Skip to main content
. 2007 Jul 19;3:295–305.

Table 2.

Cross-validation stepwise.

Training sample size (%) TP TN FP FN Sensitivity Specificity Accuracy
Binary logistic regression 0.4 78024 9594 4406 9976 0.8866 0.6853 0.8590
0.6 50115 6878 2122 7885 0.8641 0.7642 0.8506
0.8 24871 3942 1058 4129 0.8576 0.7884 0.8474
SVM 0.4 81876 7211 6789 6124 0.9304 0.5151 0.8734
0.6 53604 5122 3878 4396 0.9242 0.5691 0.8765
0.8 26802 2941 2059 2198 0.9242 0.5882 0.8748
LDA 0.4 79379 10253 3747 8621 0.9020 0.7324 0.8787
0.6 52929 6682 2318 5071 0.9126 0.7424 0.8897
0.8 26691 3614 1386 2309 0.9204 0.7228 0.8913
QDA 0.4 83320 3909 10091 4680 0.9468 0.2792 0.8552
0.6 52004 5052 3948 5996 0.8966 0.5613 0.8516
0.8 25690 3219 1781 3310 0.8859 0.6438 0.8503
Neural Networks 0.4 85758 7750 6694 2242 0.9745 0.5366 0.9128
0.6 56802 5317 3683 1198 0.9793 0.5908 0.9271
0.8 28527 2891 2541 473 0.9837 0.5322 0.9125
Classification Trees 0.4 81399 3459 10541 6601 0.9250 0.2471 0.8319
0.6 53351 2592 6408 4649 0.9198 0.2880 0.8350
0.8 26680 1388 3612 2320 0.9200 0.2776 0.8255
Boosting Trees 0.4 80072 3654 7799 1401 0.9828 0.3190 0.9010
0.6 52540 2480 5605 849 0.9841 0.3067 0.8950
0.8 26102 1408 5322 455 0.9829 0.2092 0.8264