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Abstract: In gene selection for cancer classifi cation using microarray data, we defi ne an eigenvalue-ratio statistic to measure 
a gene’s contribution to the joint discriminability when this gene is included into a set of genes. Based on this eigenvalue-
ratio statistic, we defi ne a novel hypothesis testing for gene statistical redundancy and propose two gene selection methods. 
Simulation studies illustrate the agreement between statistical redundancy testing and gene selection methods. Real data 
examples show the proposed gene selection methods can select a compact gene subset which can not only be used to build 
high quality cancer classifi ers but also show biological relevance.
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Introduction
Gene expression profi ling has been successfully used to identify potential cancer diagnostic and thera-
peutic targets in the past few years. Since there are often a large number of potential genes, an important 
issue is to fi nd a small subset of genes that are differentially expressed between different clinical outcomes 
or related to cancer patients survival time, and thus can be used to build prognosis predictors. While 
gene selection for cancer classifi cation has been studied extensively in the literature, a less studied but 
very important concept is the redundancy problem. Commonly used gene selection methods include 
univariate methods and multivariate methods. Since genes with extremely differential expression levels 
are believed to have differential behaviors between different cancer types or subtypes, univariate ranking 
methods are based on genes’ individual ability to separate between two or more classes of tissues. These 
methods rank individual genes according to a criterion such as t-statistic or Wilcoxon rank sum test 
statistic for two-class classifi cation, and F-statistic or Kruskal-Wallis test statistic for multiple-class 
classifi cation, then select top ranked genes for classifi cation. These methods do not take the correlation 
between genes into consideration and introduce a great deal of redundancy because strongly correlated 
genes with similar expression levels are very likely to be selected together. When a selected gene subset 
contains redundant information, it can not be maximally representative of the targeted cancer types like 
a subset of the same size but without redundancy, or the effi ciency and the performance of a classifi er 
based on this set can be improved by removing those redundant genes. Multivariate methods select 
genes by evaluating the joint discriminability of a set of genes, i.e. the predictive accuracy with a prede-
termined classifi cation Algorithm. One example of multivariate methods is subset selection method 
which fi nds an optimal subset with minimum classifi cation error by searching for P!/[R!(P – R)!] candi-
date subsets of size R given a set of P genes. Another example is Recursive Feature Elimination (RFE) 
which recursively removes genes with smallest ranking criterion, evaluates the resulted nested subsets 
and optimizes the subset for a given classifi er. Such kinds of multivariate methods can remove both 
irrelevant and redundant genes when searching for an optimal minimum subset of genes for a good 
classifi er. However, these methods need to build a classifi er for each searched subset which might be 
very computationally intensive especially for high-dimensional data. Zou and Hastie (2004) proposed 
a very effi cient regularization method “elastic net” and applied their method to gene selection for 
microarray classifi cation. Their method does not however take care of redundancy. On the contrary, it 
actually encourages a grouping effect thus tends to select strongly correlated genes into the model 
together.

There have been a few gene selection methods based on information theory and developed to explic-
itly and directly reduce redundancy (e.g. Xing et al. 2001; Yu and Liu, 2004). These methods make use 
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of a Markov blanket fi ltering procedure to remove 
redundant genes. Markov blanket fi ltering is a 
backward elimination procedure due to Koller and 
Sahami (1996) and was proved to guarantee a vari-
able removed in an earlier phase will still fi nd a 
Markov blanket in any later phase. When the infor-
mation that a gene has about the targeted groups 
can be subsumed by some small subset of the other 
genes called a Markov blanket, this gene can be 
removed from the subset without compromising 
the accuracy of class prediction. Actually, Markov 
blanket criterion can remove both redundant and 
irrelevant genes. In Ding and Peng (2003), the 
selected genes are those having the maximal 
mutual information with the targeted groups and 
meeting the minimum redundancy criteria, i.e. 
those genes’ mutual Euclidean distances are maxi-
mized or their pair-wise correlations are mini-
mized. Jaeger et al. (2003) used fi ve kinds of test 
statistics to rank genes by groups that are retrieved 
by clustering or correlation and avoided redun-
dancy by selecting one or more highly-ranking 
genes from each cluster.

To distinguish from the concepts “gene redun-
dancy” in genetic analysis, and “redundancy” and 
“redundancy analysis” in multivariate statistics, 
we specify in this paper the redundancy problem 
to be addressed as “gene statistical redundancy” 
and the corresponding hypothesis testing as “gene 
statistical redundancy testing.” For cancer classi-
fi cation, we defi ne an eigenvalue-ratio statistic to 
measure each gene’s contribution to the joint 
discriminability when considered within a set of 
genes. We assume linear relationships between 
gene expression levels and the targeted classes and 
apply Fisher linear discriminant analysis method 
(FLDA) to reduce the data. Since the joint discrim-
inability of a set of genes can be measured by the 
largest eigenvalues when applying the linear 
combinations found by maximizing the ratio of 
between variance and within variance, one gene’s 
contribution to the joint discriminability of a set 
of genes can be measured by the change of the 
eigenvalues when added to this set. In other words, 
a very small change indicates that this gene has a 
very small contribution to the set. For each gene, 
we defi ne the contribution measure as the ratio of 
the eigenvalue computed after adding this gene to 
the eigenvalue computed before adding this gene. 
In the extreme case when a set includes duplicated 
genes, we get exactly the same eigenvalue whether 
adding a duplicated gene or not thus the eigenvalue-

ratio for a duplicated gene is 1. When a gene’s 
eigenvalue-ratio is not signifi cantly greater than 1, 
we conclude that this gene’s contribution to the 
whole set is not important and is negligible when 
the other genes are already included in this set. 
Actually, there may be two reasons for small 
contribution of a gene to the joint discriminability: 
1) this gene has high individual discriminability 
but the information that this gene has about the 
targeted classes can be replaced by other genes that 
have even higher individual discriminability than 
and strongly correlated gene expression levels with 
this gene, and 2) this gene has low individual 
discriminability. Thus a very small change of the 
eigenvalue indicates either this gene is statistically 
redundant or statistically less important. For a set 
of strongly correlated genes with high discrim-
inability, we evaluate such statistical redundancy 
by bootstrap testing the null hypothesis that eigen-
value-ratio is not signifi cantly greater than 1 versus 
the alternative. For K-class classifi cation, there are 
at most K – 1 non-zero eigenvalues and K – 1 
corresponding orthogonal discriminant functions. 
We focus on 2-class classifi cation problems in this 
paper thus only one meaningful eigenvalue is 
obtained from each eigenvalue-decomposition of 
FLDA and only one eigenvalue-ratio needs to be 
computed for statistical redundancy testing. 

In case of perfect multi-collinearity, FLDA will 
not have a unique discriminant solution. In case of 
low multi-collinearity, the standardized discrimi-
nant function coeffi cients will not reliably assess 
the relative importance of the predictor variables. 
However, the multi-collinearity problem will not 
be a concern here although strong correlations exist 
among genes with similar expression levels. The 
reason is that we do not directly use the discrimi-
nant functions but rather the eigenvalue ratios to 
assess the contribution of each gene.

Based on the eigenvalue-ratio statistic, our fi rst 
gene selection method “Algorithm 1” fi lters statis-
tically redundant or statistically less important 
genes with lower eigenvalue-ratios when 
P ≤ N – K – 2 ( P is the number of genes, N is the 
sample size and K is the number of classes). Since 
the within-class variance matrix in FLDA is 
singular when P ≥ N – K, we propose a second 
gene selection method “Algorithm 2” in such cases 
by introducing DIANA (Divisive Analysis) clus-
tering Algorithm (Kaufman and Rousseeuw, 1990) 
with (1-Pearson correlation) as the distance 
measure. Datta and Datta (2003) evaluated and 
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compared the performances of DIANA with fi ve 
other clustering Algorithms such as hierarchical 
clustering with correlation, K-means, Fanny and 
Hierarchical clustering with partial least squares 
and model-based clustering. They found out that 
both K-means and DIANA are most effective in 
achieving good separation and almost distinct class 
boundaries, but only the latter shows consistent 
successful performance under all three validation 
measures used in their work. An attractive feature 
of the two algorithms is that it not only explicitly 
removes statistically redundant genes but also may 
shed a light on the biological interaction between 
the selected genes and removed ones. This will be 
demonstrated with simulation and real data studies. 
Gene selection with both algorithms is simply 
gene-fi ltering according to eigenvalue ratios and 
the whole fi ltering process shows to be computa-
tionally very effi cient. Mean while, we remove 
those statistically redundant and statistically less 
important genes and thus we can expect to obtain 
a compact subset which is more representative than 
a set with the same size but including statistically 
redundant genes. We evaluate the joint discrim-
inability of the selected subset by building logistic 
regression models. For comparison with other gene 
selection methods that eliminate statistical redun-
dancy, we implement Yu and Liu’s (2004) Fast 
Correlation-Based Filter (FCBF) algorithm in R 
and use this algorithm for both simulated and real 
data examples (Golub et al. 1999; Alon et al. 1999). 
We also compare our results with Guyon et al.’s 
(2002) results obtained with Support Vector 
Machine methods based on Recursive Feature 
Elimination (SVM RFE). Both simulation and real 
data studies show that our method is very effective 
in removing statistical redundancy and select a 
highly predictive set of genes. 

The rest of this paper is organized as follows: 
in Section 2, we fi rst defi ne the eigenvalue-ratio 
statistic and describe the bootstrap re-sampling 
statistical redundancy testing method, and, then 
present our gene selection methods using the 
eigenvalue-ratio statistic; Section 3 illustrates 
results on some simulations; Section 4 gives gene 
selection results for two benchmark cancer gene 
expression datasets; and Section 5 contains conclu-
sions and discussion for the future work. Some 
information for Divisive Analysis (DIANA) clus-
tering Algorithm and FLDA, and, the selected 
genes for the two real data examples can be found 
in the Supplementary materials.

Statistical Redundancy Testing and 
Gene Selection Algorithms
Let gene expression data set on P genes for N 
samples be summarized by an P × N matrix 
X = (xij) where xij denotes the expression level of 
gene i in sample j. Each sample j is thought to 
originate from a class k ∈{1, …, K} and the number 
of possible classes K is known to be fi xed.

Test statistic: eigenvalue-ratio
For gene i in a set of genes, let λ α α
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eigenvalues from eigenvalue-decomposition of 
FLDA when including this gene in the set or not. 
SB and  S'B are between-class variance matrices, SW 
and  S'W are within-class covariance matrices, and, 
the fi rst linear combinations α1 and α'1 are given 
by the largest eigenvalues λ1 and λ'1 when solving 
a generalized eigenvalue problem. 

To test the statistical redundancy of this gene i 
in separating the cancer classes, we do hypothesis 
testing H0: λ1 = λ'1 vs. H1: λ1 = λ'1 based on a test 
statistic eigenvalue-ratio λ1/λ'1. So the null hypoth-
esis is that there is no signifi cant difference in 
discriminability of this set of genes whether 
including this gene or not. And the alternative 
hypothesis is that including this gene does improve 
the discriminability of this set.

When including gene i in a set of genes, we 
denote the F-test for fixed effect of one-way 
analysis of variance on the discriminant scores 
obtained by applying the fi rst linear combination 
α1 to the data as
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which has a non-central F-distribution with degrees 
of freedom (K – 1, N – K).

Similarly, we denote the F-test when not 
including gene i in the set as
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which has a same non-central F-distribution with 
degrees of freedom (K – 1, N – K).

So an equivalent test statistic for statistical 
redundancy testing can be F1/F'1 i.e. the ratio of 
two non-central F distributions, since the F-tests 
can be written as
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Schumann and Bradley (1957) obtained the 
distribution of the ratio of two independent non-
central variance ratios and proposed to use such a 
ratio as test statistic for comparison of the sensi-
tivities of two independent experimental tech-
niques when assuming a fi xed effects analysis of 
variance. In one-way classifi cations, let σ A

2  and σ e
2 

respectively denote the components of variance 
between and within groups, sensitivity is measured 
by σ σA e

2 2/ . Dar (1962) obtained a large sample test 
for sensitivities in two identical or similar inde-
pendent experiments by using a normalizing trans-
formation. Let MSA and MSe be the corresponding 
mean squares. To test the null hypothesis 
H A e A e0

2 2 2 2
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: / /σ σ σ σ= for two sensitivities, the test 
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/ and MS MSA e2 2
/ are distrib-

uted as ( / )1 2 2+ J A eσ σ  times a non-central F distribu-
tion with degrees of freedom ( , )v vA e  for two 
identical independent experiments with equal 
group size J. Dar (1962) used an equivalent statistic 
z1 – z2 and tested (z1 – z2)/ 1 1 1 1/( ) /( )ν A e− + −ν as 
a standard normal variable where
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This test can be applied for two similar experi-
ments as long as the sum of squares of group sizes 
is constant. Thus it seems very appealing to apply 
a similar large sample test as that in Dar (1962) for 
statistical redundancy testing,
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. However, the exact same large 

sample test may not be appropriate for gene statis-
tical redundancy testing here. λ1 and λ1′ are obtained 
when including a gene or not and thus the corre-
sponding F ratios are not really independent. For 

this reason, we use a bootstrap test by directly 
estimating the null reference distribution of λ λ1 1/ ′  
with bootstrap re-sampling.

Bootstrap re-sampling test for 
statistical redundancy 
Assume there is a set of m genes, C, which can be 
described by a m × N data matrix XC. For each gene 
in C, a statistic λ λ1 1/ ′ is calculated to evaluate its 
contribution to the discriminability of C. Under the 
null hypothesis that a gene is statistically redun-
dant, the discriminability of the discriminant scores 
when applying the fi rst discriminant function α1 
to the data should not be signifi cantly different 
whether including this gene in C or not. This means 
the discriminability of the discriminant scores 
should not be significantly different whether 
adding a statistically redundant gene or any one 
gene which has no individual discriminability to 
C. For gene i, under the null hypothesis H0i, we 
use the following algorithm to calculate the 
expected λ λ1 1/ ′  and perform the statistical redun-
dancy testing:

1. For each gene i in C, calculate the observed test 
statistic λ λ1 1/ ′ .

2. Generate B independent bootstrap sets Cb where 
b = 1, ..., B. For gene i with real expression data 
(xi1, xi2, ..., xiN), re-sampling is done by groups 
with replacement to generate ( , , , ).x x xi

b
i
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replacement across the groups. In this way, data 
matrix Xc

b is changed to ( )Xc
b

i and the latter is 
used to calculate λ λc

b
c
b/ ′  for this gene i.

 For gene i, calculate its bootstrap p-value as 
follows and set signifi cant level as α to reject 
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4. Repeat steps 1~3 until all the genes in C are 
tested.

5. Apply a proper multiple test adjustment to con-
trol type I error.
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Gene selection methods 
When the goal is selecting informative genes, the 
commonly used signifi cant level like 0.05 may be 
too stringent and we might select very few genes 
with multiple test adjustment. This may be due to 
lack of samples or measurement errors in the 
samples. Instead, we can simply pick up genes with 
larger eigenvalue-ratios and sequentially remove 
statistically redundant or less important genes. In 
this section, we propose two gene selection 
methods using the eigenvalue-ratio statistic. One 
is to used when the number of genes is less than 
N – K – 2 and the other is to be used when the 
number of genes is larger than or equal to N – K – 2.

Algorithm 1
A forward selection method using statistical redun-
dancy test (for P < N – K – 2):
1. Initialize S = {} as the set of selected genes and 

C = { g(1), g(2), …, g(M)} as the set of candidate 
genes, where M = P. Genes in C are sorted in 
the descending order using their absolute t-test 
values.

2. Pool genes in S and C together and compute 
eigenvalue-ratios of genes in C, ( e(1), e(2), …, e(M)). 
Compute the correlations of genes in C between 
g(j)s (j > 1) and g(1)(c(2), c(3), …, c(M)). Let 
C1 = {g(j) | g(j) ∈ C, e(j) < e(1) and c(j) > cthresh}.

3. Select gene S = S + {g(1)} and remove gene 
C = C – C1.

4. Repeat step 2 to 3 until all genes have been 
either selected or removed, i.e. C = {}.

5. Return S.
In Algorithm 1, the absolute t-statistic is used 

to measure the individual discriminability of genes 
and genes are ordered in descending according to 
this measure. From the candidate gene set C, we 
first select the gene with the highest discrim-
inability. Then the remaining candidate genes are 
tested against this selected gene using the eigenvalue-
ratio statistic. Genes that have similar expression 
profi le but show to be statistically redundant are 
expected to have lower eigenvalue-ratios than that 
of selected gene and therefore can be removed. 
This process continues until all genes are either 
selected or removed.

The correlation threshold cthresh is a non-negative 
value chosen from (0, 1) and to be used to make 
sure that only these genes that have similar expres-
sion levels to the selected gene will be tested and 
possibly removed. This is useful since, compared 

with the current selected gene, a gene selected 
earlier in the candidate set might have a very small 
eigenvalue-ratio if its statistically redundant genes 
exist in the set.

The value of cthresh controls how much statistical 
redundancy to be removed and therefore affects 
the size of S. A larger value of cthresh usually results 
in less genes being removed every time and there-
fore more genes being selected. A smaller value of 
usually results in more genes being removed every 
time and therefore less genes being selected.

Since Sw is singular when P > N and FLDA 
suffers from numerical instability when P ≈ N – K, 
we use the following gene selection method by 
introducing hierarchical clustering to group genes 
with similar expression levels into smaller clusters 
and selecting genes within small clusters with 
Algorithm 1.

Algorithm 2
A forward selection method using clustering and 
statistical redundancy test (for P ≥ N – K – 2):
1. With DIANA, divisively cluster genes into a 

hierarchical tree using (1-Pearson correlation) 
as the distance measure. Any cluster in the hier-
archy with a size larger than or equal to N – K – 2 
should be divided into two sub-clusters. Initialize 
the correlation threshold cthresh.

2. Sort the sequence of nested clusters in the clus-
ter hierarchy in the ascending order according 
to their sizes. Denote these clusters as ci, i = 1, 
2, …, I. 

3. From i = 1 to I, check the size of ci, i.e. the 
number of genes in ci. If the number of genes 
in the cluster is larger than or equal to N – K – 2, 
select genes in its sub-clusters using Algorithm 
1 with cthresh. After gene selection of its sub-
clusters, if the number of genes in the cluster is 
still larger than or equal to N – K – 2, quit the 
Algorithm and use a smaller value of cthresh.

4. Return genes in cluster cI.
The idea of Algorithm 2 is to group a large 

number of genes into small clusters with a size less 
than N – K – 2 so that Algorithm 1 can be used to 
remove the statistical redundancy. Since we sort 
clusters in an increasing order by the cluster size, 
a larger cluster always appears after its smaller 
sub-clusters. For a cluster with size larger than or 
equal to N – K – 2, we apply Algorithm 1 to its 
sub-clusters so that statistically redundant genes 
will be removed in the smaller sub-clusters. Then 
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this cluster will have smaller size and can be 
processed later. At the end of processing, the last 
cluster, which originally contains all the genes, will 
now contain a compact gene set. We can also 
understand Algorithm 2 in a recursive way. If a 
cluster has a large number of genes (i.e. the number 
of genes is greater than N – K – 2) and cannot be 
processed by the Algorithm 1, we divide it into two 
smaller sub-clusters. If any of two sub-clusters still 
has too many genes, we split the sub-cluster again 
until a sub-cluster can be processed by the Algo-
rithm 1. We recommend in Algorithm 2 that the 
gene selection starts when the number of genes is 
greater than N – K – 2. However, there is no doubt 
that we can specify a number which is less than 
N – K – 2.

When using Algorithm 2, it is likely that the 
total number of genes selected is still larger than 
or equal to N – K – 2 at the end of the whole gene 
selection process. In this case, we can build a clas-
sifi er with generalized partial least squares method 
(Ding and Gentleman, 2005). Otherwise, we can 
use a smaller cthresh to select a smaller number of 
genes to build a classifi er with logistic regression. 
To choose an appropriate cthresh, we can try a series 
of values in (0, 1), say (0.005, 0.01, 0.105, 0.02, …) 
and perform gene selection with the proposed 
methods. For each cthresh, we compute the leave-
one-out cross-validation (LOO-CV) prediction 
error of the classifi er built with the selected genes. 
Then the chosen cthresh is the one which gives the 
lowest LOO-CV prediction error.

Simulations

Simulation 1 
Simulated 20 × 200 data matrix contains the expres-
sion data of 20 genes for two types of cancer where 
the fi rst 100 samples are of type I and the other 100 
samples are of type II. These genes are highly infor-
mative for separating the two cancer types. Some 
of the genes have very similar expression levels and 
the expression data are strongly correlated. When 
these correlated genes are used to build a classifi er, 
some genes may subsume the effects of the others 
thus there will be redundancy problem. We use 
function “mvrnorm ()” in R package “MASS” to 
generate the data from a multivariate normal distri-
bution. The data for gene 1 to gene 20 are generated 
by 2 groups as following: (1) group 1 includes gene 
1~10 with each gene in type I distributed as N(0, 1), 

and the genes in type II distributed as N(μ12, 1) where 
μ12 = (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 ) 
for gene 1~10; (2) group 2 includes gene 11~20 with 
each gene in type I distributed as N(0,1), and the 
genes in type II distributed as N(μ22, 1) where μ22 = 
(1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2) for gene 
11~20. The data are generated by sample types. For 
each sample type, the 2 groups are independent of 
each other and the pair-wise correlation between 
gene i and j is set to be corr(i, j) = 0.9|i–j| within each 
group. Thus the closer the two genes in each group, 
the higher the correlation and the more similar their 
expression levels.

Statistical redundancy testing is performed by 
bootstrap re-sampling with B = 100 replications. 
Table 1 show the statistical redundancy test and 
t-test results for the simulated data. According to 
Table 1, gene 10 and gene 20 respectively have the 
greatest negative t-statistics in group 1 and group 2 
thus both genes are individually most informative 
one in each group. The two genes have much larger 
eigenvalue-ratios than the other genes and are the 
only two genes to be tested as statistically non-
redundant ones (p-value = 0 for gene 10; p-value = 
0 for gene 20) at a signifi cance level of 0.05 although 
the t-tests indicate that all of the genes in group 1 
and 2 are individually highly informative. All the 
genes in group 2 are more informative than those in 
group 1 according to t-test, however, gene 10 in 
group 1 is still tested as non-redundant. The reason 
is that the two groups are independent of each other 
and contain very different information about the 
difference between the two cancer types, and thus 
the effect of gene 10 in group 1 can not be replaced 
by those in group 2 when we build classifi ers with 
both groups of genes. Within each group, the pair-
wise correlation is corr(i, j) = 0.9|i–j| thus not only 
each pair of adjacent genes but also those genes not 
far away from each other have very similar expres-
sion levels and contain very similar information 
about the difference between the two cancer types, 
and even the two furthest genes (i.e. gene 1 and gene 
10, gene 11 and gene 20) in each group have a 
correlation as high as 0.387. On the other hand, some 
of the correlated genes are individually less informa-
tive than the others. When correlated genes are used 
together in a classifi er, the contribution of the indi-
vidually less informative one to the joint discrim-
inability may be negligible comparing to the contri-
bution of the other individually more informative 
one. For these reasons, gene 1~9 and 11~19 should 
be tested as redundant. 
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Since we are testing multiple genes simultane-
ously, it is very critical to adjust for multiplicity. 
With BH false detection rate (FDR) control method 
(Benjamini and Hochberg, 1995), the statistical 
redundancy tests show gene 10 and gene 20 
(adjusted p-value = 0) are non-redundant at an FDR 
level of 0.05. 

Simulation 2
Simulation 2 is about gene selection according to 
eigenvalue-ratio statistics using Algorithm 1. In 
this simulation, we still uses the data created in 
Simulation 1. Table 2.2 shows the sequence of the 
genes to be fi ltered with Algorithm 1 and the 
selected one at each gene removing step. Different 
correlation thresholds are tried for this simulation. 
When the correlation threshold is chosen as 0.4, 
gene 10 and 20 are selected as non-redundant ones 
and the logistic model with the two genes gives 
the lowest LOOCV. Table 2 shows the genes to be 
selected and the genes to be removed at each selec-
tion step. Considering the correlation matrix for 
simulation, it is obvious from Table 2.2 that 9 genes 
(19, 18, 17, 16, 15, 14, 13, 12 and 11) in group 2 
are fi ltered as statistically redundant or less impor-
tant ones when compared with gene 20 at step 1, 
and other 9 genes (9, 8, 7, 6, 5, 4, 3, 2 and 1) in 
group 1 are removed as statistically redundant or 

less important ones when compared with gene 10 
at step 2. So both the statistical redundancy testing 
(with multiplicity adjustment) and the gene selec-
tion Algorithm 1 select the same genes for this 
simulated data. Such agreement between the two 
methods shows that Algorithm 1 is effective not 
only in removing statistically redundant genes but 
also fi nding the most important ones.

We also compare the performance of our gene 
selection method with Yu and Liu’s (2004) FCBF 
algorithm on the simulated data. Since the original 
method was proposed for covariates with discrete 
values and the method can not apply directly to 
gene expression data with continuous values, we 
discretize the data before using this method. With 
FCBF algorithm, gene 10 and 20 are selected and 
shown as statistically non-redundant ones thus the 
results agree with that obtained by Algorithm 1.

Simulation 3
Simulation 3 is about gene selection with 
Algorithm 1 under different high pair-wise corre-
lations. This simulation has a similar setup to 
Simulation 1 except that pair-wise correlations 
changes from high to low. The genes successively 
selected under different pair-wise correlations are 
shown in Table 3. Under each particular pair-wise 
correlation, the subset of genes selected with 

Table 1. Gene p-values for statistical redundancy test and t-test.

   p-value for Statistical  Adjusted p-value  
 Gene t-statistic Eigenvalue-ratio Redundancy test with BH method

1 –2.12132 1.002851 0.57 0.98
 2 –2.82843 1.000007 0.98 0.98
 3 –3.53553 1.000011 0.95 0.98
 4 –4.24264 1.000016 0.98 0.98
 5 –4.94975 1.000021 0.96 0.98
 6 –5.65685 1.000028 0.96 0.98
 7 –6.36396 1.000035 0.93 0.98
 8 –7.07107 1.000044 0.92 0.98
 9 –7.77817 1.000053 0.92 0.98
 10 –8.48528 1.03608 0 0
 11 –9.19239 1.001265 0.7 0.98
 12 –9.89949 1.000086 0.95 0.98
 13 –10.6066 1.000098 0.85 0.98
 14 –11.3137 1.000112 0.9 0.98
 15 –12.0208 1.000126 0.9 0.98
 16 –12.7279 1.000141 0.88 0.98
 17 –13.435 1.000158 0.86 0.98
 18 –14.1421 1.000175 0.83 0.98
 19 –14.8492 1.000192 0.85 0.98

 20 –15.5563 1.082116 0 0



Cancer Informatics 2007:336

Hu and Rao

Algorithm 1 gives a logistic model with the lowest 
LOOCV misclassification error among all the 
models built with different correlation thresholds. 
Generally, more genes are selected with Algorithm 
1 under lower pair-wise correlation. The reason is 
that even two non-adjacent genes may have very 
similar expression levels under a high pair-wise 
correlation, and the less informative one may result 
to be redundant when the other more informative 
one exists in the same classifi er. In contrast, even 
the two adjacent genes do not have very similar 
expression levels under a low pair-wise correlation. 
For example, the correlation between gene 6 and 
the gene 10 is still as high as 0.656 when the pair-
wise correlation is 0.9, and much higher than that 
between gene 9 and gene 10 when the pair-wise 
correlation is 0.5.

Also shown in Table 3 are the genes selected 
with Yu and Liu’s (2004) FCBF algorithm. The 
two gene selection methods agree with each other 
when the pair-wise correlation is 0.9. As the pair-
wise correlation decreases, the two methods tend 
to select more and more different genes although 
they still select some common genes. At each pair-
wise correlation, Algorithm 1 selects the most 
informative gene from each group, i.e. gene 10 and 
gene 20. This method also selects one or more 
genes from both groups as the pair-wise correlation 
is or below 0.7. On the other hand, FCBF fails to 
select gene 10 when the pair-wise correlation is 
0.8 and 0.5. FCBF only selects genes from group 
2 when the pair-wise correlation is 0.5. This might 

be caused by the information loss during data 
discretization. Since the two groups are generated 
to be independent and genes in each group are very 
informative, we may expect the non-redundant 
genes to be representative of both groups, i.e. both 
groups have one or more genes to be selected. Thus 
Algorithm 1 generally outperforms FCBF for this 
simulation.

Simulation 4
This simulation is about gene selection with Algo-
rithm 2 when the number of genes is greater than 
the sample size. Simulated 400 × 100 data matrix 
contains the expression data of 400 genes for two 
types of cancer where the fi rst 50 samples are of 
type I and the other 50 samples are of type II. In 
type I cancer, each gene is distributed as N(0,1). 
These genes are highly informative for separating 
the two cancer types. In type II cancer, genes are 
distributed as N(μ2, 1) where μ2[1:200] = (–1.996, 
–1.988, –1.980, …, 0.404) and μ2[201:400] = 
(0.404, 0.412, 0.420, …, 1.996). Data are generated 
by sample types and by blocks of genes. There are 
a total of 20 blocks and each block contains 20 
genes with the fi rst block contains gene 1~20, the 
second block contains gene 21~40 and so on. In 
each block of genes, we assume there are two 
independent groups of genes with 10 genes in each 
group and the pair-wise correlation between gene 
i and j is set to be corr(i, j) = 0.7|i–j| within each 
group. For example, in block 1, gene 1~10 are in 
group 1 and gene 11~20 are in group 2, and, genes 
in group 1 and group 2 are independent.

Since genes are correlated in each group and 
the number of genes is much greater than the 
sample size, we use Algorithm 2 to reduce redun-
dancy and select a compact gene set. Gene selec-
tion starts when the cluster size is greater than or 
equal to 40. When the correlation threshold is 
chosen as 0.4, the LOOCV prediction error of the 
logistic model is 0.01. Algorithm 2 selects 72 
genes: 1, 10, 22, 52, 75, 81, 87, 118, 122, 126, 
130, 131, 136, 141, 145, 147, 151, 152, 158, 161, 
162, 168, 171, 175, 178, 180, 181, 184, 187, 190, 
191, 194, 197, 200, 203, 204, 207, 210, 211, 212, 
215, 217, 220, 221, 223, 226, 230, 231, 234, 238, 
239, 244, 250, 255, 260, 269, 273, 284, 295, 300, 
307, 313, 330, 351, 370, 400. When checking the 
correlations between the selected genes, we fi nd 
out the following pairs of genes are pairs of adja-
cent genes in same groups in the whole correlation 

Table 2. Gene fi ltering process in Algorithm 1.

Step Genes to be Genes to be 
 selected fi ltered
1 20 19, 18, 17, 16, 15, 14, 13,12,11
2 10 9, 8,  7,  6,  5,  4,  3,  2, 1

Table 3. Genes selected under different pair-wise 
correlations.

corr(i, j) Algorithm  1FCBF
0.9|i-j| 20 10 20 10
0.8|i-j| 20 10 4 20 16 11 9
0.7|i-j| 20 11 10 6 3 20 17 15 12 10
0.6|i-j| 20 11 10 7 4 2 20 18 16 14 10
0.5|i-j| 20 14 11 10 8 6 4 2 20 19 17 15 13 11
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structure: 151 and 152, 161 and 162, 203 and 204, 
211 and 212. Since the correlation between the 
pairs of adjacent genes in same groups is 0.7, there 
is still some redundancy in the selected 72-gene 
list. However, if we take the whole correlation 
structure into consideration, we can still observe 
Algorithm 2 removes most of redundancy for this 
simulated data. 

Gene Selection for Microarray 
Datasets

Gene selection for leukemia study
The leukemia dataset used was published by 
Golub et al. (1999) and is available from http://
www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. 
The original research aimed to identify the most 
informative genes for the purpose of disease 
modeling and more accurate classifi cation of 
acute lymphoblastic leukemia (ALL) and acute 
myeloid leukemia (AML). The training data set 
has 7129 genes, 27 cases of ALL and 11 cases of 
AML. The test data set has 20 cases of ALL and 
14 cases of AML. The entire data set, i.e. the data 
of all the 72 samples, is used as training data to 
select genes in this paper. Pre-fi ltering according 
to t-test left 1110 genes that were signifi cantly 
differentially expressed (p-value ≤ 0.01) for 
further gene selection.

Since there are 1110 genes but only 72 samples, 
we can not use Algorithm 1 directly but rather use 
Algorithm 2 for gene selection. Table 5 in Supple-
ment materials show the 13 genes selected with 
Algorithm 2 with cthresh. = 0.2. HOXA9 is a genetic 
marker associated with myeloid cell lineage (Casas 
et al. 2003). MPO is one of the mostly important 
cytochemical stainings in acute leukemia. Clini-
cally it has been used together with TdT to identify 
ALL and is an excellent “marker” gene for AML 
and ALL (Cortes and Kantarjian, 1997). Cell divi-
sion hCDCrel-1 is a partner control related gene 
of MLL in some protein leukemias (Osaka, 1999). 
E2A is a known oncogene implicated in childhood 
B-ALL. NM23A is an oncogene and its higher level 
expression was correlated with poor prognosis for 
AML patients (Okabe-Kado et al. 1998).

Among the 13 genes, fi ve genes are highly 
informative ones in Golub et al. (1999): M31523 
(highly expressed in ALL); and, X95735, M27891, 
M55150 and U82759 (highly expressed in AML). 

Table 4 shows how Algorithm 2 dealt with Golub’s 
50 genes. Each row shows a gene selection step 
where the selected gene in the left column has 
larger absolute t-statistic in the current gene set 
and the genes in the right column are those with 
smaller t-statistic and to be fi ltered as statistically 
redundant or less important ones. Ten of the 
selected genes in the left column and all of those 
in the right column are in Golub’s 50-gene list. 
Five genes in Golub’s list are selected at earlier 
steps but fi ltered as statistically redundant or less 
important ones at later steps: Z15115, X63469, 
Y00787, M91432 and M31211. Golub’s 50 genes 
are highly expressed either in ALL or AML. 
However, when these genes are evaluated together 
within the same set, some genes’ contribution is 
negligible when a more informative one exists. 
Some fi ltered genes are found to be strongly corre-
lated with the selected genes so these are removed 
as statistically redundant ones. Some are not 
strongly correlated so removed as less important 
ones. Since genes involved in same biological 
pathways relevant with the disease may have 
similar expression profi les, it may be very inter-
esting to find out the biological relationship 
between these fi ltered genes and those selected 
ones however this topic is far beyond the scope of 
this paper which focuses on statistical redundancy 
problem.

Among the 13 genes in Table 3, four are 
selected with FCBF method: X95735, M27891, 
M19507 and M31523; three are selected by 
Guyon et al. (2002) with SVM RFE and among 
their four top ranked genes: X95735, U82759 
and U59632. To evaluate the joint discrim-
inability of these 13 genes selected with Algo-
rithm 2, we build a logistic model which yields 
zero LOOCV error. The logistic model built with 
the 13 genes selected with FCBF method yields 
one LOOCV error. Guyon et al. (2002) report 
zero LOOCV error for the genes that they found 
with SVM RFE.

Gene selection for Colon cancer study
The colon cancer dataset was originally analyzed 
by Alon et al. (1999). This dataset contains expres-
sion levels of 2000 genes with highest minimal 
intensity across 40 tumor and 22 normal colon 
tissues. The data is available from R package 
“dprep”. Pre-fi ltering according to t-test left 851 
genes that were significantly differentially 
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expressed (p-value ≤ 0.1) for further gene selec-
tion. 

Algorithm 2 selected 48 genes with cthresh. = 
0.605. Logistic regression model based on this set 
yields 5 LOO-CV errors. Further selection from 
these 48 genes with Algorithm 1 gets a subset of 
46 genes which can yield zero LOO-CV error. 
Table 6 in Supplement materials lists the informa-
tion of the 46-gene subset. The human desmin gene 
was down-regulated in colon cancer tissues and 
also showed signifi cantly reduced expression in 
melanoma cell line (Gutgemann et al. 2001). S–100P 
is also expressed in breast, prostate, and lung 
cancers. In colon cancer cell lines, its expression 
level was found to be correlated with resistance to 
chemotherapy (Bertram et al. 1998). Shailubhai 
et al.’s (2000) study demonstrated uroguanylin 
induced apoptosis in human colon carcinoma cells 
in vitro, and oral uroguanylin inhibits the formation 
of polyps in the Min/1 mouse animal model of 
colorectal cancer in vivo. IL-8 is responsible for 
tumor progression and liver metastasis of colorectal 
cancer (CRC), and activation of plasminogen acti-
vator system induced by IL-8 and VEGF may play 
important role in progression of CRC (Terada, 
et al. 2005). Fan et al.’s (2001) study found the 
down-regulation of matrix Gla protein mRNA 
generally occurs in colorectal adenocarcinomas. 
Bernini et al. (2000) reported that the MUC2 mucin 

gene was highly expressed in the colon and associ-
ated colorectal tumors and might be a candidate 
marker for colorectal cancer micro-metastases.

Among the 46 genes in Table 5, four are selected 
with FCBF method: M63391, M26383, R84411 
and T47377; two are selected by Guyon et al. 
(2002) with SVM RFE and among their 7 top 
ranked genes: H08393 and H64807. To evaluate 
the joint discriminability of these 46 genes selected 
with Algorithm 2, we build a logistic model which 
yields zero LOOCV error. The logistic model built 
with the 7 genes selected with FCBF method yields 
8 LOOCV error. Guyon et al. (2002) reported zero 
LOOCV error for the 7 genes that they found with 
SVM RFE.

Discussion
In this paper, we defi ned a novel eigenvalue-ratio 
test statistic to quantitatively evaluate statistical 
redundancy and provide two gene selection methods 
using the test statistic. The eigenvalue-ratio test 
statistic is the ratio of the eigenvalue of including a 
gene to the eigenvalue of excluding the gene. It can 
be used to detect not only genes of low discrim-
inability, but also those highly statistically redundant 
ones. We present a bootstrap re-sampling hypothesis 
testing based on the eigenvalue-ratio test statistic. 
We also develop a gene selection method using the 

Table 4. Golub’s 50 genes that are selected and/or fi ltered.

Genes to be selected Genes to be fi ltered
Z15115 X15949
X63469 U20998
X90858 U46751 M57710 M80254
Y00787 M28130 L08246 M69043
M91432 X74262 U32944
M27891 M63138 M83652 M19045
X95735 M23197 M84526 M16038 X17042 M62762
M11722 M92287 U05259
M55150 U50136
M32304 M81695
M31211 X59417 M91432 U22376 U26266 D38073
M31523 Z15115
HG1612-HT1612 M29696 L47738 D26156
X95735 X04085
M19507 M96326
M13792 M31303 U35451
M31523 Y08612 M31211 U29175 X63469 Z69881
M27891 Y00787 Y12670
M19507 X85116
M31523 S50223 M13792
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eigenvalue-ratio test statistic, which sequentially 
selects genes and at the same time removes statisti-
cally redundant genes corresponding to the selected 
ones. In case of a large body of genes, our gene 
selection method can be combined with hierarchical 
divisive clustering to group genes into small clusters 
and then remove statistically redundant ones within 
small clusters. Since each cluster’s size is less than 
N when removing its redundant genes, the compu-
tational complexity of our gene selection method is 
O(PN3) when P>>N. In other words, our gene selec-
tion method has a complexity linear to P and there-
fore is a scalable approach. The simulation studies 
illustrate the problem of statistical redundancy and 
validate the proposed test statistic and gene selection 
methods. The high prediction accuracy and biolog-
ical relevance of the selected genes for the two real 
data examples demonstrate the effectiveness of the 
proposed gene selection methods.

FLDA in the eigenvalue-ratio test statistic 
assumes linearity, but it can be extended to 
nonlinear manifolds using a nonlinear mapping 
such as kernels. In this paper, for simplicity we 
limit our test statistics and gene selection methods 
to two-class cancer classifi cation problems. Future 
work might be further investigations to include 
multiple-class classifi cation cases.
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Supplementary Materials

DIANA (Divisive Analysis) clustering Algorithm 
DIANA Algorithm is fully described by Kaufman and Rousseeuw (1990) and has been implemented in many 
statistical programming languages such as R and Splus. This Algorithm constructs a divisive hierarchy of 
clustering. That is, DIANA starts with one large cluster which contains the entire data set then progressively 
splits this initial cluster into smaller and smaller subsets until each cluster contains only a single observation.

At each stage of clustering, the cluster with the largest diameter will be selected where the diameter 
of a cluster is defi ned as the largest distances between any two of the observations in this cluster. For 
the selected cluster, DIANA Algorithm fi rst looks for its most disparate observation (i.e. which has the 
largest average distance to the other observations of the selected cluster) then reassigns observations 
that are closer to this most disparate observation than to the original cluster and the average distances 
of the two clusters are recalculated. Suppose the selected cluster C has nc observations xi (i=1, …, n). 
At the kth iteration of reassigning observations, for observation i, the distance between i and the rest 
of the cluster C is defi ned as Δ Σ

k xi nc j i j C
d x

i, , ( ,= − ≠ ∈
1

1 , and, if identifying the observation xk
∗ with the 

largest Δk i,  for the kth iteration, all such observations make a set C*. The iteration continues until the 
observations left in the original cluster are more similar to that cluster than C*. That is, the iteration 
stops when   Δ Δ Σ Σ

k x k x n k j C k j k l
k

l
k k c

d x x d x x
, ,

( , ) ( ,∗ ∗< = −− − ∉ − =
− ∗0 1

1
1

1 1
1where jj ).Then cluster C is divided 

into two smaller clusters, one of which has the observations  xl
∗  (l = 1, …, k – 1) in cluster C and the 

other has the remaining observations in cluster C.
The result obtained with DIANA is a matrix of cluster membership per Algorithm iteration. Given the 

number of clusters, this matrix can be sorted and the cluster membership of the observations can be found.

FLDA
Fisher Linear discriminant analysis (FLDA) fi nds a reduced set of new dimensions on which projected 
data has maximal discriminability among classes and has been used as a supervised dimension reduc-
tion technique. FLDA attempts to minimize the Bayes classifi cation error by searching for an optimal 
linear combination α of the predictors which maximizes the product of the inverse of the within-class 
variance matrix and the between-class variance matrix. Such α’ s can be given by the largest eigenvalues  

′ −λ s S SW Bof 1  by solving a generalized eigenvalue problem, i.e.λ α α

α α
= max

T

T
S

S

B

W
,where SB is between-

class variance matrix and SW is within-class covariance matrix. For k-class classifi cation, there are at 
most K–1 non-zero eigenvalues and K–1 corresponding orthogonal discriminant functions. When P > N, 
FLDA can not be used directly because of the singularity problem, i.e. SW is singular in this case.

In this paper, we focus on two-class classifi cation for simplicity, i.e. K = 2. Thus there is only one 
non-zero λ and one corresponding α that can be denoted as λ1 and α1 respectively.

Selected genes for Leukemia data
Table 5. The 13 selected genes for Leukemia data.

Access number Description
X95735 Zyxin
M27891 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
M55150 FAH Fumarylacetoacetate
M19507 MPO Myeloperoxidase
U82759 GB DEF = Homeodomain protein HoxA9 mRNA
U59632 Cell division control related protein (hCDCrel-1) mRNA
X57398 NME1 Non-metastatic cells 1, protein (NM23A) expressed in isoform a
M31523 TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)
M11722 Terminal deoxynucleotidyl transferase mRNA (TdT)
U52682 IRF4 Interferon regulatory factor 4
HG651–HT4201 Adducin, Alpha Subunit, Alt. Splice 2
U51010 GB DEF = Nicotinamide N-methyltransferase gene, exon 1 and 5’ fl anking region
M37457 Na+,K+ -ATPase catalytic subunit alpha-III isoform gene
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Selected genes for Colon cancer data

Table 6. The 46 selected genes for Colon cancer data. 

Access number Discription
H08393 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)
M63391 Human desmin gene, complete cds
T47377 S-100P PROTEIN (HUMAN)
R84411 SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED PROTEINS B AND B’  

 (HUMAN)
Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor
H55916 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRECURSOR  

 (HUMAN)
T59878 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE B PRECURSOR (HUMAN)
H17434 NUCLEOLIN (HUMAN)
M26383 Human monocyte-derived neutrophil-activating protein (MONAP) mRNA, complete cds
T60778 MATRIX GLA-PROTEIN PRECURSOR (Rattus norvegicus)
M82919 Human gamma amino butyric acid (GABAA) receptor beta-3 subunit mRNA, 

 complete cds
R42244 ANTIGEN PEPTIDE TRANSPORTER 1 (HUMAN)
M80815 H.sapiens a-L-fucosidase gene, exon 7 and 8, and complete cds.
R62549 PUTATIVE SERINE/THREONINE-PROTEIN KINASE B0464.5 IN 

 CHROMOSOME III (Caenorhabditis elegans)
T72863 FERRITIN LIGHT CHAIN (HUMAN)
T41204 P14780 92 KD TYPE V COLLAGENASE PRECURSOR
X68688 H.sapiens ZNF33B gene
T61661 PROFILIN I (HUMAN)
R52081 TRANSCRIPTIONAL ACTIVATOR GCN5 (Saccharomyces cerevisiae)
D26129 RIBONUCLEASE PANCREATIC PRECURSOR (HUMAN); contains element 

 MER21 repetitive element
T47383 ALKALINE PHOSPHATASE, PLACENTAL TYPE 1 PRECURSOR (Homo sapiens)
R80427 C4-DICARBOXYLATE TRANSPORT SENSOR PROTEIN DCTB (Rhizobium 

 leguminosarum)
M28128 Homo sapiens eosinophil cationic protein (ECP) mRNA, complete cds
R73660 GAMMA-INTERFERON-INDUCIBLE PROTEIN IP-30 PRECURSOR (HUMAN)
M96839 Human proteinase 3 gene, exon 5 and cds (3’ end)
R65697 ATP SYNTHASE A CHAIN (Trypanosoma brucei brucei)
H64807 PLACENTAL FOLATE TRANSPORTER (Homo sapiens)
K02268 Human enkephalin B (enkB) gene, exon 4 and 3’ fl ank and complete cds
H73908 METALLOTHIONEIN-IA (Bos taurus)
M28373 Homo sapiens amyloid protein A4 precursor mRNA, 3’ end of cds
M94132 Human mucin 2 (MUC2) mRNA sequence
M23419 INITIATION FACTOR 5A (HUMAN);contains element PTR5 repetitive element
J03210 Human collagenase type IV mRNA, 3’ end
T53396 60S ACIDIC RIBOSOMAL PROTEIN P1 (Polyorchis penicillatus)
T72175 IG KAPPA CHAIN PRECURSOR V-III REGION (HUMAN)
M29277 Human isolate JuSo MUC18 glycoprotein mRNA (3’ variant), complete cds
M85289 Human heparan sulfate proteoglycan (HSPG2) mRNA, complete cds.
R28373 HEMOGLOBIN BETA CHAIN (HUMAN)
T67406 COMPLEMENT C4 PRECURSOR (Homo sapiens)
T57882 MYOSIN HEAVY CHAIN, NONMUSCLE TYPE A (Homo sapiens)
H02465 GUANINE NUCLEOTIDE-BINDING PROTEIN G(I)/G(S)/G(O) GAMMA-7 
 SUBUNIT (Bos taurus)
M59807 NATURAL KILLER CELLS PROTEIN 4 PRECURSOR (HUMAN); contains element 

 MSR1 repetitive element
R38636 UROKINASE PLASMINOGEN ACTIVATOR SURFACE RECEPTOR, GPI-AN

 CHORED (HUMAN)
T57780 IG LAMBDA CHAIN C REGIONS (HUMAN)
R33481 TRANSCRIPTION FACTOR ATF-A AND ATF-A-DELTA (Homo sapiens)
M31994 Human cytosolic aldehyde dehydrogenase (ALDH1) gene, exon 13
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