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Abstract: An algorithm to reduce multi-sample array CGH data from thousands of clones to tens or hundreds of clone 
regions is introduced. This reduction of the data is performed such that little information is lost, which is possible due to 
the high dependencies between neighboring clones. The algorithm is explained using a small example. The potential beneficial 
effects of the algorithm for downstream analysis are illustrated by re-analysis of previously published colorectal cancer 
data. Using multiple testing corrections suitable for these data, we provide statistical evidence for genomic differences on 
several clone regions between MSI+ and CIN+ tumors. The algorithm, named CGHregions, is available as an easy-to-use 
script in R.
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Introduction
Array Comparative Genomic Hybridization (array CGH) is an increasingly popular high-resolution 
technique to discover at which chromosomal locations the DNA is aberrated. We refer to such a location 
by the array element covering it, a ‘clone,’ which technically could also be a synthetic oligonucleotide.

An aberration may be a ‘loss’ of at least one chromosomal copy or a ‘gain’ of at least one copy. In 
some cases, one distinguishes one extra state: ‘amplification’ which is a multiple copy number gain. 
Non-aberrated clones are referred to as ‘normal.’ Among others, cancer is an important application area 
of this technique. It has been successfully applied to discover genomic disorders in tumors. Also, due 
to the stability of the DNA molecule (as opposed to mRNA) it has potential to be used in a practical 
diagnostic context (Pinkel and Albertson, 2005). Integration of these data with mRNA gene expression 
data is currently actively studied (van Wieringen et al. 2006a), since these two data types measure the 
activity of genes at different levels: genome and transcriptome.

As with gene expression, array CGH data requires pre-processing and normalisation. The nature of 
the data is such that sudden state changes, which we refer to as ‘transitions’, occur along the DNA. 
Moreover, the measurements, which are log2-ratios with respect to a normal ‘two-copy everywhere’ 
sample, reflect hidden underlying discrete states (loss, normal, gain). Therefore, before starting with 
downstream analysis, one usually divides the measurements into ‘segments’ with similar log2-ratios 
and discretizes the log2-ratios back to these three states. These two processes are termed segmentation 
and calling. Many have proposed methods to automate this process. We refer to Willenbrock and 
Fridlyand (2005) and Lai et al. (2005) for comparisons of several methods. After calling, the data, which 
is ordered along the DNA, may be represented as sequences containing –1, 0, 1, which code for loss, 
normal and gain.

For further downstream analysis (testing, clustering, classification) the starting point would be a 
large matrix of, say, C rows (clones) and N columns (samples) containing these codes. Our goal is to 
reduce the size of this matrix significantly by determining sequences of clones which for every sample 
are (almost) constant within the sample. Hence, it is a multi-sample approach and sequences are shared 
by all samples. Naturally, transitions occur at different locations for different samples, but we observed 
that, in general, many samples representing the same type of tissue have a large overlap in sequences 
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of clones that do not change. We denote such a 
sequence of clones as a region. Note that we do 
not require the clones in a region to be constant 
across samples. We show that this dimension 
reduction is feasible with very limited and 
controlled information loss.

The benefits of such a dimension reduction are 
several. Obviously, decreasing C with a factor of 
10 to 250 aids in reducing computing times for 
downstream analyses, which may be useful espe-
cially when N is large. More importantly, it eases 
interpretation for biologists who may study the 
limited number of DNA-regions rather than a huge 
collection of clones. Moreover, it has a positive 
impact on the effectiveness of downstream anal-
ysis. The latter is illustrated for colorectal cancer 
data (Douglas et al. 2004) in a two-sample testing 
situation. We show that the multiple testing 
problem is reduced by combining our region 
construction algorithm with a dedicated False 
Discovery Rate (FDR) correction (Gilbert, 2005). 
While the clone-wise testing did not result in any 
statistically significant differences after FDR 
correction, several clone regions were found to be 
significant. This enabled us to provide statistical 
backup for findings previously published by 
Douglas et al. (2004).

Methods

Construction of regions
The input for our method is a C × N matrix A of 
which entry ais = r represents the level for clone i 
and sample s, where r = −1, 0, 1 (loss, normal or 
gain). A row of this matrix is called the (clone) 
aberration signature, while a column is the (sample) 
profile. A region is simply a collection of subse-
quent rows of A. At each stage of the algorithm a 
region is identified by an index k which denotes 
the order in which regions appear in A. Then, a 
region k is a sequence of lk clones represented by 
Ak = ( , ..., ), ,A Ak k lk1 , where Ak,1 denotes the ith data 
row for region k.

The regions are constructed by restricting the 
maximum distance between any two clones in a 
region by threshold c. First, we assume c to be 
fixed; determining its value is discussed later. A 
final region k is a sequence of clones on the chro-
mosomes that satisfies the following condition:

 d(Ak,i, Ak, j ) ≤ c, for all i, j, (1)

where d( ) is the L1-distance function. For example, 
d ((0, 0, 1, −1, 0), (0, 1, 1, 1, −1)) = |0| + |−1| + |0| 
+ |−2| + |1| = 4. Hence, it is basically counting how 
often two signatures disagree, where a loss-gain 
disagreement is double-counted. We require that 
this condition is always satisfied. It does not 
uniquely define the region boundaries. We apply 
three breakdown rules to define the boundaries. 
First, recognizing the physical boundaries between 
chromosomes, a break is always inserted before the 
first clone of a chromosome. This introduces a 
limited number of preliminary regions k = 1, ... , K 
each denoted by A'k = ( ,..., ), ,′ ′A Ak k lk1 , where lk is the 
number of clones in region k. Second, the nature of 
array CGH data is such that signature changes are 
likely to occur suddenly at certain positions. There-
fore, a break is inserted before position A'k, i if

 d(A'k, i–1, A'k, i) > c. (2)

After application of (2) the majority of regions 
usually satisfies (1). However, some regions may 
not satisfy (2) because of more gradual changes. 
In order to satisfy (1) we insert a break before or 
after the clone for which the ‘gradient’ is largest. 
For this discrete setting, we define the gradient for 
clone i in region k as
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where wij = 0 if i = j and wij = 1/|j – i|, otherwise. 
To decide whether to insert the break before or 
after the clone with maximum gradient, we 
compute the left- and right-gradient, gl and gr with 
similar definitions as g. However, only clones to 
the left or right contribute to gl and gr, respectively. 
Then, we insert the break before the ith clone if 
g A g Al i r i( ) ( )′ ≥ ′  and after, otherwise.

The gradient rule is iteratively applied until 
condition (1) is satisfied. The entire algorithm is 
symmetric, which means that the same regions are 
formed when starting the break insertion from the 
left or the right.

Robustification of the algorithm
The algorithm may pick up so-called mono-
regions, which are regions consisting of one clone 
only. While in principle such a region could be 
real, it is very likely that the clone is wrongly 
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positioned. This happens regularly due to mis-
mapping of the genomic sequence to the position 
of the clone on the DNA. Therefore, such a clone 
may appear to be an outlier between its ‘neighbors’. 
We prefer to have an algorithm which is robust 
against such mis-mapping and have therefore 
included the (recommended) option to delete such 
mono-regions.

When mono-regions are deleted, the algorithm 
needs an extra step to decide whether adjacent 
regions need to be concatenated. If (2) is satisfied 
for the two clones adjacent to the deleted mono-
region, a break is inserted and the rest of the two 
adjacent regions remains unchanged. If not, the 
two adjacent regions are connected and condition 
(1) is checked. If it is satisfied, we keep the new 
region, otherwise the gradient rule is iteratively 
applied to break the region in pieces until (1) is 
satisfied.

Representative signature
Once the regions are defined, we have to choose 
a representative signature, after which the data 
for a region will collapse into the boundaries of 
the region and one signature only. We propose 
the medoid of all signatures in the region as the 
representative signature, which is that signature 
with least average distance to the other signa-
tures. Conventional computation of the medoid 
would require quadratic time, because for each 
clone the distances to all the other clones need 

to be computed. We developed a more effi cient 
computation of this medoid, which we discuss 
later.

Example
We illustrate the algorithm for a toy example with 
10 samples and 18 clones for 2 chromosomes. The 
data are displayed in Table 1, where –1, 0, 1 indi-
cate loss, normal and gain, respectively.

We illustrate the algorithm for c = 2. First, a 
break is inserted after clone 3, since clone 4 lies 
on the next chromosome. Then, we apply (2) and 
breaks are inserted before clones 1, 7, 8, 10 and 
17. Then we have six regions: 1–3, 4–6, 7, 8–9, 
10–16 and 17–18. These all satisfy basic condi-
tion (1), except for the fifth region, because the 
distance between its first and 5th clone exceeds 
c = 2: d ( , ), ,′ ′A A5 1 5 5  = 3. The maximum gradient 
as computed from (3) is attained at its fourth 
clone (clone 13): g A( ),′5 4  = (2/3 + 2/2 + 2/1 + 
1/1 + 1/2 + 1/3)/(1/3 + 1/2 + 1 +1 + 1/2 + 1/3) 
= (11/2)/(11/3) = 3/2. Its left-gradient is larger 
than its right-gradient, so a break is inserted before 
this clone. The two regions created satisfy (1). 
Finally, we delete the mono-clone, clone 7 and 
concatenate regions 4–6 and 8–9 to form one 
region, which satisfies (1). Then we have the 
following regions: 1–3, (4, 5, 6, 8, 9), 10–12, 
13–16 and 17–18. We compute the medoids for 
these regions and reduce the data to those 
displayed in Table 2.

Table 1. Signatures and distances (d) to previous clone for 18 clones.

Chr. Clone S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 d
1 1 1 0 0 1 1 0 1 0 1 1 10
1 2 1 0 0 1 1 0 1 0 1 1 0
1 3 1 0 0 1 1 0 1 0 1 1 0
2 4 –1 0 0 –1 –1 –1 –1 0 1 0 10
2 5 –1 0 0 –1 –1 –1 –1 0 1 0 0
2 6 –1 0 0 –1 –1 –1 –1 0 1 0 0
2 7 1 1 0 1 1 1 0 1 1 1 12
2 8 –1 0 0 –1 –1 –1 –1 0 1 0 12
2 9 –1 0 0 –1 –1 –1 –1 0 1 0 0
2 10 –1 0 0 0 0 –1 –1 –1 1 2 4
2 11 –1 0 0 0 0 –1 –1 –1 1 1 0
2 12 –1 0 0 0 0 –1 –1 –1 1 1 0
2 13 0 0 0 0 0 0 –1 –1 1 1 2
2 14 0 0 0 0 0 0 –1 –1 0 1 1
2 15 0 0 0 0 0 0 –1 –1 0 1 0
2 16 0 0 0 0 0 0 –1 –1 0 1 0
2 17 1 0 1 1 1 0 1 0 0 0 8
2 18 1 0 1 1 1 0 1 0 0 0 0
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Choice of c
For imperfect data, wrong calls of aberrations may 
cause nonsense and random transitions in each 
sample. Even for perfect data one may argue that 
transitions that occur locally for only a small 
number of individuals may not be relevant. 
However, if such transitions are of a more global 
(across genome) character consistently for a small 
number of individuals, one may want to pick these 
up. The automatic choice of threshold c is such that 
only very little information is lost when repre-
senting the regions by their medoid signatures. In 
short, we set threshold c to cmax, with

 cmax = arg max{c ∈  : a(c) ≤ T}, (4)

where a(c) is a measure of prediction error when 
one replaces the individual clone data by the 
medoid signature of the region it belongs to. 
Roughly, T is the maximally sustained proportion 
of mis-predictions. Denoting the medoid signature 
of region k by Ak

m
 , we define a(c) as
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where K is the set of clone regions with relatively 
many aberrations in Ak

m (default: top 25%) and L 
is the total number of clones in these ‘active’ 
regions. We restrict the computations to active 
regions, since array CGH data may contain large 
portions of normals which are less interesting to 
the biologist. Hence, it is preferred to have little 
information loss in those ‘active’ regions. Note that 
the exclusion of mono-clones does not influence 
a(c), because d(Ak, i, Ak

m ) = 0 for such clones. 
Moreover, for c = 0 (forcing a break at every 
change), we have no information loss, a(0) = 0.

Using (4) we quantify how much information 
is maintained when summarizing the clones and 

their signatures by the region boundaries and their 
representative signatures. Formulating (4) in terms 
of proportions rather than absolute numbers avoids 
sample size bias: the number of regions depends 
on the number of transitions that are persistent over 
a reasonably large proportion of  the samples. If 
there exists a small subset of samples (say, for 
example, 10%) with many transitions located else-
where than for the 90% majority, a too large c may 
not distinguish regions from adjacent regions when 
their signatures differ only for the 10% minority 
of the samples. Then, those regions would be 
merged. However, by using (4) one avoids this: if 
c is chosen too large, the region boundaries will 
be mostly determined from the 90% majority. 
Therefore, many regions contribute to a (c), because 
the 10% subset has transition locations within those 
regions and (4) will be violated. In general, if the 
tumor sample group is heterogenous (transitions 
occur at different places), cmax is smaller than in the 
case of a homogeneous group and hence more 
regions will be created for sets of samples with 
heterogenous transition location patterns.

In (4), T can be interpreted as the maximal 
information loss that is allowed. Increasing T 
decreases the number of regions. In general, we 
recommend to use T = 0.01, so that very little 
information is lost. However, in case one aims to 
perform statistical tests on small subgroups of 
tumor samples (say at least one group containing 
less than 10 samples), we recommend to use 
T = 0.025 to possibly increase statistical power due 
to less severe multiple testing corrections.

The reduction effect of the algorithm depends 
on the platform (e.g. BAC or oligonucleotide), the 
heterogeneity of the transition locations among the 
tumor samples and the value of T. For BAC array 
data with approximately 4000 clones, we observed 
reduction factors of 10 to 30 using T = 0.01 and 
20 to 50 using T = 0.025. For oligonucleotide data 
with approximately 24000 oligos, those reduction 
factors were 40 to 100 and 60 to 250 for T = 0.01 
and T = 0.025, respectively.

Table 2. Regions created using c = 2 and their medoid signatures.

Chr. Region S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
1 1–3 1 0 0 1 1 0 1 0 1 1
2 (4,5,6,8,9) –1 0 0 –1 –1 –1 –1 0 1 0
2 10–12 –1 0 0 0 0 –1 –1 –1 1 1
2 13–16 0 0 0 0 0 0 –1 –1 0 1
2 17–18 1 0 1 1 1 0 1 0 0 0
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Example, continued
Suppose we accept maximally 1% information 
loss, so we set T = 0.01. We assume that the regions 
displayed in Table 2 are the 25% ‘active’ ones in 
a larger set, hence forming K in (5). From Tables 
1 and 2 we observe that only one clone, clone 13, 
deviates from its representative signature, and it 
does so at one position. Hence, a(2) = (1/10)/17 = 
0.0059, so the inequality in (4) is satisfied for c = 
2. Now, set c = 3. Then, clones 10–12 and 13–16 
form one region, 10–16 and the rest remains 
unchanged with respect to c = 2. Region 10–16 has 
the signature of clone 13 as its medoid. Then, 
a(3) = ((1 + 3 * 2 + 3 *1)/10)/17 = 0.059 > 0.01, 
so the inequality in (4) is violated for c = 3. There-
fore, c = cmax = 2 is chosen.

Computational issues
We increased computational effi ciency of CGHre-
gions in two ways. Firstly, c is tuned to satisfy (4) 
using only a fraction of the clones of the original 
data set. This subset of clones consists of three 
blocks of 400 subsequent clones. The value of cmax 
found for this smaller data set serves as an initial 
value of c on the entire data set. Secondly, we 
implemented a computation of the medoid tailored 
to this discrete data. For each sample, the number 
of level r observations (r = −1, 0, 1) within the 
region under study, say region k, is counted. We 
obtain a N × 3 matrix M of which element msr 
represents the count for sample s and level r. The 
total distance of the clone i signature Ak, i = 
(Ak, i, 1,..., Ak, i, N ) to the rest of the signatures in the 
region is then obtained by multiplying the distance 
between Ak, i, s and r by the count of r in sample j 
(i.e. msr) and summing the results over r = −1, 0, 
1 and over s = 1, ..., N. Then, the medoid for region 
k is that signature i with minimal total (and hence 
also average) distance. This computation is linear 
in the number of clones in region k, while conven-
tional computation of total distances for all clones 
would be quadratic in these number. These compu-
tational adjustments reduced computing time by 
several factors allowing the construction of regions 
within minutes for most data sets.

Implementation
CGHregions is implemented using the statistical 
software environment R (R Development Core 
Team (2006)). The scripts and example data are 

available from the author’s web site: http://www.
few.vu.nl/˜mavdwiel/CGHregions.html. The 
scripts contain instructions for running the algo-
rithm, which requires almost no knowledge of R.

Results: Application to Colorectal 
Cancer Data
We show the positive effect of using regions rather 
than individual clones in a two group testing 
context. Douglas et al. (2004) discuss an array 
CGH data set containing cell line and colorectal 
tumor samples, respectively. Here, we focus on 
partly re-analyzing the tumor data. These consist 
of two groups: 7 microsatellite instable (MSI+) 
and 30 chromosomal instable (CIN+) samples. 
Among many other questions, the authors are 
interested in genomic differences between the two 
groups and the chromosomal locations of these 
differences. When comparing the proportions of 
aberrations between the MSI+ and CIN+ group, 
Douglas et al. (2004) (see p. 4820) report mainly 
about entire chromosomal arms (8p, 17p, 18q) or 
chromosomes (20), although exceptions are made 
for one individual clone and a small region on 18q. 
The authors do not mention statistical measures 
(such as p-values) of the differences reported, 
except for the difference in proportion of gain on 
chromosome 20. This p-value, however, is not 
corrected for multiple testing, which is recom-
mended for microarray studies (Allison et al. 
2006). Multiple testing correction is a real chal-
lenge for these data: the discrete levels and the 
small sample size of the MSI+ group prevent very 
small p-values. Hence, False Discovery Rates 
(FDR) or Family Wise Error Rates (FWER) tend 
to be large for such data. We demonstrate that 
reducing the clones to clone regions aids in solving 
this problem.

The data, available at the supplementary website 
of Douglas et al. (2004), were first filtered (clones 
with less than 30% missings were kept), segmented 
using DNAcopy (Olshen et al. 2004) and then 
segment-wise aberrations were called using a 
Normal mixture model. From the resulting clone 
data set, the clone region data set was produced 
using the above algorithm with T = 0.025. Since 
we have 37 samples, this threshold roughly means 
that one allows on average one clone per 37 to 
deviate from the region-wise signature. The 
number of items was reduced from 3129 autosomal 
clones to 68 clone regions (Figure 1). To both data 
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sets (clone-wise calls and region-wise calls) we 
applied a Wilcoxon two-sample test corrected for 
ties (van de Wiel et al. 2005) to compute exact 
p-values for the difference in levels between the 
two groups. Finally, a modified Benjamini-Hoch-
berg FDR correction was applied to the p-values. 
The modification was proposed by Gilbert (2005) 
to render more effective FDR-control for discrete 
level data.

For the clone data set, the smallest uncorrected 
p-value equals 0.001202 which corresponds to an 
FDR-value of 0.3815. This value is reached for 5 

subsequent clones on chromosome 8. Table 3 
displays the most significant results for the region 
data set. It is obvious that for the single clone data 
one fails to find any significant clone when using 
any reasonable FDR cut-off. This is a consequence 
of the fact that most multiple testing corrections 
are rather conservative when strong positive depen-
dencies are present in the data (Benjamini and 
Yekutieli, 2001). However, the region data are less 
dependent by construction and we observe from 
Table 3 that, despite the small sample size of the 
MSI+ group, we find significant regions when 
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Figure 1. Visualization of 68 regions created by CGHregions for 37 colorectal tumor samples (Douglas et al. 2004). Y-axis: chromosome, 
X-axis: base pair position. A new region is displayed by a slight jump with respect to the previous region. The number of regions per chromo-
some ranges from 1 (several) to 9 (chromosome 8), indicating that the resolution of the results adapts to the heterogeneity of the transition 
locations. Each region is displayed as a bi-colored segment, the lower and upper part of which correspond to the proportions pl and pg of 
samples with a loss (red) or gain (green), respectively. The color coding is displayed as well: ‘1’: pl (pg) < 10%; ‘2’: 10% ≤ pl (pg ) < 30%; ‘3’: 
30% ≤ pl (pg ) < 50%; ‘4’: pl (pg ) ≥ 50%.
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using an FDR cut-off of 0.05. The regions largely 
overlap with those mentioned by Douglas et al. 
(2004), but statistical confidence is now provided. 
An exception is the region on chromosome 13, 
which is not mentioned by the authors. They do 
mention the 17p chromosomal arm, which in our 
analysis corresponds to an uncorrected p-value of 
0.093 and an FDR-value of 0.20.

A positive side-effect of the reduction of the 
number of items to be tested is the saving in 
computing time, because this is approximately 
linear with the number of items. Here, computing 
time decreased from 72 sec. to 1.2 sec. using a PC 
with 1.73 Ghz processor and 1 Gb internal memory; 
for larger group sizes, computing time may reduce 
from a couple of hours to minutes. Also for oligo-
nucleotide data, which contain many more clones, 
the ratio (#clones)/(#regions) is even larger and so 
is the saving in computing time. The major advan-
tage, however, is the far less conservative FDR-
control when reducing the clone data to regions, 
which results in more detection power and thus 
more statistically confident findings.

For a one-group approach, CGHregions may be 
of use to find focal regions that contain (many) 
more aberrations than the neighboring regions. 
Figure 2 shows the aberration frequency plots for 
the regions found using T = 0.01 and T = 0.025. 
While T = 0.01 results in approximately twice as 
many regions as for T = 0.025, no large differences 
are observed. A possible exception is chromosome 
18 where the results for T = 0.01 imply a somewhat 
smaller focal loss-region than for T = 0.025. Note 
that both settings result in small regions at the far 
ends of chromosome 16 which contain more gains 
(∼ 25%) than their neighbors.

The positive effect of using regions rather than 
individual clones was also observed for other data. 

In Smeets et al. (2006), we studied chromosomal 
aberrations in 24 head-and-neck squamous cell 
carcinomas (HNSCC), 12 of which were positive 
for human papillomavirus type 16 (HPV) and 12 
were HPV-negative. We used a preliminary version 
of CGHregions to define regions and performed 
two-group testing for 12 HPV-positive versus 12 
HPV-negative HNSCCs. In that study, at least four 
significant (FDR ≤

 
0.1) regions were determined 

(see Table 2 in Smeets et al. 2006). Repeating the 
analysis on 4699 individual clones revealed one 
clone corresponding to unadjusted p-value equal 
to 0.00037 and FDR = 0.108. While this may still 
be significant, the clone with the one-but-smallest 
p-value, 0.0019, corresponds to FDR = 0.704. 
Hence, only one clone would be found using the 
clone-wise data, while four highly relevant clone 
regions were discovered.

Discussion
A new algorithm was introduced to reduce the 
dimension of array CGH data while assuring the 
loss of information is marginal. The high resolution 
of the experimental platform implies that one wants 
to be able to find small genomic regions of interest. 
The ability to do so is not lost with our algorithm: 
small regions are created in genomic neighbor-
hoods with many transitions at different nearby 
locations, and large regions are formed in genomic 
neighborhoods with very few transitions for the 
vast majority of the samples (see Figure 1). It was 
shown that using the regions resulting from 
CGHregions instead of separate clones may lead 
to statistically rigorous findings, even for relatively 
small sample sizes.

Currently, many calling methods do not auto-
matically detect amplifications. Some guidelines 

Table 3. Regions significantly different for MSI+ and CIN+ colorectal cancers.

Chromosome BP Position  BP Position  Number of  p-value FDR-value
 Start end Clones
8 7938099 32678693 32 0.00166 0.01372
20 30814489 63589868 50 0.00464 0.03652
18 32413398 72886818 54 0.00618 0.03652
18 73991368 77615559 8 0.00618 0.03652
8 731200 6933218 14 0.00753 0.03652
8 34108046 35026137 2 0.01677 0.04491
18 225168 25700568 32 0.01961 0.04593
18 27315721 29970100 4 0.02259 0.04593
13 19104448 32907695 16 0.02264 0.04593
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for automatic detection are provided by Fridlyand 
et al. (2004). When amplifications are present in 
some profiles one has to consider the discrete level 
assigned to these amplifica tions. We simply set this 
to ‘2,’ hence twice the level of a gain. The algo-
rithm itself remains unchanged for such four-class 
data.

In this paper, we performed hypothesis testing 
on the clones and the regions using the aberration 
calls rather than the continuous (segmented) log2-
ratios. The reason for this is simple: interpretation. 
In the first case, one can conclude that the aberra-
tion levels differ when rejecting the null hypoth-
esis, which has a clear interpretation. In the second 

Figure 2. Region-wise frequency plots for 37 colorectal tumor samples (Douglas et al. 2004). Regions were created using settings T = 0.01 
(a) and T = 0.025 (b). Left-axis displays the loss-proportion; this scale should be reversed (‘1-’) to obtain the gain-proportion.
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case, since one has not translated the log2-ratios 
to copy number levels, one can only conclude that 
the mean log2-ratios differ between the groups, 
which lacks a clear interpretation.

We illustrated the potential benefit of the reduc-
tion algorithm in the context of statistical testing. 
More types of downstream analysis could benefit 
from the reduction. Integration with gene expression 
data may become easier, for example by focusing 
on (usually relatively) few highly active DNA 
regions. CGHregions is also advantageous for 
cluster analysis of the called array CGH data (van 
Wieringen et al. 2006b). The use of regions, rather 
than clones, as input of the cluster method intro-
duces a natural and data-driven weighting in the 
clustering. Long ‘dull’ chromosomal areas with 
normal DNA copy number and small amplifications 
are weighted equally. One thus clusters on the 
relevant features of the data, without letting dull 
areas dominate the cluster output. We performed 
simulations which show that the use of regions 
improves the performance of clustering methods. 
Moreover, the number of regions, being only a small 
percentage of the number of clones, simplifies a 
manual screening for regions with differences in the 
copy number frequency tables between clusters.

Construction of regions from individual clone 
data in a multi-sample context has been addressed 
before by Diskin et al. (2006) and Rouveirol et al. 
(2006). However, the main objective of these 
studies is different from ours. Their main aim is to 
detect (preferably small) chromosomal regions 
with relatively many aberrations, after which a list 
of potentially interesting genes is generated by 
locating the ones in or near those regions. Rouveirol 
et al. (2006) mention the potential dimension 
reduction effect of their method for further down-
stream analysis, but no control of information loss 
is provided with their method. While we showed 
that our method can be useful to find focal regions 
(Figure 2), this was not formalized here; instead, 
we emphasize dimension reduction with control 
of information loss.

In summary, we demonstrated that, with almost 
no information loss, CGHregions reduces array 
CGH clone data to region data, which leads to 
much more powerful downstream data analysis of 
array CGH data.
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