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Abstract: The recent development of DNA microarray technology allows us to measure simultaneously the expression 
levels of thousands of genes and to identify truly correlated genes with anticancer drug response (differentially expressed 
genes) from many candidate genes. Signifi cance Analysis of Microarray (SAM) is often used to estimate the false 
discovery rate (FDR), which is an index for optimizing the identifi ability of differentially expressed genes, while the 
accuracy of the estimated FDR by SAM is not necessarily confi rmed. We propose a new method for estimating the FDR 
assuming a mixed normal distribution on the test statistic and examine the performance of the proposed method and 
SAM using simulated data. The simulation results indicate that the accuracy of the estimated FDR by the proposed 
method and SAM, varied depending on the experimental conditions. We applied both methods to actual data comprised 
of expression levels of 12,625 genes of 10 responders and 14 non-responders to docetaxel for breast cancer. The pro-
posed method identifi ed 280 differentially expressed genes correlated with docetaxel response using a cut-off value for 
achieving FDR �0.01 to prevent false-positive genes, although 92 genes were previously thought to be correlated with 
docetaxel response ones.

Keywords: differentially expressed genes, false discovery rate, microarray, mixed normal distribution, signifi cance analy-
sis of microarray

Introduction
Genetic markers are promising for our ability to predict the anticancer drug response in individual 
patients. The recent development of DNA microarray technology allows us to measure simultaneously 
the expression levels of thousands of genes and to identify truly correlated genes with the anticancer 
drug response, called differentially expressed genes, from many candidate genes by comparing the 
gene expression levels between cells or tissues under different conditions. However, since a typical 
microarray experiment measures the expression levels of thousands of genes with a small sample-size 
simultaneously, identifying differentially expressed genes poses complex multiple testing problems, 
and it is diffi cult to precisely identify differentially expressed genes using traditional statistical 
methods. The traditional methods such as the two-sample t-test have been used to identify differentially 
expressed genes [15]. However, such tests often provide unreliable and inaccurate results due to 
strong parametric assumptions and multiple testing problems. In contrast, Bonferroni correction [5] 
controlling the family-wise error rate (FWER) is often too conservative, failing to identify differentially 
expressed genes. In order to solve this problem, the false discovery rate (FDR) is increasingly used. 
The FDR is defi ned as the expected proportion of false-positive genes among total identifi ed genes 
as an index for optimizing the identifi ability of differentially expressed genes [4]. Many statistical 
methods have been proposed for estimating the FDR, i.e. empirical Bayes (EB) method [12], 
Signifi cance Analysis of Microarray (SAM) [34], and mixture model method (MMM) [24]. Among 
them, SAM is most widely used for cancer outcome by its attractive advantages in microarray data 
analysis [10]. Actually, the diffi culty of multiplicity problems in simultaneous testing of a large 
number of genes with a small sample-size data is relieved by SAM through estimating the number 
of false-positive genes based on a permutation procedure without strict parametric assumptions 
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and replacing the usual t-test statistic with a 
SAM-statistic [34] or t-type score [24]. Available 
computer software specifi c for SAM, also help 
biological researchers for managing SAM [9]. 
The precision of estimated FDR in SAM have 
been examined by many researchers [14, 22, 23, 
36]. Among them, Xie et al. (2005) pointed out 
that the permutation-based methods for FDR 
estimation such as SAM might overestimate FDR 
in a certain condition. This suggests the importance 
of the examination of factors such as target FDR, 
sample-size, and proportion of differentially 
expressed genes which may affect the bias and 
variance of estimated FDR in SAM. If the bias 
and variance of estimated FDR differ, depending 
on the experimental condition, we have to choose 
a suitable method for the experimental condition 
in a confronted case. We therefore, conducted a 
simulation study to examine the bias and variance 
of estimated FDR in SAM.

In this paper, we also propose a new method 
for estimating the FDR. The proposed method 
assumes a mixed normal distribution on t-type 
score, estimating the FDR for a cut-off value 
based on the numerical integration of probabil-
ity distribution. Here, the t-type score is a test 
statistic with a correction term added to the 
denominator of the Welch type t-statistic in order 
to stabilize the variation of the denominator [24]. 
We compared both bias and variance of the esti-
mated FDR between the proposed method and 
SAM through the simulation study. Additionally, 
both methods are applied to actual data com-
prised of the expression levels of 12,625 genes 
of 10 responders and 14 non-responders to 
docetaxel for breast cancer (Accession No: 
GDS360) [20]. Although 92 correlated genes 
with the docetaxel response were previously 
identifi ed using a two-sample t-test with the 
signifi cance level 0.001 [7], there are many false-
negative genes among unidentifi ed genes because 
the adopted signifi cance level is too low to get 
reasonable result. We, therefore, examined the 
FDR in this actual data using the proposed 
method.

Materials and Methods

t-type score
For each gene i, i = 1, 2, …, g, the expression level 
is Xi1, …, Xim from m samples collected from cells 

or tissues under Condition 1, and Yi1, …, Yin from 
n samples collected from cells or tissues under 
Condition 2. A traditional method for testing for a 
difference in the means between two conditions 
assuming a normal distribution is the two-sample 
t-test. However, since thousands of genes are 
evaluated simultaneously; when some of them have 
a very small sum of squares under two conditions, 
their absolute t-statistic becomes very large even 
though their mean difference is not large. This 
disadvantage is exacerbated due to the small sam-
ple-size. In the case where two-sample t-test is used, 
therefore, many non-differentially expressed genes 
are identifi ed as differentially expressed genes. In 
order to avoid this problem, a new statistic with a 
correction term added to the denominator of the 
Welch type t-statistic in order to stabilize the 
variation of its denominator, called t-type score, has 
been proposed [24]. We use the t-type score as a test 
statistic for identifying the differentially expressed 
genes. Let zi denote the t-type score for gene i,
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Signifi cance analysis of microarray 
(SAM)
SAM is often used to estimate the FDR for identi-
fying the differentially expressed genes for cancer 
outcome [10]. The FDR is estimated through the 
replications of permutation among all samples for 
a total of B times. For the bth permutated data, the 
t-type score is calculated and denoted by zi

b, 
i = 1, …, g. When FDRsam denotes the two-sided 
FDR estimator, FDRsam can be written as
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where c1 (�0) and c2 (�0) are the cut-off values, 
respectively. We can identify over- and 
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under-expressed genes simultaneously using the 
FDRsam. On the other hand, we formulate the 
one-sided FDR estimator for each cut-off value 
(c1, c2) in order to correspond to the FDR estimator 
of the proposed method. When FDRsam(c1) and 
FDRsam(c2) denote the one-sided FDR estimator 
for c1 and c2 respectively, FDRsam(c1) and 
FDRsam(c2) can be written as
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respectively.
The FDRsam(c1) is used in order to identify the 

differentially expressed genes that the gene 
expression levels under Condition 1 over-express 
more than under Condition 2. On the other hand, 
the FDRsam(c2) is used in order to identify the 
differentially expressed genes that the gene 
expression levels under Condition 1 under-express 
more so than under Condition 2.

Proposed FDR estimation method
We propose estimating the FDR assuming a K-
component mixed normal distribution on t-type 
score zi, i = 1, ..., g. The probability density 
function of K-component mixed normal distribu-
tion is
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where fk (z; Δk, Vk) denotes the density function of 
a normal distribution Normal (Δk, Vk) with mean 
Δk, and variance Vk, and mixed proportion pk. 
θ represents all unknown parameters {pk, Δk, Vk : 
k = 1, ..., K} in a K-component mixed normal 
model. To estimate the all unknown parame-
ters, given z1, …, zg, the following log-likelihood 
function is maximized.

 
log ( ; ) log ( ; )

1
L z f z

i

g

i
θ θ=

=
∑

 
(6)

To obtain the maximum likelihood estimate θ̂, 
the Newton-Raphson method is used. The 
one-sided FDR for each cut-off value (c1, c2) is 
estimated using the parameter estimates θ̂. When 
PTP1 and PTP2 denote the proportion of total identi-
fi ed positive genes for each cut-off value (c1, c2) 
respectively, PTP1 and PTP2 can be written as
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respectively.
Let PFP1 and PFP2 denote the proportion of false-

positive genes for each cut-off value (c1, c2) respec-
tively, PFP1 and PFP2 can be written as
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Note that f0(z; Δ0, V0) denotes the normal dis-
tribution with the smallest absolute mean among 
f1(z; Δ1, V1), …, fK(z; ΔK, VK), Δ0 = min (|Δ1|, …, 
|ΔK|). When FDRp(c1) and FDRp(c2) denote the 
one-sided FDR estimator for each cut-off value 
(c1, c2) respectively, FDRp(c1) and FDRp(c2) can 
be written as
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respectively. 
We can determine the cut-off value for the tar-

get one-sided FDR by changing c1 and c2 sequen-
tially using Formula (11) and Formula (12).
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Simulation study to examine 
the performance of the proposed 
method and SAM
In usual microarray experiments, we evaluate the 
gene expression levels of thousands of genes simul-
taneously under various experimental conditions. 
Specifi cally, target FDR for determining the cut-off 
value, the sample-size, and the proportion of 
differentially expressed genes are varied depending 
on the experimental conditions. We therefore, exam-
ined the bias and variance of estimated FDR in both 
the proposed method and SAM under various 
experimental conditions through a simulation study. 
Although we conducted simulation experiments 
using a three-component model with over-expressed 
genes and under-expressed genes as well as a two-
component model, this paper discusses the result 
obtained using the two-component model because 
the results of them were similar.

As the framework of simulation, we set the fol-
lowing simulation conditions.

Simulation condition 1
The simulation study was designed to have g (i = 
1, …, g) genes in total, with s differentially 
expressed and g-s non-differentially expressed. 
Each condition had an equal sample-size N (N = 
m = n). We generated, for j = 1, …, N,

Xij ∼ Normal (μi, 0.52), i = 1, …, s,

Xij ∼ Normal (0.0, 0.52), i = s + 1, …, g,

and
Yij ∼ Normal (0.0, 0.52), i = 1, …, g,

respectively.
Since each population mean of differentially 

expressed genes was different respectively, we 
assumed a random effect model, that is, μi ∼ 
Normal (1.0, 0.12), i = 1, …, s.

Simulation condition 2
The total number of replication of permutation (B) 
was 400 times in SAM.

Simulation condition 3
The proposed method assumes a two-component 
mixed normal distribution on the t-type score, 
estimating the parameters (θ̂) by the Newton-
Raphson method.

The procedure for conducting the simulation 
study was as follows:

Step 1. Generate Xij and Yij (i = 1, …, g, j = 
1, …, N) according to Simulation Condition 1, 
calculating the t-type score (zi) of g genes includ-
ing the s differentially expressed genes and g-s 
non-differentially expressed genes.

Step 2. Determine a cut-off value (c1) for target 
FDR (tFDR) by changing the cut-off value 
sequentially.

Step 3. In SAM, calculate the t-type score (zi
b, 

i = 1, …, g, b = 1, …, 400) using 400 permutated 
data according to Simulation Condition 2. In the 
proposed method, estimate the parameters (θ) of 
two-component mixed normal distribution accord-
ing to Simulation Condition 3.

Step 4. Estimate the FDR using Formula (3) in 
SAM and Formula (11) in the proposed method 
for a cut-off value (c1).

Step 5. Repeat Steps 1 – 4 1,000 times, calculating 
the average of the bias of the estimated FDR and the 
variance of the estimated FDR in both methods.

The three situations of the simulation study were 
as follows:

Simulation situation 1
Each value is set as g = 3,000, s = 150, and N = 20, 
calculating the bias and variance of the estimated 
FDR in both methods when target FDR is set as 
tFDR = 0.01, 0.05, 0.1, 0.2, and 0.5 respectively.

Simulation situation 2
Each value is set as tFDR = 0.1, g = 3,000, and s = 
150, calculating the bias and variance of the esti-
mated FDR in both methods when sample-size is 
set as N = 5, 10, 20, 40, and 80 respectively.

Simulation situation 3
Each value was set as tFDR = 0.1, g = 3,000, and 
N = 20, calculating the bias and variance of the 
estimated FDR in both methods when the number 
of differentially expressed genes of the total genes 
is set as s = 30, 75, 150, 300, and 600 respectively.

Results

Results of simulation study
The bias and variance of the estimated FDR by 
both methods under each simulation situation are 
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shown in Table 1, Table 2, and Table 3 respectively.  
Table 1 suggests that the bias and variance increase 
as target FDR becomes high in SAM, whereas the 
bias and variance were almost constant regardless 
of the target FDR in the proposed method. Table 2 
suggests that the bias increases as the sample-size 
becomes large in SAM, whereas the bias decreased 
in the proposed method. In both methods, the 
variance was almost constant regardless of the 
sample-size. Table 3 suggests that the absolute bias 
increases as the number of the differentially 
expressed genes becomes large in SAM, whereas 
the bias decreases in the proposed method. In both 
methods, the variance decreases as the number of 
differentially expressed genes becomes large. 
Additionally, when tFDR = 0.5 or s = 600 in SAM 
and N = 5 or 10 in the proposed method, the abso-
lute bias is larger than 0.01. The variance is smaller 
than that of SAM under all situations in the pro-
posed method, except for N = 5.

Application to actual data
We applied the proposed method and SAM to actual 
data comprised of the expression levels of 12,625 
genes of 10 responders and 14 non-responders to 
docetaxel for breast cancer (Accession No: 
GDS360) [20]. This actual data was measured and 
analyzed in order to identify the correlated genes 
with the docetaxel response for predicting anti-tumor 

activity of individual patients [7]. Although 92 
correlated genes with the docetaxel response were 
previously identifi ed using a two-sample t-test 
(signifi cance level 0.001), it was expected that there 
would be many false-negative genes among the 
genes that were not identifi ed because a very strict 
signifi cance level was used. We identifi ed the cor-
related genes with docetaxel response based on the 
FDR using the proposed method and SAM.

In the proposed method, we assumed fi ve mixed 
normal distributions on the t-type score with K = 
2, …, 5, comparing their fi tness by using Akaike 
Information Criterion (AIC) [1]. AIC is the most 
well-known criterion for determining the number 
of components in the model. As a result, we 
selected a two-component mixed normal distribu-
tion from the viewpoint of simplicity of interpreta-
tion, although AIC of the two-component model 
is almost equal to that of a three-component model. 
The density function of the two-component mixed 
normal distribution is f(z) = 0.319 f1(z; 0.659, 
0.476) + 0.681 f0(z; − 0.057, 0.251). Figure 1 shows 
a histogram of the t-type score of 12,625 genes and 
the density function of a two-component mixed 
normal distribution. As shown in Figure1, the two-
component mixed normal distribution fi ts the t-type 
score well. We also calculated the order statistics 
of zis from raw data, and the expected order statis-
tics of zi

bs from 1,000 permutated data. Figure 2 
shows the scatter plot of the ordered t-type score 
versus the expected ordered t-type score in SAM. 
As shown in Figure 2, it is indicated that there are 
many differentially expressed genes.

Discussion
While numerous research has been undertaken 
related to the bias of the estimated FDR by SAM 
[14, 22, 23, 36], little is known about the variance 
of the estimated FDR by SAM. Jung and Jang 
(2006) [14] noted that SAM can accurately esti-
mate FDR when the target FDR is smaller than 0.1, 
which is an appropriate value in usual microarray 
data analysis. Pan (2002, 2003) [22, 23] and Xie 
et al. (2005) [36] indicated the permutation-based 
methods for FDR estimation caused overestimation 
of FDR. In this paper, we examined both bias and 
variance of the estimated FDR by SAM under 
various experimental conditions through the simu-
lation study in order to clarify the features of SAM. 
As a result of the simulation study, we uncovered 
some problems related to the SAM method. 

Table 2. Results of simulation situation 2.

Sample- Proposed method SAM 
size (N) Bias Variance Bias Variance
 5 −0.0308 0.0361 0.0005 0.0340
10 −0.0122 0.0257 0.0013 0.0259
20 −0.0045 0.0214 0.0027 0.0247
40 −0.0034 0.0198 0.0042 0.0260
80 −0.0032 0.0205 0.0085 0.0258

Table 1. Results of simulation situation 1.

Target  Proposed method SAM
FDR Bias Variance Bias Variance
(tFDR)

0.01 −0.0012 0.0057 0.0005 0.0071
0.05 −0.0044 0.0163 0.0019 0.0184
0.10 −0.0045 0.0214 0.0027 0.0247
0.20 −0.0055 0.0239 0.0035 0.0321
0.50 −0.0035 0.0154 0.0142 0.0397
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Estimating the distribution of non-differentially 
expressed genes using permutated data may not 
lead to precise estimation of FDR. Such a 
distribution based on the permutation is more 
dispersed than the true distribution of non-
differentially expressed genes, resulting in over-
estimation of the number of false-positive genes. 
In particular, this disadvantage was infl uenced by 
the target FDR and the sample-size. In contrast, 
the proposed method estimates directly the distri-
bution of non-differentially expressed genes 
assuming the mixed normal distribution on the 

t-type score. Although the estimated FDR by the 
proposed method was underestimated, the degree 
of bias of the estimated FDR in both the proposed 
method and SAM were almost same and the vari-
ance of the estimated FDR by the proposed method 
was smaller than that of SAM under all simulation 
situations, except for N = 5. The distribution based 
on the mixed normal distribution might be not more 
dispersed than the distribution based on the per-
mutation. From the viewpoint of over-dispersion, 
therefore, the proposed method might precisely 
estimate the FDR than SAM.
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Figure 1. Histogram of the t-type score and the density function of a two-component mixed normal distribution. The solid line is f, the dotted 
line is f0, and the broken line is f1 in a two-component mixed normal distribution.

Table 3. Results of simulation situation 3

Number of differentially Proposed method SAM
expressed genes (s) Bias Variance Bias Variance
30 −0.0094 0.0456 −0.0004 0.0549
75 −0.0072 0.0290   0.0025 0.0346
150 −0.0045 0.0214   0.0027 0.0247
300 −0.0032 0.0138 −0.0025 0.0176
600 −0.0022 0.0087 −0.0102 0.0129
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Figure 2. Scatter plot of the ordered t-type score versus the expected ordered t-type score in SAM.

In the simulation study, FDR tended to be 
underestimated in the proposed method and over-
estimated in SAM. Although the underestimation 
was not so large, this may cause the increase of 
false-positive genes. For instance, when 100 genes 
are identifi ed as differentially expressed genes with 
the target FDR 0.1, truly false-positive genes are 
only 10 with the unbiased FDR, whereas more than 
10 false-positive genes may be included in 100 by 
the underestimation of the FDR. To the contrary, 
the overestimation may cause the decrease of true-
positive genes.

Our simulation study also made clear the dif-
ferent strength of the proposed method and SAM. 
When the sample-size was as small as 10, the 
absolute bias in SAM was smaller than that in the 
proposed method, while the variance was almost 
the same between them. This strength of SAM may 
be attractive because microarray experiments are 
often conducted with small sample-sizes. When 
the number of differentially expressed genes was 
as small as 10% of the total genes, FDR were more 
accurately estimated in SAM than the proposed 
method. An additional simulation experiment with 
no differentially expressed genes, i.e. s = 0, 
revealed that the bias and variance of estimated 
FDR in SAM were slightly smaller than that in the 
proposed method. When the sample-size or the 

number of differentially expressed genes was large, 
however, both the bias and variance in the proposed 
method were smaller than those in SAM, probably 
because SAM could not accurately estimate the 
distribution of non-differentially expressed genes. 
The proposed method has an advantage over SAM 
when the sample-size is greater than 20 or the 
number of differentially expressed genes is greater 
than 10% of the total genes. Thus, the proposed 
method outperforms SAM when the sample-size 
of each group is more than 20 or the proportion of 
differentially expressed genes is more than 10% 
irrespective of the target FDR. Otherwise, SAM 
outperforms the proposed method.

There would be many over-expressed genes in 
responder group relative to non-responder group 
based on both Figures 1–2 in the actual data, 
whereas under-expressed genes would be few. 
Table 4 shows the estimated FDR and the number 
of identifi ed genes in both methods when the cut-
off value is changed from 0.1 to 2.0 by 0.1. The 
number of identifi ed genes was equal between the 
two methods, because the same t-type score and 
cut-off value was used. According to the result of 
simulation study, FDR by the proposed method 
may be slightly underestimated since the sample-
size of the responder group and non-responder 
group were 10 and 14, respectively, in the actual 
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data. However, the degree of underestimation 
would not be so large that its infl uence might be 
cancelled by taking a slightly smaller value of 
estimated FDR than the target FDR. For instance, 
the estimated FDR by the proposed method is 
0.007, which corresponded to the cut-off value 1.7 
in Table 4, may be appropriate for the target FDR 
0.01. If so, 280 genes were identified as the 
differentially expressed genes correlated with the 
docetaxel response.
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