Table 3.
Training sample size (%) | TP | TN | FP | FN | Sensitivity | Specificity | Accuracy | |
---|---|---|---|---|---|---|---|---|
Binary logistic regression | 0.4 | 80169 | 10970 | 3030 | 7831 | 0.9110 | 0.7836 | 0.8935 |
0.6 | 52459 | 7542 | 1458 | 5541 | 0.9045 | 0.8380 | 0.8955 | |
0.8 | 26258 | 4256 | 744 | 2742 | 0.9054 | 0.8512 | 0.8975 | |
SVM | 0.4 | 81890 | 9144 | 4856 | 6110 | 0.9306 | 0.6531 | 0.8925 |
0.6 | 54293 | 6543 | 2457 | 3707 | 0.9361 | 0.7270 | 0.9080 | |
0.8 | 27333 | 3769 | 1231 | 1667 | 0.9425 | 0.7538 | 0.9148 | |
LDA | 0.4 | 81219 | 11258 | 2742 | 6781 | 0.9229 | 0.8041 | 0.9066 |
0.6 | 54271 | 7380 | 1620 | 3729 | 0.9357 | 0.8200 | 0.9202 | |
0.8 | 27320 | 4021 | 979 | 1680 | 0.9421 | 0.8042 | 0.9218 | |
QDA | 0.4 | 78654 | 8663 | 5337 | 9346 | 0.8938 | 0.6188 | 0.8560 |
0.6 | 50593 | 6991 | 2009 | 7407 | 0.8723 | 0.7768 | 0.8595 | |
0.8 | 25080 | 4048 | 952 | 3920 | 0.8648 | 0.8096 | 0.8567 | |
Neura Networks | 0.4 | 86002 | 9173 | 5197 | 1998 | 0.9773 | 0.6383 | 0.9297 |
0.6 | 56730 | 6180 | 2820 | 1270 | 0.9781 | 0.6867 | 0.9390 | |
0.8 | 28511 | 3341 | 1659 | 489 | 0.9831 | 0.6682 | 0.9368 | |
Classification Trees | 0.4 | 80836 | 3530 | 10470 | 7164 | 0.9186 | 0.2521 | 0.8271 |
0.6 | 53349 | 2623 | 6377 | 4651 | 0.9198 | 0.2914 | 0.8354 | |
0.8 | 26795 | 1439 | 3561 | 2205 | 0.9240 | 0.2878 | 0.8304 | |
Boosting Trees | 0.4 | 79569 | 2546 | 9603 | 1164 | 0.9856 | 0.2096 | 0.8841 |
0.6 | 52099 | 1478 | 8392 | 852 | 0.9839 | 0.1497 | 0.8529 | |
0.8 | 25924 | 708 | 9136 | 440 | 0.9833 | 0.0719 | 0.7355 |