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Abstract
This study examined whether renin expression and secretion and plasma angiotensin II (Alg II) levels
were altered in adult sheep exposed to antenatal betamethasone. Pregnant sheep received injections
of 0.17 mg/kg betamethasone or vehicle, at 80 and 81 days of gestation, and offspring were studied
at 6 and 18 months of age. At 6 months, plasma prorenin concentrations were significantly lower in
betamethasone animals (4.63 ± 0.64 vs 7.09 ± 0.83 ng angiotensin I/mL/h, P < .01). The percentage
of plasma active renin was significantly higher in the betamethasone group (31.93 ± 4.09% vs 18.57
± 2.79%, P < .01). Plasma and renocortical renin levels were similar in both groups at 18 months,
but plasma renin activity was lower than at 6 months. Ang II levels were suppressed by
betamethasone. The data indicate that prenatal exposure to betamethasone alters processing and
secretion of renin in offspring at 6 months, but that this difference is not apparent at 18 months.
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Glucorticoids play an essential role in regulating the prepartum maturation of several tissues,
most notably the lungs.1 Antenatal betamethasone treatment is effective for the prevention of
neonatal respiratory distress syndrome in preterm infants and substantially reduces neonatal
mortality and morbidity.2 As a consequence, synthetic glucocorticoids, such as betamethasone,
are routinely administered to pregnant women at risk of preterm delivery.3

High circulating maternal glucocorticoid concentrations have been associated with abnormal
fetal development and altered function or disease in offspring.4 Recently, the immediate and
long-term effects of perinatal steroid treatment on the fetus have been reviewed.5,6 Exposure
to excess corticosteroids before birth is thought to be a key mechanism underlying the fetal
origins of adult disease hypothesis.7 Indeed, an association between antenatal glucocorticoid
exposure and elevations in systolic and diastolic blood pressure has been demonstrated in 14-
year-old children.8

In healthy fetal sheep, late-gestation maternal glucocorticoid administration results in fetal
hypertension accompanied by increased vascular resistance, mild hypoxemia, and decreased
cerebral blood flow.9 Other animal studies (including ours) have also found associations
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between glucocorticoid exposure during pregnancy and hypertension in adult offspring.10,
11 We noted that maternal betamethasone treatment at days 80 and 81 of gestation resulted in
hypertension in offspring as determined at 6 months of age.10

Findings from several animal studies suggest that a potential mechanism underlying the
development of adult hypertension is altered fetal kidney development.12-14 As in humans,
nephrogenesis is an early developmental event in the fetal sheep.15 In mice and sheep, fetal
exposure to synthetic glucocorticoids during mid- and early gestation has been demonstrated
to result in decreased nephron number and hypertension in adult offspring.11,16 The
mechanisms underlying these effects are not well understood.

Fetal kidney development appears to be sensitive to glucocorticoid exposure during specific
gestational windows. In sheep, maternal dexamethasone treatment at 26 to 28 days leads to an
approximate 40% reduction in nephron number in offspring at 7 years of age.17 Exposure to
prenatal betamethasone at 80 days of gestation produces similar changes.10 Rats born to dams
treated with dexamethasone (throughout gestation) exhibited a 50% reduction in nephron
number and a 30% decrease in glomerular filtration rate in adulthood.12

An intact renin–angiotensin system (RAS) is essential for optimal growth of the kidney. Indeed
it has been demonstrated that a local RAS is present within the ovine fetal kidney by 40 days
of gestation.18 Hypertension is also programmed by protein restriction during pregnancy
through suppression of the intrarenal RAS in the developing animal and consequent impairment
of nephrogenesis.19 However, there is little information available regarding the effects of
antenatal glucocorticoid treatment on the systemic and intrarenal RAS in adult offspring.
Therefore, the primary purpose of this study was to examine the effects of antenatal
betamethasone exposure on prorenin (PRC) and active (ARC) renin concentration in plasma
and kidney cortex from male sheep at 6 and 18 months of age. Another objective was to compare
the plasma renin response to a sodium load in adult sheep exposed to prenatal betamethasone.
We also measured systemic levels of angiotensin II (Ang II). Our working hypothesis was that
antenatal steroid treatment would alter the RAS in adult life.

MATERIALS AND METHODS
Animals, Treatment, and Sampling

Time-dated pregnant sheep were obtained from local suppliers and randomized to receive 2
intramuscular injections (separated by 24 hours) of 0.17 mg/kg betamethasone or vehicle
(isotonic saline) on days 80 and 81 of gestation. The betamethasone dose given is analogous
to that used in human pregnancy. Thereafter pregnancy was allowed to continue unimpeded
and offspring were born.

Plasma samples from male offspring (9 control, 9 betamethasone) were obtained at 6 and 18
months of age for the assessment of plasma active and prorenin concentrations. Ang II
concentrations were measured in a subset of animals at 6 months, and in all at 18 months. A
total of 16 animals (8 control, 8 betamethasone) were sacrificed at 18 months of age and the
kidneys collected for determination of active and prorenin content.

All experimental procedures were approved by the Institutional Animal Care and Use
Committee.

Plasma Active Renin Concentrations
Plasma active renin concentrations were assessed by measuring active renin activity as a
function of the amount of angiotensin I (Al) generated from angiotensinogen using a
commercial kit (CA-1553, Diasorin, Inc, Stillwater, Minnesota). To measure renin
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concentrations independent of endogenous angiotensinogen, the method was slightly modified
from that described for renin activity. Excess renin substrate (0.5 mL of adult nephrectomized
sheep plasma) was added to each aliquot (0.3 mL) of plasma along with the enzyme inhibitor
phenylmethylsulfonyl fluoride and maleate buffer (to assure an optimal pH of 6.0). Half of this
cocktail was then incubated at 37°C whereas the remainder was stored at 4°C for 1.75 hours.
The AI generated was measured with the RIA kit. All samples from an animal were analyzed
simultaneously in duplicate, and all assays included samples from control and betamethasone-
treated animals. Results are expressed as ng AI (37°C ng/mL minus 4°C ng/mL) per milliliter
plasma per hour of incubation.

Prorenin Concentrations
Prorenin concentrations were determined by measuring active renin before and after treatment
of plasma or kidney cortex homogenate with bovine pancreatic trypsin (TRL3, Worthington
Biochemical Corporation, Lakewood, New Jersey) at a concentration determined to yield
maximum renin activation. Each lot of trypsin was tested with pooled plasma or kidney
homogenate by constructing a trypsin dose–response curve. Once the optimal dose of trypsin
was established for a lot, this dose was used for subsequent assays. Trypsin activation was at
4°C and pH 7.3 for 30 minutes. The activation was stopped by addition of trypsin inhibitor
(Type I-S: from soybean T9003, Sigma, St Louis, Missouri) at room temperature for 15
minutes. Total trypsin-activated renin minus active renin gave the PRC for each sample.

Tissue Renin Concentrations
Approximately 50 mg of renal cortex was homogenized on ice for 45 seconds in 2 mL of saline.
The homogenate was then centrifuged at 2100 × g for 10 minutes, and the supernatant collected.
Samples were diluted with saline containing 5.2 mM BAL (2,3 dimercapto-1-propanol), 0.59
mM 8-hydroxyquinoline, and 10 mM disodium EDTA. ARC and PRC were determined as for
plasma and are expressed as ng AI per mg of protein per hour of incubation.

Plasma Angiotensin II Concentrations
Blood was collected in prechilled EDTA-containing tubes, centrifuged, and the plasma flash
frozen and stored at −80°C until extracted. The peptide was extracted from the plasma onto
solid-phase extraction cartridges (Sep-Pak Vac300, 200 mg, Waters, Milford, Massachusetts)
and eluted with 86% ethanol/4% glacial acetic acid, and then dried in a Speedvac Concentrator
and stored at −20°C. Based on the recovery of I125 labeled angiotensin II added to each sample,
64 ± 1.9% (mean ± SEM) of the peptide was extracted.

To determine Ang II concentration, samples were reconstituted with the assay buffer supplied
with the Angiotensin II RIA Kit (Alpco Diagnostics, Salem, New Hampshire) and assayed
according to the manufacturer's directions.

Sodium Infusion Studies
A total of 77 betamethasone-exposed animals and 5 control animals were studied at 18 months
of age. Surgery was performed to insert vascular and bladder catheters and sheep were then
placed in study carts. Five days after surgery, a sodium load of hypertonic NaCl (0.0275 mEq/
kg/min at 0.55 mL/min) was infused over 60 minutes. Blood samples were obtained before, at
the end of the infusion, and 90 minutes after the infusion was stopped (recovery) for renin and
sodium measurement (Medica EasyLyte, Bedford, Massachusetts).

Kidneys were collected from these animals for the previously described analysis at least 3 days
after sodium infusion.
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Statistical Analysis
Data are expressed as mean ± SEM. Comparisons were made using Student t test or analysis
of variance where appropriate. Tukey test was used for post hoc analysis. Differences were
considered significant when P < .05.

RESULTS
Plasma Active, Prorenin, and Angiotensin II Concentrations

Plasma ARCs were significanty higher at 6 months compared with at 18 months in both groups
(P = .0002, F = 9.01; Figure 1). There were no between group differences at either age.

Prorenin concentrations were significantly lower in the betamethasone compared with the
control group at 6 months (P = .03, F = 3.40; Figure 2). In contrast, there was no between group
difference apparent at 18 months. PRCs decreased significantly in the control group between
6 and 18 months (P = .002).

As shown in Figure 3, active renin comprised a significantly greater percentage of the total
plasma renin concentration in the betamethasone compared with the control group at 6 months
of age (P = .016). The ARC percentage was similar in both groups at 18 months, at which time
a significant decrease from the 6 month percentage was apparent for the betamethasone group
(P = .016).

There was no between group difference apparent in Ang II concentration at 6 months (Figure
4). At 18 months, however, plasma Ang II levels were significantly lower in betamethasone
compared with similarly aged control and 6-month betamethasone animals (P = .011, F =
4.168).

Renocortical Active and Prorenin Concentrations
Neither renocortical active or prorenin concentrations, nor the percentage active renin were
different between the 2 groups at 18 months (Table 1).

Effect of Sodium Infusion on Plasma Active Renin, Prorenin, and Sodium Concentrations
Sodium infusion did not significantly alter ARC during or after the infusion (Figure 5).
Similarly, percentage ARC values did not change in either group (Figure 6). Plasma PRCs
were similar in control and betamethasone sheep (5.84 ± 0.49 vs 6.31 ± 0.70 ng AI/mL/h) and
did not change following sodium infusion (data not shown).

Baseline plasma sodium concentrations were not different in control and betamethasone
animals so the two were combined to examine the effect of the sodium infusion. Plasma sodium
concentrations increased significantly from baseline after sodium infusion (145.5 ± 0.9 to 147.0
± 1.4 mEq/L, P < .03).

DISCUSSION
We and others have observed that fetal sheep exposed to glucocorticoids in the prenatal period
have elevated blood pressure in adulthood.20,21 It is possible that this is a consequence of
glucocorticoid-induced disregulation of the mechanisms controlling renin expression and/or
secretion. The main aim of this study was to determine if treatment of pregnant ewes with
clinically relevant doses of betamethasone would affect intrarenal renin expression and renin
secretion in adult male offspring. We found that plasma PRCs were lower in betamethasone-
exposed sheep compared with controls at 6 months of age. Such a difference was not apparent
at 18 months. In addition, the percentage of ARC in plasma was higher in the betamethasone
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group at 6 months. Again, no between-group differences were evident at 18 months. These
data suggest that prenatal exposure to betamethasone causes a transient alteration in the
processing and secretion of renin in offspring at 6 months of age.

A key element of the fetal origins of adult disease hypothesis is that the insult occurs during a
critical period of development (which may differ for each organ system), thus permanently
altering the structure and function of an organ system.22 The kidney, and in particular the
renin–angiotensin system (RAS), may be critically affected in models of fetal programming
and may contribute to the subsequent development of disease.23 In some models of fetal
programming, it has been demonstrated that offspring exposed to glucocorticoids in utero
develop high blood pressure in adulthood.20,21,24 Further to this, Woods et al25 have reported
that pharmacologic suppression of the RAS during development leads to a reduced number of
glomeruli and hypertension in adulthood. These findings support the idea that there is a strong
relationship between the intrarenal RAS and blood pressure. Gender-specific effects have also
been noted with males being more susceptible to programming effects.26

It is known that renin can be secreted in 2 forms, one of which is inactive and is the renin
biosynthetic precursor, prorenin. We have previously shown in sheep that acute stimulation
causes selective release of active renin but has little effect on prorenin secretion.27 However,
with more prolonged stimulation, prorenin secretion is also increased in both sheep and
humans.28,29 In the present study, although plasma prorenin levels were significantly
decreased in betamethasone-exposed animals at 6 months, plasma ARCs remained the same
with a resultant increase in the percentage of active renin. These data suggest that prenatal
betamethasone may interfere with the processing of renin in young adult male offspring.

During fetal life, the activity of the RAS changes markedly.30 The persistent increase in plasma
renin activity, despite increased Ang II levels, suggests RAS upregulation before and after
birth, resulting in an heightened set point and attenuated feedback.31 There is also evidence
that the RAS is essential for normal kidney growth and development.25,32-34

Plasma renin activity decreases with increasing postnatal age.31 Velaphi et al31 demonstrated
that plasma renin levels in lambs were 3 times higher than in adult sheep over the first month
of life, suggesting enhancement of RAS activity and Ang II production. In the present study,
we found that there was a decrease in plasma renin concentrations between 6 and 18 months
of age. This was accompanied by a significant decline in plasma Ang II levels in the steroid-
treated animals. Carbone et al30 have also reported that basal levels of plasma renin activity
are significantly lower in adult sheep than in newborn lambs. Taken together, the data suggest
that there is a continuing decline of renin secretion and Ang II concentrations during the first
year of postnatal life. Basal mean arterial pressure increases during the first few months of life
in several species.35-37 It is likely that the gradual elevation in blood pressure that occurs in
the first year of life contributes to the decline in plasma renin levels via baroreceptor mediated
inhibition of renin secretion.38

Renin secretion is inversely related to plasma sodium concentration.39,40 Increases or
decreases in tubular fluid NaCl concentrations at the level of the macula densa are followed
by inverse changes in the amount of renin released from juxtaglomerular cell stores, and
subsequent changes in plasma renin concentrations and the rate of Ang II formation.
Prostaglandins, specifically PGE2, and PGI2, are known regulators of renin release and have
been implicated in macula densa–mediated renin release.41,42 There is considerable support
for the notion that PGE2, is generated in macula densa cells through the action of
cyclooxygenase-2 and that it is released when macula densa NaCl concentrations acutely
reduced.43
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In the present study we detected a small, but significant increase in plasma sodium
concentrations from baseline after sodium infusion. Although there was a tendency for plasma
active renin levels to decline in control animals, the decrease was not statistically significant
and no such trend was apparent in betamethasone-treated animals. The fact that there was no
significant change in the PRC following sodium infusion may be because the relatively large
variation in the plasma renin levels impeded our ability to detect a significant difference. Also
we used a short-term infusion (1 hour) that increased plasma Na levels by approximately 2
mEq/L only. Thus the intensity of the stimulus or its duration may not have been sufficient to
promote a significant decrease in plasma renin concentration. The sodium infusion did not alter
the percentage of active renin in the plasma. This suggests that acute changes in NaCl delivery
to the macula densa do not alter the processing of renin or the relative proportions of ARC and
PRC secreted.

The kidney appears to have a dual role with regard to the RAS, both as an effector and a target
organ. Increasing evidence indicates that the intrarenal RAS serves as an important regulator
of renal function.44 For instance, renin within the kidney, independent of the systemic RAS,
may induce Na retention.45 In addition there is now evidence that renin and prorenin receptors
are present in the kidney.46,47 Thus, renin could participate directly in the genesis of
hypertension in offspring prenatally exposed to glucocorticoids possibly by acting on this
newly discovered receptor. Our data suggest that the elevated blood pressure caused by
antenatal steroid exposure does not result from elevated intrarenal renin concentrations.

In summary, our data suggest that prenatal exposure to betamethasone causes a transient
alteration in the processing and secretion of renin in 6-month-old offspring. Further studies are
needed to determine if this change alters the regulation of renal function and blood pressure.
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Figure 1.
Plasma active renin concentration in control and betamethasone-treated sheep; n = 9 for both
groups at 6 months of age and n = 8 for both at 18 months. Different letters indicate significant
between-group differences (F = 9.01, P = .0002)
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Figure 2.
Plasma prorenin concentration in control and betamethasone-treated sheep; n = 9 for both
groups at 6 months of age and n = 8 for both at 18 months. Different letters indicate significant
between-group differences (F = 3.40, P = .03)
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Figure 3.
Percentage of active renin in plasma from control and betamethasone-treated sheep; n = 9 for
both groups at 6 months of age and n = 8 for both at 18 months. Different letters indicate
significant between-group differences (P < .015).
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Figure 4.
Plasma angiotensin II concentrations in control and betamethasone-treated sheep; n = 5 and n
= 6 for the control and betamethasone groups, respectively, at 6 months of age and n = 8 for
both at 18 months. Different letters indicate significant between-group differences (F = 4.618,
P = .034).
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Figure 5.
Plasma active renin concentration in control and betamethasone-treated sheep at baseline, after
60 minutes of sodium infusion, and 90 minutes after the infusion was stopped; n = 5 and n =
4 for the control and betamethasone groups, respectively. There were no significant between-
group or within-group differences (F = 3.83, P > .05).
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Figure 6.
Percentage of active renin in plasma from control and betamethasone-treated sheep at baseline,
after sodium infusion, and at the end of the recovery period; n = 5 and n = 7 in the control and
betamethasone groups, respectively. There were no significant between-group or within-group
differences (F = 5.20, P > .05).
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