular sampling requirements,
events acquired on systems with good TOF resolution can be sorted into a relatively small
number of views, with only a minimal or no loss of spatial resolution [29], [30], [39]. Events
from each view have a common TOF kernel (same representative orientation and kernel
width) and common data correction arrays. Furthermore, unlike in the non-TOF case, for the
TOF data any spatial resolution loss due to the angular binning has been shown to be
approximately spatially invariant [30]; this invariance allows efficient modeling of the effect
during reconstruction. The view-grouping leads to a markedly less sparse and reduced data
space and a reduction in the number of TOF kernels to be considered.
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2) Deposition (weighted histogramming) of view-grouped TOF events into histo-images
Traditionally, binned TOF events are histogrammed into “histo-projections” (projections
extended in the TOF direction through an image space). Histo-projections are geometrically
similar to rotated and resampled images as illustrated in Fig. 1-left. In our approach, the
acquired events are deposited prior to reconstruction directly into the voxels of the “histo-
images,” with one histo-image per view. The histo-images have the same sampling (voxel
size) and geometry as the reconstructed image, as illustrated in Fig. 1-right. The same data
structures are used for the deposition of the correction factors, such as attenuation, geometric
sensitivity, estimated scatter, and random coincidences. Various deposition strategies are
possible (e.g., an event is assigned with different weights to neighboring bins), and the effect
of the deposition operation can be efficiently modeled in the forward- and back-projectors
during reconstruction. The “histogramming” deposition operation based on nearest-neighbor
interpolation is similar to the one in the “most-likely-position” reconstruction technique
[18]. Deposition using more accurate interpolation kernels better preserves information
about the positions of individual events, and this will be the subject of future studies. In this
work, we have employed a tri-linear interpolation kernel.

The approach using histo-images has a number of advantages:

• natural format driven by the reconstructed image geometry (i.e., events are directly
stored/deposited into the desired resolution units - voxels of the desired size),

• data and image with the same format/structure, allowing very efficient
implementation of data correction and reconstruction operations,

• format of data structures that allows efficient implementation on advanced
computational devices, such as multiprocessor and parallel architectures, graphics
cards, and specialized signal processor boards,

• no ray-tracing or interpolation operations (which impact resolution models)
required within forward- and back-projection,

• independence of reconstruction speed on the number of acquired counts,

• independence of reconstruction speed on the TOF and resolution kernel sizes (if
Fourier-based convolution operations are used).

III. DIRECT: Iterative TOF Reconstruction
The proposed approach and principles allow efficient implementation of both iterative and
analytical algorithms; however, in this work we concentrate on iterative TOF reconstruction.
The algorithm flowchart shown in Fig. 2 is applicable to most iterative reconstruction
algorithms. In this paper, we illustrate the DIRECT approach used in conjunction with the
row-action maximum-likelihood algorithm (RAMLA) [35], [42], [43] with a view-by-view
update. All data structures utilized while processing a particular view v (in sub-iteration n)
are 3D arrays of the same geometry holding relevant data for view v: x(n) - image array, ωv -
multiplicative corrections, kv - forward-projection kernel (including models of TOF and
detector/LOR resolution effects, model of the deposition operation, and possibly including
other models of 3D image resolution, regularization, and image basis functions, such as

blobs [44]),  - forward projection,  - data estimate, dv - deposited data, sv - estimate of

expected scatter, rv - estimate of expected randoms,  - data discrepancy, and  -
correction image. Note that the actual memory requirement for DIRECT is much smaller
than implied by Fig. 2. For example, only three full 3D arrays are needed for RAMLA with
view-by-view updating and four arrays for RAMLA using subsets, rather than the seven
arrays shown. We further use the following notation: ·, /, and + denote point-wise
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multiplication, division, and addition between the elements of two 3D arrays, or between a
constant and elements of a 3D array, is the 3D convolution operation, and (relaxation
parameter) and 1 are scalars. For RAMLA, the individual steps (from Fig. 2, solid lines) for
sub-iteration n processing view v are:

•
forward-projection: ,

• data estimate: ,

•
discrepancy operation: ,

•
back-projection: ,

•
update operation: .

The multiplicative correction array ωv includes attenuation and other multiplicative
correction factors, such as sensitivity including gaps and axial acceptance, which are treated
similarly as in other (projection-based or list-mode) statistical algorithms, as discussed in
more detail in Section IV.A. The back-projection operation is the transpose of forward-
projection as dictated by statistical iterative algorithms. It is interesting to note that the 3D
convolution operations in both forward-projection and in its transpose are equivalent, since
in the DIRECT approach the data and image have the same format. General forms of the
forward-projection, data estimate, and back-projection operations are the same for most
iterative algorithms. On the other hand, exact forms of the discrepancy and update
operations are determined by the particular statistical algorithm. A subset-type of strategy
will differ only in the update operation, which will include a normalized sum of correction

images  for all of the views from the given subset. Examples of single view images
resulting from the various operations are included in Fig. 3.

Forward- and back-projection operations, which are the computational bottleneck of any
reconstruction algorithm, can be efficiently implemented within the DIRECT approach on a
standard computer as well as on specialized computer architectures. Spatially invariant
resolution kernels can be implemented very efficiently in the Fourier domain via Fourier-
based 3D convolutions, as demonstrated in this paper. Spatially variant kernels, however,
must be implemented in the spatial domain. Even in this case, very efficient implementation
of these operations is possible within DIRECT framework. For example, substantial
acceleration of the spatial convolution operations has been reported when using commodity
graphics cards [45].

IV. DIRECT: Forward model and corrections
In typical emission data the true events (having a Poisson character) are distorted and
contaminated by a number of physical factors. To make the best use of the acquired data and
of our knowledge of the acquisition system, these factors should be included into the
reconstruction model. The contamination factors can be divided, by their character and the
way they are treated, into multiplicative and additive terms. The multiplicative factors
include: attenuation of the annihilation photons by the object, the probability of a pair of
crystals detecting an event once they are hit by the photon pair (detector normalization
factors), and the geometrical restriction of direction/LORs for which true events are detected
(axial acceptance angle, detector gaps). The additive factors include estimates of the
expected scattered and random coincidences. Within the DIRECT approach, the correction
factors are placed into the same histo-image format as the true events. This format allows
not only a very efficient reconstruction process but also efficient generation of the correction
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factors themselves. For analytical reconstruction approaches the data would have to be pre-
corrected using these factors. In statistical reconstruction methods, an attempt is made to
preserve the Poisson character of the data as much as possible by including the correction
factors inside the reconstruction model through appropriate multiplicative factors and
additive terms.

A. Forward model - true events and multiplicative factors
In statistical reconstruction, the sequence of the physical effects that occur as the coincident
events are generated and detected is modeled within the system (probability) matrix. The
system matrix can be factorized into a sequence of operations [46] modeling individual
stages of this process as discussed in detail in review paper [47]:

(1)

where Ppositron models the positron range, Pgeom contains the geometric probabilities
(without attenuation) that photon pairs from individual image locations (points in a voxel)
reach the front faces of given crystal pairs (LORs), Patt is a diagonal matrix containing
attenuation factors, Ptof models the timing accuracy (TOF resolution kernel), Pdet.blur
models the accuracy of reporting the true LOR position (referred to as the detector
resolution kernel in this work), and Pdet.sens is a diagonal matrix modeling the probability
that an event will be reported once the photon pair reaches the detector surface (crystals or
gaps) - a unique multiplicative factor for each detector crystal pair (LOR) modeled by
normalization coefficients, but including also the detector axial extent and detector gaps. In
general, the positron range has a small effect (compared to the other factors) for whole-body
scanners, particularly for 18F-labeled tracers. Therefore, we will omit this factor from further
discussion in this paper.

In the following, we consider that the emission counts and attenuation coefficients are
approximately uniform within the size of a voxel, as given by the system resolution. Under
this condition the attenuation factors (in Patt) can be considered to be constant for the events
included in the corresponding elements in Pgeom, and consequently, places of Patt and Pgeom
can be permuted in the sequence (formal structure of the matrices changes with the
permutation). Pgeom, Ptof, and Pdet.blur can then be modeled together. In the following
derivations we further consider that after the afore-mentioned process the events are
angularly grouped based on the TOF angular sampling requirements. The forward model of
the true portion of the view-grouped events (p) is then given by:

(2)

where G represents the view-grouping operation, P is the system matrix (as discussed
above) and x is the emission image. Efficient implementation of this model within DIRECT
framework is derived below using the following symbols (consistent with Fig. 2):

pv,m - value in voxel m of histo-image of view v, estimating the true portion of events
deposited into the m-th voxel of histo-image dv;

xm - emission activity giving the number of events emitted from voxel m;

ωi,m - multiplicative factor along line (LOR) of direction i passing through voxel m;

 - sum over set Nv of directions i (as given by crystal spacing) grouped into view v
(operator G);
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 - 3D convolution of image x with resolution kernel  for direction

i, Δl is 3D location in the support of kernel , where the support is denoted by .
We show here a spatially invariant kernel, i.e., the kernel is the same for each location
m, but different for each direction i; however, the following derivation holds also for
spatially variant kernels, such as those based on Monte-Carlo simulations [48]-[50] or
obtained experimentally [51].

1) Uniform detectors with no gaps—For scanners with a uniform distribution of
crystals with no gaps and for data pre-corrected for detector normalization factors (as is
often done in practice [51]-[53]), the process of the generation-acquisition-deposition of the
true events can be modeled as G P = G PsysPω, where Psys combines the deposition kernel,
Pdet.blur, Ptof and Pgeom, and Pω represents the attenuation factors Patt. Note that the
following derivation does not preclude adding additional blurring operations to the right,
such as an image basis function model or Ppositron, e.g., G P = G PsysPωPpositron. The
forward-projection of true events for a particular view v, and voxel m can be written as
(details on derivation of the following sequence of expressions are below):

(3)

where . This derivation is based on the fact that if the range Nv of directions i
used in each view v is less than that dictated by the angular TOF sampling requirement [39],

the image values accessed through the convolution sums over convolution kernel  give
approximately the same value for any direction i within a given view. Consequently, the
convolution sums and kernels can be approximated by a representative convolution over

 for given view v (second expression). This convolution sum is now independent of i
within each view v and the outside sum over the directions i can therefore be moved inside
and applied only to the multiplicative correction coefficients prior to the convolution
operation (3rd expression). Note that while the local convolution sums over the emission
activity x within the resolution kernel regions do not depend on the particular direction
within a view, the sum over the attenuation (and other multiplicative) factors does, since the
attenuation factors are not local, but are determined by the attenuation on the entire length of

an LOR. Therefore the sum  must still be performed over all directions
within each view v. However, because of the rearrangement of sums allowed by the locality
of the emission convolutions, the factors ωv,m can be pre-calculated for each voxel in each
view, forming the correction matrix ωv for each view v. Forward-projection for a given view
v can then be calculated by point-wise multiplication of the image values by this correction
matrix, followed by a forward-projection operation that consists of convolution of the
corrected image with the (combined) resolution kernel  as shown in the flowchart of Fig.
2 (solid lines).

Attenuation factors on lines i in the projection space can be very efficiently calculated from
the attenuation image using Fourier-based forward-projectors [37], [38]. After combining
attenuation and other correction coefficients in projection space, we can calculate the

multiplicative correction matrix ω in histo-image format by calculating the sum 
very efficiently via Fourier-based back-projections; there is a separate back-projection for
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each view, each using the proper range of directions of correction factors in projection
space.

2) Modular detectors with gaps—Current commercial scanners have modular detectors
with gaps between adjacent modules and with discrete changes of orientation of the detector
module faces. A proper model requires the gap information to be included in the system
matrix as part of the matrix Pdet.sens, even if the data are pre-corrected for other
normalization factors. When there are gaps between detector modules, we cannot drop the
factor Pdet.sens from eq. 1 (as was considered for the no-gap case). Pdet.sens is a
multiplicative correction matrix, as is Patt, but between these in eq. 1 are the convolution
operations representedby Pdet.blur and Ptof. However, efficient implementation of the
multiplicative corrections is possible only if all view dependent corrections are combined
together in the system matrix sequence. Pdet.sens changes abruptly from LOR to LOR, due to
gaps and crystal dependent normalizations, and cannot be moved inside the convolution
sums. On the other hand, the attenuation factors change more slowly and typically do not
change dramatically within the range given by the detector resolution kernel. This allows us
to approximate the system matrix sequence by moving the attenuation correction from
before to after the convolution (forward-projection) operations. Note that in conventional
iterative reconstruction, the attenuation step is, in fact, routinely done after the forward-
projection, which is much more efficient for binned projection data. In the following, we
derive DIRECT modeling operations for the case when we combine attenuation coefficients
with Pdet.sens after the forward-projection operations (dashed line in the flowchart in Fig. 2):
G P = G PωPsys, where Psys combines Pdet.blur, Ptof, Pgeom and can include also the image
based resolution kernels [54], image basis function model, or regularizing functions, and Pω
includes attenuation, information on detector gaps, and detector normalization. The forward-
projection of the true events for a particular view v and voxel m can then be written
(following the same principles as in the previous case) as:

(4)

The choice of one of the two multiplicative correction modeling approaches as derived
above (eq. 3 vs. eq. 4) will depend on the particular system’s characteristics (e.g., existence
of gaps and detector resolution) as well as on the imaging application (speed of changes and/
or resolution of the emission and attenuation images) and will be the subject of future
studies.

B. Additive factors
Scatter—In conventional non-TOF PET, a true coincidence carries the information that an
annihilation event occurred somewhere along the LOR connecting the opposing pair of
detector elements. In TOF-PET, the information about the position of the annihilation is
more localized, since the approximate position along the LOR is also measured. Similarly,
in TOF-PET the possible locations of scatter are more localized, since a pair of photons that
have undergone one or more scatters can be registered in a TOF “bin” only if the difference
between the two path lengths from the annihilation to the detectors is within the timing
uncertainty of the true photon pairs contributing to this bin. The single-scatter case is the
most important in both conventional (non-TOF) PET and TOF PET [55], [56]. Much effort
has been directed towards the development of efficient model-based methods to estimate the
expected contribution of single-scatter events to the measured data [57]-[59]. More recently,
a model-based single-scatter estimation algorithm has been developed that takes into
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account the spatial as well as timing distribution of scattered events for TOF-PET data [60],
[61], and it is in routine use for clinical imaging at our institution. This algorithm can be
modified to calculate the scattered events (sv) directly in histo-image format to be used
within DIRECT reconstruction. Care has to be taken that the scatter estimates are treated in
the same way as the true event estimates in the forward-projection model, including gap
information and consideration of normalized or un-normalized events. Various challenges
exist for scatter estimation in general (independent of DIRECT approach), such as modeling
of out-of-FOV scatter, but their solutions can be directly imported into the DIRECT (or any
other) approach.

Randoms—Similar to scatter, techniques for randoms estimation are independent of the
reconstruction approach, and the estimates of the expected randoms (rv) can be directly
deposited into histo-images as is done for the true events. It should be noted that although
randoms and scatter estimates are shown as separate arrays in the reconstruction flowchart
(Fig. 2), once they are estimated, they can be combined into a common array for more
efficient storage.

V. Methods
A. Data simulations

Full scanner simulations were performed using a Monte Carlo tool based upon the EGS4
simulation package [62]. We simulated a realistic whole body TOF scanner having a 25-cm
axial field of view (FOV), ±15° axial acceptance angle, with continuous distribution of
crystals on a cylindrical detector surface with no gaps and a 5.8-mm spatial resolution [11].
Simulations were performed for timing resolutions of 300 ps and 600 ps.

The simulated phantoms were 27-cm and 35-cm diameter cylinders having clinically
relevant volumes and attenuation factors representative of average and heavy patients,
respectively [15]. Simulated data included attenuation effects but not scatter or random
events. Hot spherical lesions of size 10, 13, 17 and 22 mm and contrast 4:1 were simulated
in two different slices (see Fig. 4). We generated 6 different data sets of true list-mode
events, each having 40M counts. Different numbers of counts were then used from the
simulated lists: an average count case (20M and 30M counts corresponding to the heavy and
average patient cases, respectively), and a very low count case challenging the
reconstruction approaches (6M and 9M counts, respectively). For both the average and low
count studies, the two count levels represent approximately the same acquisition times for
the two patient sizes.

To test the data modeling in the DIRECT approach (as derived in Section IV.A) with respect
to abrupt attenuation changes and angular view-grouping, we also simulated a “short
phantom” with abrupt axial truncation of attenuation and emission distributions and with hot
lesions being located in close proximity to this truncation (see Fig. 4). For comparison
purposes we also simulated a 25-cm “long phantom” filling the whole axial FOV of the
scanner that was otherwise equivalent to the short phantom.

B. Reconstructions
We used a block version of RAMLA in the DIRECT and list-mode TOF, and in the list-
mode non-TOF reconstructions. In all reported experiments the relaxation parameter was set
to 1.0 (although RAMLA updates were implicitly relaxed by attenuation and sensitivity
matrix values). In the DIRECT approach, we grouped and deposited events into 40 × 3
views - 40 intervals in azimuthal angle and 3 intervals in co-polar angle, except for the study
on view-grouping effects where we varied the number of views (10-40 azimuthal and 1-5
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copolar intervals). The 40 × 3 set of views was fixed in the rest of the studies based on the
view-grouping experiments, so that the view-grouping effects will have minimal impact on
the results. Each view represented one subset/block of RAMLA, giving us 120
(geometrically-ordered) updates for one pass through the data in the 40 × 3 view case. Note
that the tilted views are not complete because of the limited axial extent of the detector, and
consequently the effective amount of update is smaller than for the non-tilted views
(centered on co-polar angle zero), or for subsets based on temporal subdivision of data from
all directions. In the reported studies we employed TOF kernels representing 300-ps and
600-ps TOF resolutions of simulated data, and modeled a 5.8-mm (FWHM) spatially
invariant detector resolution kernel and a 4-mm (FWHM) data deposition kernel. In the
comparison studies with list-mode approaches, we also incorporated a model of the blob
basis function into DIRECT. The resolution and basis function filters were all applied in the
Fourier domain, providing the same computational time independent of the kernel size. In
the list-mode approach (with temporal-ordering), the events were subdivided into 60
temporal subsets, each representing one subset/block of RAMLA and each subset covering
all views. This number of subsets provided similar convergence speed (contrast and noise
increase per iteration) to DIRECT using RAMLA with 120 geometrical subsets and a
comparable blob model. List-mode reconstruction used blob basis functions placed on a
body-centered cubic grid (radius = 10 mm, shape parameter α = 8.63, grid unit cell size = 8
mm), based on our experience with these particular parameters in our previous studies. The
final image array was 144×144×62 with 4 mm3 voxels.

C. Measures
The behavior of the proposed approach in conjunction with iterative reconstruction was
investigated using the contrast vs. noise trade-off for a range of iterations and reconstruction
parameters. Contrast recovery coefficients (CRC) were calculated for all sphere sizes and

locations as: , where ps is the mean value in a 2D circular region of
interest (ROI) axially and transversely centered over the sphere (with the ROI having the
same diameter as the feature and positioned using a neighborhood search to maximize each
sphere’s mean value over all realizations), pb is the mean value in the 2D annular region
centered over each sphere (with the inner radius being 7 mm larger than the feature radius
and with annular thicknesses being carefully selected to give a similar annular area for any
feature size while not being influenced by neighboring features), and c is the ideal contrast
value. The transverse centering was done with with sub-voxel accuracy (within 0.5 mm),
and the contribution of each voxel value to the ROI or annular region was weighted by the
proportion of its area within the ROI or annulus. The average CRC value for a given sphere
size was then calculated using the three (eight for 10-mm lesions in slice B) sets of each
sphere in each of the six noise realizations, leading to a total of 18 (48) different realizations.

Depending on the study goals, there are several established ways of assessing noise within
reconstruction approaches. One of our goals was assessment of effects of the studied
approaches on the spatial noise within the images. From qualitative visual inspection of the
images and image profiles, the spatial structure of the noise in the DIRECT and list-mode
approaches was seen to be very similar (e.g., see Figs. 6 and 7). Consequently, we believe
that a pixel-to-pixel noise measure captures the noise effects within our studies. In our
evaluations, we used features having a range of sizes, and our noise measure over fixed size
50-mm ROI included image variations over the corresponding range of spatial scales. The
range of spatial scales of the noise measure was limited from below by the 4-mm voxel size,
which is about half of the smallest (10 mm) lesion size. An upper limit on the spatial scale of
the noise measure was imposed by setting to 50 mm the diameter of the ROI in which the
pixel-to-pixel noise standard deviation was evaluated. This upper limit corresponds to about
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twice the size of the largest (22 mm) lesion. The noise ROI was centered in the feature
slices, and the calculated standard deviation values were averaged over all realizations and
normalized by the background mean value. We also evaluated the standard deviation across
the realizations. The general conclusions for the two noise assessment approaches were
consistent, and we report only on the pixel-to-pixel noise measure.

VI. Results
A. Effects of partitioning scheme - DIRECT vs. List-Mode

Fig. 5 shows contrast vs. noise trade-off curves for the various reconstruction approaches
studied, using the same algorithm and blob basis function model. It can be seen from the
curves that DIRECT with a comparable model is able to match the contrast-noise
performance of list-mode TOF reconstruction, but for a much smaller computation time (see
Table I). For illustration, we also show the curve for DIRECT reconstruction that
additionally includes modeling of the intrinsic resolution of the simulated data (not included
in the list-mode reconstructions). The resolution modeling provides an improved contrast vs.
noise trade-off, as expected with statistical reconstruction independent of data partitioning
approach (whether DIRECT, binned, or list-mode). The same modeling can be incorporated
also into the list-mode approach, but at the cost of a several times longer reconstruction
time. We emphasize that in the DIRECT approach the reconstruction time is the same
independent of the resolution kernel size, since the resolution modeling is done in the
Fourier domain. Examples of images and mean central profiles (over six realizations) for the
contrast vs. noise levels marked by gray ellipses in Fig. 5 are shown in Figs. 6 and 7.
DIRECT and list-mode TOF and non-TOF reconstructions with the same model are shown
for matched noise levels (bottom three rows). It can be seen that the visual quality of the
images and profiles are consistent with observations based on the contrast vs. noise curves.
Additionally we show also the image (top row) and profile for the DIRECT reconstruction
with resolution modeling at a high iteration number to illustrate that it does not lead to an
unstable behavior and does not introduce background artifacts.

B. Effects of number of views on TOF kernel approximation
In the DIRECT approach, each view-grouped histo-image is considered to have a common
TOF kernel. In the simplest case, this kernel is approximated by a single TOF kernel at a
fixed orientation in 3D given by the central direction (azimuthal and co-polar angles) of the
view (“simple TOF kernel” in the following). More accurate modeling would involve a TOF
kernel averaged over the range of directions represented in the individual views. The simple
TOF kernel is a good approximation if the angular sampling requirements are fulfilled [30].
For example, for a TOF resolution of 300 ps and a spatial resolution of 4 mm, the minimum
required number of azimuthal angular intervals is about 18, and for 600 ps it is about 35. In
the co-polar angle it would be approximately 3 and 5 tilts for 300 ps and 600 ps,
respectively, for the central plane of our simulated system with a ±15° axial acceptance
angle, and fewer away from the center. If the angular sampling requirements are not met, the
simple TOF kernel does not accurately model the deposited data, and the angular grouping
introduces blurring. However, this blurring is spatially invariant in the TOF case [30] and
can be efficiently incorporated into the reconstruction model. Fig. 8 shows contrast vs. noise
trade-off curves for the 10-mm spheres for DIRECT reconstruction using the simple TOF
kernel from 600-ps data deposited into variable number of azimuthal (top) and co-polar
intervals (bottom). No view-grouping blur was modeled in these experiments, so as the
number of views decreases below the sampling requirements (35 azimuthal samples and 5
co-polar samples for the 600-ps case), the contrast vs. noise trade-off starts to deteriorate.
The angular TOF sampling requirements are important also for the proper modeling of
corrections, as discussed in Section IV.
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It is worthwhile to mention here that for algorithms with a view-by-view update such as
RAMLA (or the ordered-subsets expectation-maximization algorithm), in which the number
of updates per iteration depends on the number of views, using fewer views means that we
need to perform more passes (iterations) through the data to get the same number of image
update operations. Consequently, those algorithms can achieve similar contrast vs. noise
trade-offs for a similar total reconstruction time “independent” (within reason) of the
number of views used, as seen from Fig. 8. This in turn allows the use of a sufficiently large
number of views without increasing the total reconstruction time. This is unlike the filtered
back-projection or maximum-likelihood expectation-maximization (without subsets)
algorithms in which the number of views directly affects the total reconstruction time. On
the other hand, we do not want to increase the number of views too much either, since a
higher number of views also means fewer counts per histo-image and consequently sparser
data.

C. Effects of axially truncated object
While each individual voxel in the reconstructed image is affected only by the emission
activity from a local area as given by the TOF resolution, the attenuation contributions come
from the whole LOR length. In Section IV, we showed that even those “long distance”
factors can be properly modeled in DIRECT, i.e. it is possible to do the view-grouping and
still have accurate modeling. Our studies confirmed that even when we group together
events for which the photon pairs travel through a significantly different attenuation, or non-
attenuation, regions (as is the case for the events emitted from the 10-mm spheres in the
short phantom), DIRECT properly models this situation and the reconstruction quality is not
affected. Axially we grouped data into 1, 3, and 5 co-polar intervals and compared
performance of reconstructions of the short phantom with abrupt attenuation truncation close
to the spheres with those from the long phantom with no truncation. Fig. 9 shows transverse
and sagittal images of the short phantom for the reconstruction using 3 co-polar intervals.
Axial profiles through the short and corresponding long phantom images are shown in Fig.
10. Both cases provide very similar performance with minimal effects of the object
truncation on the reconstruction. Fig. 11 shows CRC curves, as a function of the iteration
number, for short and long phantom reconstructions for 1 and 3 co-polar interval cases. The
5 co-polar interval case (not shown) provided very similar comparison and contrast values to
the 3 interval case (similar to Fig. 8).

D. Effects of number of counts
The number of acquired counts, voxel size, and number of views determine the count
densities of individual histo-images. For very low count cases it might be reasonable to
adapt the size of the image elements or amount of the regularization (changing the
resolution-noise trade-off). However, the purpose of this study was to investigate the effect
of counts by themselves without doing any adaptation based on count levels. Fig. 12
illustrates contrast vs. noise trade-off curves for different count levels and object sizes. Fig.
13 shows representative images of the central slices for comparable contrast levels (as
marked by the shaded bar in Fig. 12). In the lowest count case each histo-image contained
on average only 1 count per 5 voxels inside the object. As seen from the images and graphs,
the combination of DIRECT and RAMLA approach proved to be robust without any
undesirable artifacts even for very low counts.

E. Effects of timing resolution
Fig. 14 illustrates contrast versus noise trade-off curves for different TOF resolutions and
object sizes. Fig. 15 shows representative images of individual cases for comparable contrast
levels (as marked by the shaded bar in Fig. 14). It is clear from the graphs and visual image
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quality that better TOF timing resolution improves reconstruction performance, as has been
previously shown for list-mode TOF reconstruction [11].

F. Computational demands
The computational bottlenecks of any iterative reconstruction are the forward- and back-
projection operations, and DIRECT is no exception. Forward- and back-projections are
performed in DIRECT using 3D convolutions. For the Fourier-based implementation of
those operations, virtually all of the DIRECT reconstruction time is taken by the 3D Fourier
transformations - four 3D fast Fourier transforms (FFTs) per each update (or view) of the
algorithm, for a total of 480 3D FFTs per iteration in our example. FFT routines can handle
this task on the DIRECT structures extremely efficiently even on a standard computer, as
seen from the Table I. The memory demands of DIRECT are minimal; the approximate sizes
of data structures involved in the studies presented are as follows: 320 MB disk file of list
data with 40M events; 300 MB disk file with deposited histo-images (image size
144×144×62, 40×3 views; float values stored in scaled 2B integers), and same for
corrections (scatter and random images can be stored also in a down-sampled form, since
they are slowly varying); and 20 MB total computer memory (RAM) needed by DIRECT
for four 3D arrays (only one view is processed and needs to be in the memory at any time).
Even if the image size increases several times, the RAM and disk requirements will be still
comfortably within the possibilities of standard computers.

Table I shows representative reconstruction times per iteration of DIRECT and list-mode
TOF reconstructions on a 2-GHz Mac G5 single processor (image size 144×144×62).
Reconstruction parameters were used as outlined in Section V.B. In the list-mode
reconstruction we used blobs on the body-centered grid, no detector resolution modeling
was applied, and the TOF kernel was truncated at ±3σ of the Gaussian timing resolution
kernel. Reconstruction times of DIRECT do not depend on the number of counts or the sizes
of the resolution and TOF kernels. Reconstruction times given for the particular single
processor are only illustrative to give insight about the relative computational demands of
the approaches. The computational gain of the DIRECT will further increase for higher
number of counts; it will also increase for larger image sizes, as expected with the Fourier-
based approaches. DIRECT, as well as list-mode approaches, can be efficiently parallelized
for a cluster of computers or other parallel computer architectures. DIRECT operations can
be very efficiently implemented also on GPUs, but this is outside the scope of the presented
work.

The large computational demand of the space-based calculation of the sensitivity matrix
results from the fact that all crystal pairs (LORs) must be considered, including those for
which no events were detected. For modern PET systems with a large number of LORs,
calculation of the sensitivity matrix itself can be computationally more expensive than one
iteration through the acquired emission events during the reconstruction stage, as illustrated
in Table I. There are several possibilities to speed up the sensitivity matrix calculation, as
discussed in the Introduction. Substantial speed-up of the sensitivity matrix calculation
within DIRECT geometry has been obtained using the Fourier-based forward- and back-
projection operations.

VII. Conclusions
We have presented the Direct Reconstruction for TOF data (DIRECT) approach, working
directly in image space and allowing very efficient implementation of reconstruction and
data correction operations, without compromising image quality. Our feasibility studies
show the potential for about an order of magnitude speed-up in reconstruction compared to
our clinical TOF list-mode reconstruction of TOF-PET data for a typical patient study.
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Furthermore, the DIRECT approach allows modeling of resolution and TOF kernels/filters
without any extra computational cost. Our future work will involve comprehensive
evaluations using measured data, including scatter and random events, from realistic
emission and attenuation objects acquired on our clinical TOF-PET scanner [15], [16] and
our research TOF-PET scanner with LaBr3 with improved timing resolution [63], [64].
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Fig. 1.
Comparison of the data formats for binned TOF data (histo-projections for 45° and 90°
views - left) and the DIRECT approach (histo-images for 45° and 90° views - right) —
Histo-projections can be viewed as an extension of individual non-TOF projections into
TOF directions (time bins), and their sampling intervals relate to the projection geometry
and timing resolution. Acquired events are first histogrammed into the histo-projection bins;
during the reconstruction process individual histo-projection bins are then repetitively traced
through reconstructed image voxels (examples for 3 bins - 1, 2, 3 - are shown). In the
DIRECT approach histo-images are defined by the geometry and desired sampling of the
reconstructed image. Acquired events and correction factors are directly placed into the
image resolution elements of individual histo-images (one histo-image per each view)
having a one-to-one correspondence with the reconstructed image voxels. All reconstruction
and data correction procedures are done directly, and very efficiently, in image space.
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Fig. 2.
Flowchart of TOF iterative reconstruction using the DIRECT approach. Each 3D view-
grouped histo-image contains all events from a given “view” (comprising a range of
azimuthal and co-polar angles). All data (d, d∼, ω, s, r) are in the same histo-image format.
Forward- and back-projection operations are 3D convolutions involving proper 3D TOF
resolution kernel kv (taking into account TOF, detector, and image based resolution
functions) for each view v. Modeling of the multiplicative corrections ω before or after
(dashed lines) the forward-projection is discussed in Section IV. Discrepancy and Update
operators (both operating in image space) are defined by a particular iterative algorithm. The
DIRECT approach can be used for both view-by-view and ordered subset iterative
strategies. The DIRECT approach can also be used for analytical reconstruction, utilizing
just the top part of the flowchart: deposited (and pre-corrected) data are first sequentially
back-projected view-by-view (confidence weighted back-projection), and the resulting
image is then properly filtered (in place of the update operation). If complete data are
needed, the forward-projection part of the flowchart can be used for calculation of the
axially missing regions in the oblique data (similar to what is done in the 3D reprojection
(3DRP) algorithm [40], [41]).
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Fig. 3.
Examples of results of representative operations from Fig. 2. Left: central slice of 3D histo-
image (dv) for view v (ϕ = 40° θ = 0°) containing 1000 deposited events simulated for an

off-center point source. Middle: TOF forward-projection  of an image containing a point
source at the same location (both images are scaled to their own maxima). Right: correction
image c(n) resulting from back-projection of the discrepancy image δv of the two above-
mentioned images.
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Fig. 4.
Graphical illustration of phantoms (transverse and axial views) and their placement within
the 25-cm axial FOV (indicated by the light gray shaded regions in the axial views) of the
simulated scanner. Hot lesion phantom (left three images): 25-cm long phantom with 27
(and 35) cm diameter with hot spherical lesions in two different slices. The central slice
(slice A) contained three sets each of 22, 17, 13, and 10-mm diameter spheres, all placed at a
radial distance 7 cm from the transverse center. An off-center slice (slice B) at an axial
position one-quarter of the axial FOV from the center (6.25 cm) contained eight uniformly
distributed 10-mm diameter spheres, again at a radial position of 7 cm. The activity uptake
ratio for the hot spheres was 4:1 with respect to the background. Short phantom (right
image): 11-cm long cylindrical phantom with 35-cm diameter centered in the scanner. The
phantom contained eight 10-mm hot spheres (same configuration as slice B in the hot lesion
phantom); the edges of the spheres were located about 15 mm from the axial edge of the
phantom.
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Fig. 5.
Contrast vs. noise trade-off curves for DIRECT and list-mode (TOF and non-TOF)
approaches using the same reconstruction algorithm (RAMLA) and (blob) basis function
model (10 mm lesions, central slice, 27-cm phantom, 30M counts, 300-ps TOF resolution).
DIRECT with blob model is able to match the contrast vs. noise trade-offs and overall image
quality of the list-mode TOF reconstruction, but with an order of magnitude shorter time
(see Table I). We illustrate also the trade-off curve for DIRECT reconstruction with
additional resolution modeling (blob + res. model) as given by the intrinsic resolution of the
simulated data. Gray ellipses mark iterations for which we show example images and
corresponding profiles in Figs. 6 and 7.
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Fig. 6.
Vertical profiles (averaged over 6 realizations) through the middle of the central slices
(through the 10 and 17-mm lesions) of the images illustrated in Fig. 7-left column.
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Fig. 7.
Transverse (left: central slice A, middle: slice B) and coronal (right) slices from DIRECT
and list-mode RAMLA reconstructions represented in Fig. 5 (27-cm phantom, 30M counts,
300-ps TOF resolution). DIRECT with blob and list-mode (TOF) reconstructions (2nd and
3rd row) are shown at matched noise (and contrast) levels. Bottom row shows non-TOF list-
mode reconstruction with similar noise level, but lower contrast. We illustrate also DIRECT
reconstruction with resolution modeling (top row) at a high iteration number (30 iterations),
to demonstrate that resolution modeling improves lesion contrast without introducing
background artifacts.
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Fig. 8.
Illustration of view-grouping - azimuthal (top) and co-polar (bottom) - effects within the
DIRECT approach on contrast vs. noise trade-offs for simulated data grouped into 10, 20,
and 40 azimuthal (top) and into 1, 3, and 5 co-polar (bottom) angular intervals (curves for
10-mm lesions in 27-cm phantom, 30M counts, 600-ps TOF resolution). Each symbol
location represents one iteration, i.e., one pass through all views for each case. T denotes
one unit of computational effort equivalent to 1 iteration of the 40×3-views case (equal T
values imply comparable reconstruction times). Note that grouping events into fewer views
requires more iterations (but comparable time) to achieve approximately comparable
contrast vs. noise trade-offs, if a sufficient number of views is used.
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Fig. 9.
Transverse (left) and sagittal (right) slices of the short phantom (11 cm) with abrupt
truncation of attenuation and emission activity at approximately 1/4 of the axial FOV (from
both sides) of the simulated scanner. The edges of the 10-mm spherical lesions are located
axially 15 mm from the phantom edge (phantom diameter 35 cm, 600-ps TOF resolution,
DIRECT reconstruction using RAMLA with resolution modeling, 40×3 views, 4-mm
voxels, 15 iterations).
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Fig. 10.
Axial profiles (averaged over 6 realizations) through one of the 10-mm spheres of the short
(11 cm) and long (25 cm) phantom reconstructions (phantom diameter 35 cm, 600-ps TOF
resolution, DIRECT reconstruction using RAMLA with resolution modeling, 40×3 views, 4-
mm voxels, 15 iterations - marked with gray ellipse in Fig. 11).
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Fig. 11.
Contrast of 10-mm spheres as a function of iteration number for short (truncated) and long
(continuous) phantoms, for data grouped into 1 and 3 co-polar intervals (phantom diameter
35 cm, 600-ps TOF resolution, DIRECT reconstruction using RAMLA with resolution
modeling, 40 azimuthal intervals; one relative iteration represents equivalent total
computation time to one iteration of the 3-tilt case). Abrupt truncation of the attenuation and
emission objects does not negatively affect DIRECT performance as seen on the contrast
measures and as illustrated by images and profiles shown in Figs. 9 and 10 for 15-th
iteration marked with gray ellipse in this plot.
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Fig. 12.
Contrast vs. noise trade-off curves for DIRECT reconstructions from data with typical
clinical count levels (30M and 20M) and very low count levels (9M and 6M) for objects
emulating average (27 cm) and heavy (35 cm) patient sizes, respectively (10-mm lesions,
300-ps TOF resolution, DIRECT reconstruction using RAMLA with resolution modeling,
40×3 views).

Matej et al. Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 13.
Central slices of DIRECT reconstructions at matched contrast levels for 10-mm sphere
(marked by shaded bar in Fig. 12) from data with typical clinical count levels (30M and
20M) and very low count levels (9M and 6M) for objects emulating average (27 cm) and
heavy (35 cm) patient sizes. As expected with a statistical reconstruction algorithm, the
noise levels are determined by the number of counts in the data, and useful images are
obtained even at very low count levels. These examples illustrate that the statistical
algorithm performs as expected when operating on the data partitioning used in DIRECT.
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Fig. 14.
Contrast vs. noise trade-off curves for DIRECT reconstructions from data with 300-ps and
600-ps TOF resolution (10-mm lesions, 27-cm and 35-cm phantoms, 30M and 20M counts,
respectively, DIRECT reconstruction using RAMLA with resolution modeling, 40×3
views).
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Fig. 15.
Central slices of DIRECT reconstructions at matched contrast levels for 10-mm sphere
(marked by shaded bar in Fig. 14) from data with 300-ps and 600-ps TOF resolution for
objects emulating average (27 cm) and heavy (35 cm) patient sizes.
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