Skip to main content
. 2007 Jul 19;3:295–305.

Table 1.

Cross-validation forward.

Training sample size (%) TP TN FP FN Sensitivity Specificity Accuracy
Binary logistic regression 0.4 82371 11148 2852 5629 0.9360 0.7963 0.9169
0.6 53525 7547 1453 4475 0.9228 0.8386 0.9115
0.8 26657 4289 711 2343 0.9192 0.8578 0.9102
SVM 0.4 83580 9666 4334 4420 0.9498 0.6904 0.9142
0.6 55035 6761 2239 2965 0.9489 0.7512 0.9223
0.8 27677 3868 1132 1323 0.9544 0.7736 0.9278
LDA 0.4 82465 11603 2397 5535 0.9371 0.8288 0.9222
0.6 54676 7510 1490 3324 0.9427 0.8344 0.9281
0.8 27483 4159 841 1517 0.9477 0.8318 0.9306
QDA 0.4 82687 6647 7353 5313 0.9396 0.4748 0.8758
0.6 52177 6695 2305 5823 0.8996 0.7439 0.8787
0.8 25860 4064 936 3140 0.8917 0.8128 0.8801
Neural Networks 0.4 86408 10132 4830 1592 0.9819 0.6772 0.9376
0.6 56932 6819 2181 1068 0.9816 0.7577 0.9515
0.8 28535 3828 1172 465 0.9840 0.7656 0.9519
Classification Trees 0.4 80945 3508 10492 7055 0.9198 0.2506 0.8280
0.6 53202 2554 6446 4798 0.9173 0.2838 0.8322
0.8 26804 1354 3646 2196 0.9243 0.2708 0.8282
Boosting Trees 0.4 84585 4921 9153 3415 0.9612 0.3497 0.8769
0.6 55461 3278 5918 2539 0.9562 0.3565 0.8741
0.8 27708 1668 4580 1292 0.9554 0.2670 0.8334