Table 2.
Training sample size (%) | TP | TN | FP | FN | Sensitivity | Specificity | Accuracy | |
---|---|---|---|---|---|---|---|---|
Binary logistic regression | 0.4 | 78024 | 9594 | 4406 | 9976 | 0.8866 | 0.6853 | 0.8590 |
0.6 | 50115 | 6878 | 2122 | 7885 | 0.8641 | 0.7642 | 0.8506 | |
0.8 | 24871 | 3942 | 1058 | 4129 | 0.8576 | 0.7884 | 0.8474 | |
SVM | 0.4 | 81876 | 7211 | 6789 | 6124 | 0.9304 | 0.5151 | 0.8734 |
0.6 | 53604 | 5122 | 3878 | 4396 | 0.9242 | 0.5691 | 0.8765 | |
0.8 | 26802 | 2941 | 2059 | 2198 | 0.9242 | 0.5882 | 0.8748 | |
LDA | 0.4 | 79379 | 10253 | 3747 | 8621 | 0.9020 | 0.7324 | 0.8787 |
0.6 | 52929 | 6682 | 2318 | 5071 | 0.9126 | 0.7424 | 0.8897 | |
0.8 | 26691 | 3614 | 1386 | 2309 | 0.9204 | 0.7228 | 0.8913 | |
QDA | 0.4 | 83320 | 3909 | 10091 | 4680 | 0.9468 | 0.2792 | 0.8552 |
0.6 | 52004 | 5052 | 3948 | 5996 | 0.8966 | 0.5613 | 0.8516 | |
0.8 | 25690 | 3219 | 1781 | 3310 | 0.8859 | 0.6438 | 0.8503 | |
Neural Networks | 0.4 | 85758 | 7750 | 6694 | 2242 | 0.9745 | 0.5366 | 0.9128 |
0.6 | 56802 | 5317 | 3683 | 1198 | 0.9793 | 0.5908 | 0.9271 | |
0.8 | 28527 | 2891 | 2541 | 473 | 0.9837 | 0.5322 | 0.9125 | |
Classification Trees | 0.4 | 81399 | 3459 | 10541 | 6601 | 0.9250 | 0.2471 | 0.8319 |
0.6 | 53351 | 2592 | 6408 | 4649 | 0.9198 | 0.2880 | 0.8350 | |
0.8 | 26680 | 1388 | 3612 | 2320 | 0.9200 | 0.2776 | 0.8255 | |
Boosting Trees | 0.4 | 80072 | 3654 | 7799 | 1401 | 0.9828 | 0.3190 | 0.9010 |
0.6 | 52540 | 2480 | 5605 | 849 | 0.9841 | 0.3067 | 0.8950 | |
0.8 | 26102 | 1408 | 5322 | 455 | 0.9829 | 0.2092 | 0.8264 |