Table 1.
Training sample size (%) | TP | TN | FP | FN | Sensitivity | Specificity | Accuracy | |
---|---|---|---|---|---|---|---|---|
Binary logistic regression | 0.4 | 82371 | 11148 | 2852 | 5629 | 0.9360 | 0.7963 | 0.9169 |
0.6 | 53525 | 7547 | 1453 | 4475 | 0.9228 | 0.8386 | 0.9115 | |
0.8 | 26657 | 4289 | 711 | 2343 | 0.9192 | 0.8578 | 0.9102 | |
SVM | 0.4 | 83580 | 9666 | 4334 | 4420 | 0.9498 | 0.6904 | 0.9142 |
0.6 | 55035 | 6761 | 2239 | 2965 | 0.9489 | 0.7512 | 0.9223 | |
0.8 | 27677 | 3868 | 1132 | 1323 | 0.9544 | 0.7736 | 0.9278 | |
LDA | 0.4 | 82465 | 11603 | 2397 | 5535 | 0.9371 | 0.8288 | 0.9222 |
0.6 | 54676 | 7510 | 1490 | 3324 | 0.9427 | 0.8344 | 0.9281 | |
0.8 | 27483 | 4159 | 841 | 1517 | 0.9477 | 0.8318 | 0.9306 | |
QDA | 0.4 | 82687 | 6647 | 7353 | 5313 | 0.9396 | 0.4748 | 0.8758 |
0.6 | 52177 | 6695 | 2305 | 5823 | 0.8996 | 0.7439 | 0.8787 | |
0.8 | 25860 | 4064 | 936 | 3140 | 0.8917 | 0.8128 | 0.8801 | |
Neural Networks | 0.4 | 86408 | 10132 | 4830 | 1592 | 0.9819 | 0.6772 | 0.9376 |
0.6 | 56932 | 6819 | 2181 | 1068 | 0.9816 | 0.7577 | 0.9515 | |
0.8 | 28535 | 3828 | 1172 | 465 | 0.9840 | 0.7656 | 0.9519 | |
Classification Trees | 0.4 | 80945 | 3508 | 10492 | 7055 | 0.9198 | 0.2506 | 0.8280 |
0.6 | 53202 | 2554 | 6446 | 4798 | 0.9173 | 0.2838 | 0.8322 | |
0.8 | 26804 | 1354 | 3646 | 2196 | 0.9243 | 0.2708 | 0.8282 | |
Boosting Trees | 0.4 | 84585 | 4921 | 9153 | 3415 | 0.9612 | 0.3497 | 0.8769 |
0.6 | 55461 | 3278 | 5918 | 2539 | 0.9562 | 0.3565 | 0.8741 | |
0.8 | 27708 | 1668 | 4580 | 1292 | 0.9554 | 0.2670 | 0.8334 |