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Abstract: We propose a method for biomarker discovery from mass spectrometry data, improving the common peak approach 
developed by Fushiki et al. (BMC Bioinformatics, 7:358, 2006). The common peak method is a simple way to select the 
sensible peaks that are shared with many subjects among all detected peaks by combining a standard spectrum alignment 
and kernel density estimates. The key idea of our proposed method is to apply the common peak approach to each class 
label separately. Hence, the proposed method gains more informative peaks for predicting class labels, while minor peaks 
associated with specifi c subjects are deleted correctly. We used a SELDI-TOF MS data set from laser microdissected cancer 
tissues for predicting the treatment effects of neoadjuvant therapy using an anticancer drug on breast cancer patients. The 
AdaBoost algorithm is adopted for pattern recognition, based on the set of candidate peaks selected by the proposed 
method. The analysis gives good performance in the sense of test errors for classifying the class labels for a given feature 
vector of selected peak values.

1. Introduction
Recent technological innovation has brought us comprehensive methods for the analysis of protein 
expression profi le data, such as Surface-Enhanced Laser Desorption/Ionization Time of Flight (SELDI-
TOF) or Matrix-Assisted Laser Desorption/Ionization (MALDI)-TOF mass spectrometry (MS). After 
initial research on the early detection of ovarian cancer (Petricoin et al. 2002), new methodologies for 
data analyses have been developed (Yasui et al. 2003; Tibshirani et al. 2004; Geurts et al. 2005; Meleth 
et al. 2005; Yu et al. 2005). As the TOF data has both amplitude variation and phase variation (Lin et al. 
2005), there are ongoing discussions about analytical problems (Conrads et al. 2004; Lyons-Weiler 
et al. 2005). Briefl y, the issue of analytical approaches includes the alignment and detection of peaks, 
and the construction of classifi ers for phenotypes. In the methods of detecting peaks, searching local 
maxima with a local signal-to-noise ratio is the most often used method. However the methods using 
wavelet transformation (Qu et al. 2003, etc.) were used as well. Recently, Fushiki et al. (2006) proposed 
the common peak method identifying biomarkers from high-dimensional MS data. This idea is based 
on the observation that peaks shared with for only few subjects may be noise, whereas peaks shared 
with more subjects may be signifi cant.

In this paper, we investigated the performance of the common peak method. We applied the 
common peak method to each group of subjects by class label rather than to the entire group, as 
by Fushiki et al. (2006). We applied this proposed approach to a SELDI-TOF MS data set from 
samples of cancer tissue obtained by laser capture microdissection (LCM) before the patients 
received medication with anticancer drugs. We examined the data set to detect effective peaks 
and constructed a system for predicting the effects of neoadjuvant therapy with an anticancer drug 
on breast cancer patients. Neoadjuvant therapy is one of the breast-conserving therapies that uses 
anticancer drugs before surgery. After the cancer has been reduced in size, surgical excision can 
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be applied. An establishment of prediction 
systems of the treatment effect of an anticancer 
drug (e.g. a system predicting a patient being 
responder or nonresponder) would improve 
decision making on each patient’s best medica-
tion. Such prediction systems could prevent 
useless medication and could help in selecting 
appropriate personalized therapies. We used the 
data set for illustrative purposes.

The common peak method allows the use of 
continuous and discrete covariates for peak intensi-
ties. In our study, we also examined both types of 
covariates in the analyses of statistical testing for 
each selected common peak and in the construction 
of a prediction system by using AdaBoost (Freund 
and Schapire, 1997) which is known as one of the 
effi cient ensemble learning methods. We found that 
the classifi er learning from discrete covariates 
showed very high performance. We discuss below 
some practical problems of data preprocessing in 
the mass spectrometry data and provide a guideline 
for the treatment of these data.

2. Data Sets Used
In our study, tissues from 65 breast cancer 
patients were sampled between 2003 and 2004 
from the Cancer Institute Hospital at the Japa-
nese Foundation for Cancer Research (Tokyo, 
Japan). The samples met all the following eligi-
bility criteria: size � 3.0 cm of invasive cancer; 
Stage IIA–IIIB; age � 70; bone marrow, liver 
and kidney funct ions  were  mainta ined 
(WBC � 4000/mm3, Plat. � 100,000/mm3, Hb 
� 10 g/dl, GOT/GPT � 60/70 U/I) and the 
patients had no other serious complications.

All patients received docetaxel 75 mg/m2 four 
times weekly every three weeks as neoadjuvant 
chemotherapy before surgery. Fresh cancer tissue 
biopsies were taken before treatment and cancer 
cells were isolated by LCM. To ensure the high 
quality of the samples, LCM was used in proteomic 
analyses (Verma et al. 2001; Batorfi  et al. 2003; 
Wulfkuhle et al. 2003; Krieg et al. 2005). The treat-
ment effect was judged from the pathology of 
specimens removed at subsequent surgery. Forty-
two patients were classed into a nonresponding 
group with pathology grade �1a (mild response). 
The other 23 patients with pathology grade �1b 
(moderate response) were classed as a group that 
responded to treatment. Here the pathological 
response 1a (mild response) is defi ned as mild 

changes in cancer cells regardless of the area, or 
marked changes seen in less than one third of cancer 
cells, and 1b (moderate response) is defi ned as 
marked changes in one third or more but less than 
two thirds of tumor cells (The Japanese Breast 
Cancer Society, 2005). The total set of 65 patients 
was randomly separated into 50 training samples 
and 15 test samples, as shown in Table 1. 

3. Methods

3.1. Preprocessing
In MS data, the x-axis shown here denotes the time 
of fl ight that was transformed into the mass-to- 
charge ratio (m/z value), and the y-axis denotes 
the intensity. Procedures for preprocessing 
observed spectra were as follows: (1) baseline 
subtraction, (2) alignment of mass spectra and (3) 
normalization. We used SpecAlign software 
(Wong et al. 2005) for procedures (1) and (2). 
Generation of spectrum averages and alignment 
using the peak matching method were performed 
in procedure (2). Normalization was performed 
using the method of Baggerly et al. (2004). For a 
single spectrum, let Vi denote the raw intensity at 
the i-th m/z value, and let Vmin and Vmax denote the 
smallest and largest observed intensities in the 
spectrum, respectively. Then the normalized inten-
sity NVi is given by

and all NVi’s are in the [0, 1] range.

3.2. Common peak method
To identify proteins associated with phenotypes, 
we needed to discriminate between noise and peaks 
of protein expression in observed spectra. Fushiki 
et al. (2006) proposed a new method for peak 

Table 1. Pathologies of the 65 patients. The effects 
0 and 1a are defi ned as nonresponders; 1b and 2 are 
defi ned as responders.

Group Nonresponder Responder
Pathology 0 1a 1b 2 Total
effect
Training 4 28 11 7 50
Test 2   8   4 1 15
Total 6 36 15 8 65

NV
V V

V Vi
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−
min

max min
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detection using published data. The principle of 
this method is that peaks may come from protein 
expression rather than noise when peaks are 
commonly observed in a major portion of 
subjects.

Using this method, covariates for prediction 
were constructed in the following order:
1. Peak detection for each subject
2. Common peak detection among subjects 
3.  Calculation of discrete and continuous

covariates by each subject.

3.2.1. Peak detection for each subject
First, we detected peaks for each subject, using the 
method proposed by Yasui et al. (2003). We set a 
k-nearest neighborhood as a width of window on 
the x-axis. Here we used k = 10. An m/z value 
achieving the maximum intensity in that window 
is regarded as a peak. We then moved the window 
along the x-axis and search for peaks in the spec-
trum of each subject.

3.2.2. Common peak detection among 
subjects
Next, we constructed common peaks by a responder 
and a nonresponder group from each individual’s 
peaks. In this step, we calculated an average of 
peaks, A(x), constructed by averaging Gaussian 
kernels with centers at the individual peak. Then 
A(x) was expressed as

(1)

where NG is the sample size of each group, pi,j is the 
m/z value of the i-th subject’s j-th peak and σ is a 
parameter accounting the width of the peak. We 
used here σ = 0.001. 

The common peak is defi ned by the point x in 
which A(x) is greater than a certain threshold h. 
Figure 1 shows the curve of A(x) at x = [3000, 4000] 
from nonresponders. Here we used h = 0.5.

Fushiki et al. (2006) obtained common peaks 
using all subjects of a study at once, however, in 
our work we applied the common peak method 
separately to each of two groups, as our purpose 
was to detect informative peaks for discrimination 
between responder and nonresponder. The feature 
of our approach is that it uses information of labels 
of groups but it does not intend any discrimination 

for a particular common peak. If the same common 
peak is selected for both groups, it would not help 
in discrimination. However, when a common peak 
is detected only in one group, then that peak would 
be an appropriate candidate for classifi ers. Below 
we will compare the proposed method with that by 
Fushiki et al. (2006).

3.3. Calculation of discrete and 
continuous covariate by each subject
We often analyze data sets with discrete covariates, 
which are dichotomous codes with 0 and 1 rather 
than direct intensity when there might be a relative 
large error of intensity of SELDI and MALDI. In 
this case, a covariate xj for the common peak mj 
for the j-th peak for a certain subject might be 
obtained as follows:

(2)

where ρ adjusts a width of the window around 
the common peak mj , and should be set according 
to precision of m/z values. On the other hand, 
when we aim to use the observed value of inten-
sity, the continuous covariates xj is defi ned as 
follows:

In this study, we employed both cases of discrete 
and continuous covariates with ρ = 0.0005.

3.4. AdaBoost
AdaBoost is one of the machine learning algorithms 
which is ensembles of statistical classifi ers that are 
more accurate than a single classifi er. It is known 
that the boosting algorithm is highly resistant to 
overfi tting in the discovery of protein biomarkers 
(Yasui et al. 2003). 

We consider here a set of the training data set 
D = {(xi  , yi ):i = 1, … , N}, where x is an input 
vector and y ∈ {+1, −1} is a class label. In this 
paper x corresponds to a set of covariates based on 
the common peaks. Let
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Figure 1. Average of peaks (nonresponders). The dashed line denotes a threshold value h = 0.5.

be a set of weak classifi ers. Here J is the total 
number of common peaks among groups. Then the 
AdaBoost algorithm is described as follows:
1. Set an initial value of weight w1 (i) =   , 

(i = 1, … , N).
2. Defi ne a weighted error rate for t-th iteration,

t = 1, … , T, as

 where I represents indicator function and wt
is a weight at t-th iteration. Next,

 (2a) Select a weak classifi er ft = argmin1≤ j≤ J εt(   fj  ).
 (2b) Calculate α ε

εt
t t

t t

f

f
= −1

2
1log ( )

( )
.

 (2c) Update the weight defi ned by wt+1(i) ∝
 wt(i) exp {−yiαt   ft (xi)} . Here we normalize
 the weight such that 

3.   where

In step (2a), ft is adjusted for a restriction that 
the weighted error rate must be less than 0.5. If it 
exceeds 0.5, then we use −ft instead of ft as a clas-
sifi er. Furthermore, step (2c) can be expressed as:

(4)

We update the weight by multiplying with exp(αt) 
when ft misjudges the i-th subject, and by multi-
plying with exp (−αt) when  ft  judges correctly the 
i-th subject (see Murata et al. 2004).

We adopted cross-validation (CV) for selecting 
the number of classifi ers T as follows: We select 
the minimum of T such that the integrated classifi er 
fT in step 3 attains local minima and has CV errors 
with no more than one standard error above the 
minimum CV error (see Hastie et al. 2001).

4. Results

4.1. Common peak detection
From the training data set, we obtained 92 common 
peaks for the responder group of 18 patients and 
81 common peaks for the nonresponder group of 
32 patients. All common peaks which were detected 
for at least one group were used for analysis. In 
total, 117 common peaks were obtained. We calcu-

(3)
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lated both discrete and continuous covariates for 
these 117 common peaks.

4.2. Construction of classifi ers
To construct a classifier, we analyzed the 
training data set using AdaBoost and computed 
the training and CV errors. CV error was calcu-
lated by replicating a five-fold cross-validation 
50 times and averaging the errors. Figure 2(a) 
shows the error curves of the discrete case. The 
CV error (dashed line) was minimized locally 
at T = 6 and the error rate at T = 6 did not differ 
statistically significant from that of the best 
model (T = 15). Therefore, we selected the six-
peaks model for the discrete case.

The error curves of the continuous case with 
normalization are shown in Figure 2(b), but the CV 
error rates for entire range of T were much worse than 
that for the discrete covariates. Therefore there were 
not any comparable model for the continuous case. 

4.3. Validation result
Using the six-peaks model, we predicted treatment 
effects, (i.e. “responder or nonresponder”), for each 
subject in the test data of 15 subjects. The test error 
was 1/15 for the discrete covariates (Fig. 2(a)). 
Figure 3 shows the prediction scores for all subjects 
of the test data using discrete covariates. The 
prediction score F ′(x) is given by

(5)

This score has the property that when the score is 
more distant from the zero value, the prediction is 
more confi dent.

4.4. Single peak analysis
For selecting six peaks by AdaBoost, we performed 
Fisher’s exact test to investigate whether the frequency 
of the peak differed between groups. Table 2 indicates 
that the result was signifi cant for all six peaks. 

4.5. Comparison with the original 
common peak method
To compare it with the original common peak 
method, we analyzed the same data set using the 
unsupervised method of Fushiki et al. (2006). This 
method detected 81 common peaks from 50 

samples of the training data set, but there were no 
differences in the frequencies of peaks between 
responders and nonresponders. AdaBoost was also 
applied but the training error rate could not be 
forced to become zero. It was not possible to 
discriminate the training data set suffi ciently when 
using the original common peak method. From this 
we conclude that the new method is superior for 
our task.

4.6. Comparison with another classifi -
cation approach
It is important to compare this method with other 
classifi cation methods such as the support vector 
machine-recursive feature elimination (SVM-RFE) 
approach (Guyon et al. 2002). We re-analyzed our 
data using the SVM-RFE with polynomial and 
Gaussian kernels instead of AdaBoost. In the 
discrete case, the fi fteen peaks model with 2nd 
degree polynomial kernel was selected by the RFE. 
The fi ve-fold CV error of this model was 0.024 
and the test error was 2/15. Only three peaks 
(m/z values 1361, 2250 and 2989) selected by 
AdaBoost were included in the fi fteen peaks model. 
The SVM-RFE approach gave comparable results, 
but we concluded AdaBoost was better for our 
analysis in that the number of peaks in the model 
was small and the test error was small.

5. Discussion
In the common peak method proposed here, one 
has to set four parameters (k, h, ρ, σ) to select 
common peaks and give the individual covariates. 
If the parameter k concerning window width is 
small, as the probability of selecting false positives 
is high and hence the baseline of average peaks is 
also high. We adopted k = 10 following the original 
method of Fushiki et al. (2006); we also tried 
k = 20, but the resulting common peaks showed 
no difference. The threshold parameter h was used 
for detection of the common peaks.

When the sample size NG is small in equation 
(1), the impact of uncommon peaks on A(x) is large. 
Therefore in such a case h should also be large. 
Parameters ρ and σ, should be set to properly 
account for the width of the peak, because it is 
diffi cult to align spectra perfectly in the stage of 
preprocessing. SELDI-TOF machine we used has 
an error of 0.002 about its m/z values, and ρ and 
σ should be less than 0.002 because the spectrum 
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Figure 2. Training error rate (solid line), CV error rate (dashed line), and test error rate (dotted line) by AdaBoost for the discrete and 
continuous covariates.
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alignment had been performed already. In our 
study, we set ρ = 0.0005 and σ = 0.001 for this 
reason.

In our study, we realized that the result for 
continuous covariates was worse than that for 
discrete covariates. Continuous covariates are 
calculated based on the intensity with baseline 
subtraction. Hence they become sensitive to the 
variation caused by the methods or parameter 
settings of baseline subtraction. In contrast, discrete 
covariates are not infl uenced by baseline subtrac-
tion. In this sense, we supported the results based 
on the case of discrete covariates in this analysis.

On the use of the common peak method, if the 
spectra alignment is insufficient, the number of 
detected common peaks becomes smaller, and conse-
quently it may fail to detect important peaks. 
Therefore, preprocessing—especially for spectra 
alignment—is important when analyzing MS data.

It is important to compare the common peak 
method with other peak selection methods. We 
analyzed our data using the Ciphergen ProteinChip 
software (Fung and Enderwick, 2002) with default 
settings, 82 peaks of 117 peaks obtained by our 
method were detected from 50 training samples, and 
only three peaks (m/z values 1361, 2250 and 2621) 
were detected of the six peaks we selected as the 
biomarkers. ProteinChip software judges whether 
an intensity is a peak caused by protein expression 
or noise for each single spectrum. Then peak align-
ment after the peak detection is needed for classifi -
cation. On the other hand, the common peak method 
detects peaks from multiple spectra, and hence our 
method can detect peaks more sensitively.

In order to see how the results would be affected 
if different training and test sets were used, we 
examined randomly splitting the spectra into training 
and test 10 times. The mean of the number of 
selected peaks was 7.4 and its range was 4 to 12. 
Among the six peaks selected in Section 4.2, the 

peak with m/z value 2843 was selected in all 10 
cases, and the other peaks were selected at least three 
cases. The mean test error was 0.087, and this error 
rate had little difference from 1/15(=0.067). There-
fore it was confi rmed that our result did not depend 
on the choice to split training and test sets.

We compared the proposed method with the 
SVM-RFE method in Section 4.6 and concluded 
that AdaBoost was slightly better than the SVM-
RFE in our analysis, but there was no signifi cant 
difference. However, the SVM-RFE method has 
more computational complexity, because the SVM-
RFE learns using all variables fi rst to compute the 
ranking criterion for all variables, and removes the 
least important variable in a sequential manner. On 
the other hand, AdaBoost minimizes sequentially 
the exponential loss function and selects important 
variables simultaneously. AdaBoost has an advan-
tageous point from the computational reason with 
an appropriate stopping rule.

Validating common peaks obtained here on other 
available breast cancer data sets is important. Pusztai 
et al. (2004) used SELDI-TOF MS profi ling to 
examine proteomic changes in plasma of patients 
with breast carcinoma who received either 
preoperative or postoperative chemotherapy for 
Stage I–III breast carcinoma. They detected only 
one treatment-induced protein/peptide peak (m/z 
value 2790) and reported fi ve peaks (m/z values 
3165, 3440, 4115, 4444, and 8940) that expressed 
in plasma obtained from women breast carcinoma. 
Among the common peaks obtained in our study, 
one peak with m/z value 3444 was close to one of 
the peaks (m/z value 3440) reported by Pusztai et al. 
(2004). This peak was observed in both case and 
control groups as a common peak. However, it is 
hard to confi rm the consistency, because there are 
many differences between two studies compared. 
We used microdisected cancer tissue, but Pusztai 
et al. (2004) used plasma and they used paclitaxel 
chemotherapy or 5-fl uorouracil, doxorubicin, and 
cyclophosphamide (FAC) chemotherapy. Therefore, 
further examination will be needed to validate these 
peaks and biomarkers obtained here.
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