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Abstract
Introduction: As an alternative to DNA microarrays, mass spectrometry based analysis of proteomic patterns has shown 
great potential in cancer diagnosis. The ultimate application of this technique in clinical settings relies on the advancement 
of the technology itself and the maturity of the computational tools used to analyze the data. A number of computational 
algorithms constructed on different principles are available for the classifi cation of disease status based on proteomic pat-
terns. Nevertheless, few studies have addressed the difference in the performance of these approaches. In this report, we 
describe a comparative case study on the classifi cation accuracy of hepatocellular carcinoma based on the serum proteomic 
pattern generated from a Surface Enhanced Laser Desorption/Ionization (SELDI) mass spectrometer.

Methods: Nine supervised classifi cation algorithms are implemented in R software and compared for the classifi cation 
accuracy.

Results: We found that the support vector machine with radial function is preferable as a tool for classifi cation of hepatocel-
lular carcinoma using features in SELDI mass spectra. Among the rest of the methods, random forest and prediction analy-
sis of microarrays have better performance. A permutation-based technique reveals that the support vector machine with a 
radial function seems intrinsically superior in learning from the training data since it has a lower prediction error than oth-
ers when there is essentially no differential signal. On the other hand, the performance of the random forest and prediction 
analysis of microarrays rely on their capability of capturing the signals with substantial differentiation between groups.

Conclusions: Our fi nding is similar to a previous study, where classifi cation methods based on the Matrix Assisted Laser 
Desorption/Ionization (MALDI) mass spectrometry are compared for the prediction accuracy of ovarian cancer. The support 
vector machine, random forest and prediction analysis of microarrays provide better prediction accuracy for hepatocellular 
carcinoma using SELDI proteomic data than six other approaches.

Keywords: classifi cation, hepatic carcinoma, random forest, SELDI, support vector machine

Introduction
In recent years, proteomic patterns derived from mass spectrometry (MS) have been actively investi-
gated for their potential in biomarker detection and disease diagnosis, especially in cancer (Ball et al. 
2002; Conrads et al. 2003; Coombes et al. 2005; Petricoin et al. 2002; Qu et al. 2003; Zhu et al. 2003). 
Since proteins execute most of the biological functions that are relevant to disease onset and progress, 
protein expression “fi ngerprints” can potentially generate insights into the dysfunction of cell machin-
ery that may not be provided by DNA microarrays. This is because microarrays measure global mRNA 
expression levels and not potential alterations in a protein function mediated by epigenetic changes. In 
the clinical setting, a potentially powerful technique is to profi le the quantitative patterns of proteins in 
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a biological sample (i.e. serum) without the iden-
tifi cation of the proteins in order to predict disease 
conditions in an effi cient and hopefully reliable 
manner. To date, Surface Enhanced Laser Desorp-
tion/Ionization Time of Flight (SELDI-TOF) and 
Matrix Assisted Laser Desorption/Ionization Time 
of Flight (MALDI-TOF) have been the two major 
MS techniques utilized toward this direction.

Both SELDI-TOF and MALDI-TOF require the 
proteins being analyzed to be co-crystallized with 
an energy-absorbing organic substance (referred to 
as matrix). The properties of the matrix enable it to 
convert laser energy directly into the heat required 
to vaporize both the matrix and the proteins embed-
ded in the crystal of matrix. SELDI-TOF based 
mass spectrometry employs what is essentially 
solid-state chromatography to enrich for specifi c 
populations of proteins within the complex mixture 
prior to analysis in the mass spectrometer. In con-
trast, MALDI-TOF mass spectrometry cannot in 
itself select for specifi c protein populations. Nev-
ertheless, both platforms share certain similarity as 
well, including the nature of ionization mechanism, 
time-of-fl ight mass analyzer and so on. In particu-
lar, both techniques can generate a mass spectrum 
for a large number of proteins in a patient’s serum 
or plasma, which allows investigators to classify 
subjects into different disease related categories 
(e.g. diseased versus normal) based on the protein 
“fi ngerprints”.

The excitement of these high-throughput tech-
niques comes with a great challenge since the vast 
amount of data yielded by mass spectrometers has 
high dimension and complex variation patterns.  
Although the tremendous amount of data can 
potentially provide us insightful information, 
knowledge extraction has been diffi cult due to 
limited understanding of the data generation 
mechanism and noises that mask the true biologi-
cal signals. This has raised the debate as to the 
reproducibility and validity of the results of analy-
ses of SELDI MS data due to potential artifacts 
that might have been introduced into the spectra 
at certain experimental stages (Baggerly et al. 
2004; Baggerly et al. 2005; Conrads et al. 2004; 
Conrads et al. 2003; Liotta et al. 2005; Ransohoff, 
2005; Sorace et al. 2003; Zhu et al. 2003). Although 
the very nature of the spectral data are still not fully 
understood, it seems critical to pre-process the data 
in order to quantify signals accurately before any 
statistical and computational algorithms can be 
applied for formal analysis (Coombes et al. 2005; 

Coombes et al. 2005). While efforts are being made 
to improve raw data pre-processing, the question 
regarding the preferred approach to use for the 
downstream classifi cation remains. Evaluation of 
various classifi cation approaches will provide guid-
ance in this regard, and help us better understand 
the nature of the data. Since classifi cation accuracy 
is highly related to the data being examined, gen-
eralization of any fi ndings from one study requires 
further evidence that may be provided be analysis 
of other data sets. To our knowledge, there is only 
one study that examined the classifi cation accuracy 
of various algorithms using MALDI generated 
spectra (Wu et al. 2003), and no analog for SELDI 
based study has been published to date.

In this paper, we compare nine different clas-
sifi cation algorithms using data generated by a 
SELDI mass spectrometer for subjects with and 
without hepatocellular carcinoma. Our work 
reaches similar conclusions to a previous study on 
MALDI (Wu et al. 2003) and suggests some com-
mon approaches that can be applied to both 
MALDI-TOF and SELDI-TOF mass spectrometry 
data to achieve optimal classifi cation accuracy.

Methods

Samples
Serum samples were collected from 90 individuals 
prior to complete hepatectomy and liver transplan-
tation: 60 with hepatocelluar carcinoma and 30 
without evidence of hepatocelluar carcinoma. The 
diagnosis of cancer was made by pathologists at 
Indiana University pre-operatively using biopsy 
material or post-operatively by histopathological 
examination. The controls were determined before 
(by pre-operative clinical and radiographic testing), 
or after, (by pathological examination), complete 
hepatectomy and liver transplantation. Of these 
samples, two had to be excluded from analysis due 
to extreme red blood cell hemolysis (one from each 
group). Hence, we include in this analysis 59 cases 
and 29 controls (88 subjects in total).

SELDI experiment
The serum samples were analyzed in a Protein 
Biological System II time-of-fl ight mass spectrom-
eter (PBS-IIc, Ciphergen Biosystems), using H50 
ProteinChip Arrays (Ciphergen Biosystems). Each 
sample was analyzed in duplicate.
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Pre-processing
Pre-processing of the raw SELDI mass spectra 
includes three components: baseline subtraction, 
normalization and m/z value adjustment. Since the 
H50 chip we used provides the most reliable infor-
mation below m/z = 10000, we only consider m/z 
values in the range of (500–10000). Here 500 is 
used as the threshold for low m/z values since it is 
believed that high concentrations of low mass spe-
cies (e.g. matrix or contaminants) frequently over-
load the detector and obscure the peptide signals 
(Malyarenko et al. 2005).

Our data is composed of 176 (88*2) spectra, each 
of which has 14938 m/z values and their corre-
sponding intensities. The intensity levels are trans-
formed by a natural logarithm function (to stabilize 
the variation) for pre-processing. After the prepro-
cessing, we averaged the two processed spectra 
from each sample (the pooled spectrum), which 
was used for feature selection and classifi cation.

Baseline subtraction
The raw SELDI spectra usually exhibit an elevated 
baseline, which is mostly due to the chemical noise 
in the energy absorbing molecule and ion overload. 

The PROcess package (http://www.bioconductor.org/) 
for R software is used to remove the “background” 
noise. Essentially, PROcess seeks local thresholds in 
a window of pre-specifi ed width, fi ts a local regression 
to points below the threshold, and subtracts the esti-
mated baseline (local regression) from the raw spec-
trum. In Figure 1, we show one sample spectrum 
before and after baseline subtraction.

Normalization
Due to subject-specifi c variation, certain spectra 
will on average have higher intensities than others. 
We use the caMassClass package (http://cran.
r-project.org/src/contrib/Descriptions/caMass-
Class.html) for R software to normalize the inten-
sities in each spectrum. After the normalization, 
all spectra have the same means and medians.

M/Z value adjustment
The shifting of m/z values is a common problem 
in MALDI/SELDI based mass spectrometry data. 
Again, we use the caMassClass package to align 
the data. The two replicates from each sample were 
aligned fi rst, followed by the alignment of the 
“merged” spectrum of each sample to the mean of 
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Figure 1. Illustration of baseline subtraction.
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all samples. The sample means were then recalcu-
lated and the above steps were repeated until 
convergence. The lower limit for correlation 
improvement due to shifting is set to 0.0005. In 
Figure 2, we show the effect or normalization and 
m/z adjustment for 5 samples via a heat map.

Feature selection
Since some of the approaches under our consider-
ation cannot handle the large number of features 
in the SELDI data, we need to select a smaller 
number of features for the comparison. From 
another point of view, most of the m/z values are 
of no discriminant power and inclusion of all of 
the m/z values might bring in more noises than 
signals. Feature selection has been an active area 
in the analysis of high-dimensional data such as 
DNA microarray and mass spectrometry. Many 
statistical methods have been developed to select 
“true discriminant signals” (Efron, 2004; Efron 
et al. 2002; Efron et al. 2001; Tibshirani et al. 2002; 
Tusher et al. 2001) and control the false discovery 
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Figure 2. Illustration of the effect of normalization and m/z adjustment. “_adj” implies spectrum after normalization and m/z adjustment.

rate (FDR) (Benjamini et al. 1995) at the same 
time. Since the purpose of this study is to compare 
the classifi cation accuracy instead of quality of 
features selected, the same set of features will be 
fed to each algorithm. Ideally, the features used 
should not favor any algorithm in any particular 
way. In practices, it is very diffi cult to evaluate the 
“bias” in this regard. To reduce the bias to the 
minimum, none of the feature selection provided 
by some of the algorithms to be compared is used. 
Instead, we use the caMassClass package to select 
m/z values by the area under their Receiver Ope-
rating Characteristic (ROC) curve for the predic-
tion of hepatocellular carcinoma beyond a 
pre-determined threshold (the ROC curve is cal-
culated based on the 88 pooled spectra). In the 
meanwhile, caMassClass also eliminates m/z val-
ues whose correlation in the intensities is higher 
than a pre-determined threshold. In our implemen-
tation, we fi xed the threshold for the correlation to 
be 0.95. We obtained 30 and 17 m/z values by set-
ting the threshold for the area under the ROC to 
be 0.7 and 0.71, respectively. These two sets of 
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m/z values (“features”) were the basis for the com-
parison of the different classifi cation methods. To 
evaluate the quality of the two sets of features, we 
estimate the FDR using an empirical Bayes 
approach (Efron, 2004; Efron et al. 2002; Efron 
et al. 2001) (assuming proportion of null features 
is 75%). The overall FDR is around 20% for the 
two sets of features. Hence, about 6 and 3 features 
in the two sets are false discriminant signals, 
respectively. In Table 1, we show the m/z values, the 
corresponding area under the curve (AUC), and their 
local false discovery rate (LFDR, the probability of 
a false signal given the data) for the set with 17 m/z 
values.

The prediction power of some of the approaches 
might not reach their fullest potential since the 
features selected might not be the “optimal” ones 
for them. Nevertheless, we want to emphasize that 
the true discriminant signals, if exist, are fi xed. 
Although various algorithms can select their own 
features to reach the maximum prediction accuracy, 
such a comparison includes too many false posi-
tives and is not very meaningful. In clinical reality, 
the ultimate goal is to determine a set of high con-
fi dence markers for classifi cation instead of letting 
the algorithm of choice selects. Hence, we consider 
feeding the various approaches a fi xed set of fea-
tures a more meaningful procedure.

Importantly, m/z values, not peak locations, are 
the features we considered here. No peak identifi -

cation algorithm was used in our feature selection. 
Our rational is that true biological signals can have 
low intensities and can be easily removed by the 
peak identifi cation procedure if the procedure itself 
is not appropriate for the data or if the parameters 
are not set correctly (Johann et al. 2003).

Comparisons
We considered nine different algorithms in this 
study, each of which is fed by the 30 or 17 m/z 
values selected for the classifi cation. These algo-
rithms are the Quadratic Discrimination Analysis 
(QDA), the Linear Discrimination Analysis (LDA), 
the Support Vector Machine (SVM, two types: one 
with linear transformation [SVM.lin] and one with 
radial transformation [SVM.rad]), Classifi cation 
Trees (Tree), Random Forest (RF), LogitBoost, k-
Nearest Neighbor (KNN, two types: k = 1 [KNN1] 
and k = 3 [KNN3]), Prediction Analysis of Microar-
ray (PAM), and Neural Networks (NNET). We 
implemented these methods in R software, where 
the subroutines to carry out the algorithms have 
been developed by a number of authors.

Quadratic discrimination analysis (QDA)
If we assume the distribution of the intensities of 
the selected m/z values follow a multivariate nor-
mal distribution for each of the two populations 
(case and control), the training data set can be used 
to estimate the model parameters (mean and cova-
riance). One can then predict a new observation 
based on a maximum likelihood (ML) principle: 
the population with the set of parameters that 
maximizes the likelihood of the new observation 
is the prediction. Bayes rule can also be used in 
this setting by including a prior for the proportion 
of various populations. We will focus on the ML 
principle in the following description. If we let X 
denote the intensity vector and Y be the disease 
status indicator (Y = 1 implies case and Y = 0 
implies control); we have

 | , , 0,1k k
X Y k N kµ

⎛ ⎞
= =⎜ ⎟⎝ ⎠

Σ∼  

where µk  and Σ k  are the mean and covariance 
matrix for population k. Then, for a new observa-
tion with Xnew, we select the k that minimizes
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Table 1. 17 M/Z values used for classifi cation. AUC: 
Area Under the Curve of Receiver Operating Charac-
teristic; LFDR: Local False Discovery Rate.

m/z AUC (95% CI) LFDR
 644.72900 0.735 (0.624, 0.846) 0.305
 941.7701 0.717 (0.605, 0.828) 0.331
 950.5807 0.717 (0.604, 0.829) 0.340
 1384.6386 0.720 (0.606, 0.834) 0.305
 1453.8830 0.712 (0.600, 0.824) 0.335
 1732.8245 0.727 (0.619, 0.835) 0.305
 2458.0293 0.726 (0.614, 0.838) 0.305
 2458.5453 0.718 (0.608, 0.829) 0.305
 2786.9481 0.732 (0.629, 0.834) 0.266
 4054.9402 0.746 (0.632, 0.861) 0.059
 4064.9297 0.753 (0.641, 0.866) 0.059
 4070.9294 0.732 (0.610, 0.853) 0.059
 7549.8190 0.721 (0.610, 0.831) 0.305
 7550.7298 0.720 (0.609, 0.831) 0.305
 8004.6494 0.736 (0.621, 0.852) 0.059
 8061.0327 0.724 (0.607, 0.840) 0.100
 8080.8138 0.737 (0.619, 0.855) 0.061
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where µ̂k and Σ̂ k  are the estimates of µk  and Σ k  
based on the training data set. The function qda 
from MASS package is used for QDA.

Linear discrimination analysis (LDA)
In the two-class classifi cation scenario, LDA is a 
special case of QDA which assumes that 0 1.Σ = Σ  
When this assumption is true, it will have better 
power than the QDA. The function lda from MASS 
package is used for LDA.

Supporting vector machine (SVM)
In the linear SVM, a hyperplane is sought to 
separate the points of the two classes in the 
training data such that the sum of the distance 
from the closest point of each of the two classes 
to the hyperplane is maximized. In the non-lin-
ear SVM, the raw data are first mapped to 
another space via some functional transforma-
tion, where the linear SVM is applied (Vapnik, 
1998). When the optimal hyperplane is obtained, 
the classification of a new case is then predicted 
by the side of the new observation to the hyper-
plane. In our implementation, both linear and 
non-linear SVM (a Gaussian radial basis func-
tion) are included. The function svm from the 
e1071 package is used for SVM. The gamma 
parameter is set to 1 divided by the number of 
features and the cost (constant in the Lagrange 
regulation term) is set to 1. The tolerance of the 
termination criterion is set to 0.001.

Classifi cation trees (Tree)
Tree based classifi ers are constructed by repeatedly 
splitting the subsets (the nodes) of the training data 
based on the feature measurements. The start point 
is the entire set of training data. Each terminal node 
(one that is not further split) is then assigned a class 
membership. When the rule of such a series of par-
titions is determined, a new observation’s features 
will fl ow through the tree and end at some node, 
whose class membership will then be the prediction 
for the new case. The rule will be derived from the 
training data to decide (i) the threshold of the split, 
(ii) when to stop splitting a node (declare a terminal 
node) and (iii) how to assign class membership for 
the terminal nodes. We use the Classifi cation and 
Regression Trees (CART) (Breiman et al. 1983) as 
our tree classifi er. Function tree from the tree pack-
age is used for classifi cation trees.

The random forest (RF)
Prediction accuracy can be improved by aggregat-
ing classifi ers built on perturbed training sets. The 
“aggregation” means the prediction of a new obser-
vation will be based on the majority votes from 
different classifi ers. A typical way of realizing the 
“perturbation” is to bootstrap the training data 
(bagging), which means sampling with replace-
ment to construct the bootstrap “training data”. 
Then each of these data sets is used to construct a 
classifi er.

In random forest algorithms, the bagging tech-
nique is applied to tree classifi ers. It further incor-
porates a random process to select features at a node 
for the best split such that only a subset of the fea-
tures is used for the growth of the tree at any node 
(Breiman, 1999). We grow 500 trees in each indi-
vidual training data and the number of original 
features randomly sampled as candidates is p , 
where p is the number of original features. In addi-
tion, the size of the bootstrap sample to draw is equal 
to the number of samples in the training set. Func-
tion randomForest from the randomForest package 
is used for RF.

The LogitBoost
An alternative to bagging is boosting, in which 
the data are re-sampled adaptively so that the 
probability of selection is increased for those 
cases most often misclassifi ed. The prediction of 
a new observation is based on weighted voting 
such that votes from different classifi ers carry 
different weights. LogitBoost is built on a logis-
tic additive model for the probability of being in 
one of the two classes (Friedman et al. 2000). The 
Function LogitBoost from the caTools package 
is used for LogitBoost. We set the number of 
iterations of the boosting procedure to be the 
number of features.

k-Nearest neighbor (KNN)
KNN is based on the intuitive reasoning that the 
observations in the training data that are close to 
the new observation, within some measure of the 
distance, should be the ones used to vote. The 
implementation includes the defi nition of the dis-
tance and the number of neighbors (k) used for the 
plurality vote. KNN also provides a straight 
forward way to calculate the posterior probability 
of being in one class based on the votes of the 
neighbors (Ripley, 1996). We use Euclidean 
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distance in our comparison and consider k = 1 and 
3. The function knnt from the class package is used 
for KNN.

Prediction analysis of microarray (PAM)
PAM was originally proposed (Tibshirani et al. 
2002) for the classifi cation problems based on 
DNA microarray data. It is a “shrinkage” version 
of the nearest centroid approach. The nearest cen-
troid applies the same principle as the QDA with 
the assumption that the features are independent. 
Essentially, new observations are classifi ed based 
on their Euclidean distance (standardized by the 
standard error) from the class means. PAM shrinks 
the class means by a parameter that directly con-
trols the shrinkage of the t-like statistic (Tusher 
et al. 2001). It has been shown to be more accurate 
than competing methods (Tibshirani et al. 2002). 
The functions pam.train and pam.predict from the 
pamr package is used for PAM. 30 threshold 
values are selected by pamr and the median of the 
standard deviations of each feature is selected as 
the offset parameter for the denominator of the 
t-like statistic.

Neural networks (NNET)
Neural networks are mathematical models based 
on the structure of the neural activity of the brain. 
A neural network is composed of three elements: 
nodes, architecture and the training algorithm 
(Ripley, 1996). The nodes are usually arranged in 
layers and represent the neuron cells. The 

connections among nodes represent the transduction 
of electronic signals among neuron cells, which 
form the architecture of the network. In other 
words, the nodes of a neural network combine the 
input values from its incoming connections and 
output a value to its outgoing connections. The 
training algorithm essentially is an optimization 
process that minimizes the risk function that is 
defi ned to measure the prediction accuracy. We 
consider a single-hidden-layer neural network, 
which is composed of a layer of input nodes, a 
layer of output nodes and a layer of hidden nodes 
(2 nodes). The logistic function is chosen as the 
activation function and the training algorithm is 
stopped after 100 iterations or the absolutely value 
of the relative change of the error function (squared 
error plus Lagrange term) is less than 10–8. The 
functions nnet and pam.predict from the nnet pack-
age is used for NNET.

Results
To evaluate the prediction accuracy, a 4-fold cross-
validation procedure was implemented. In the cross-
validation, the 88 samples were randomly divided 
into four equal subsets, preserving the relative pro-
portion of cases and controls in each subset. Three 
of these subsets were used to train the various algo-
rithms (training data), and the trained algorithms 
were then used to predict the disease status for the 
fourth subset (testing data). The error rate was cal-
culated as the proportion of the prediction that was 
incorrect. This procedure was repeated 100 times 

Figure 3. Prediction errors using 30 features and 4-fold cross-validation (100 runs).
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so that 100 error rates were generated for each algo-
rithm. In Figures 3 and 4, we show the box plot of 
these error rates under the 30-feature and 17-feature 
scenarios, respectively. Note that we do not include 
QDA in the 30-feature classifi cation since the num-
ber of features is too large for QDA.

As for the variation of the error estimates, 
classifi cation based on 30 features demonstrates 
lower variance than that based on the 17-feature, 
which suggests more stable error rates for predic-
tion when there are more features to train the 
algorithms. For the 30-feature classifi cation, the 
variations of different methods are similar to one 
another, except that the Tree approach has a 
slightly larger variance and KNN3 seems to have 
a lower variance. For the 17-feature classifi cation, 
LDA, NNET, PAM and Tree have relatively 
higher variance than others. When looking at the 

overall distribution of the error rates of various 
methods, SVM.rad has a better performance than 
others under the 30-feature classifi cation, in terms 
of the location of the distribution and the varia-
tion. PAM, RF and SVM.lin have similar perfor-
mance and follow behind SVM.rad. When the 
number of features is reduced to 17, SVM.rad is 
still the best overall with a low error rate and small 
variation. RF follows as an alternative method. 
However, some of the advantages of PAM and 
SVM.lin over other approaches that we saw under 
the 30-feature classification diminished. The 
sensitivity and specifi city averaged over the cross-
validations are shown in Table 2.

We also estimate the expected true error (Efron 
et al. 1997) and associated standard errors. The 
expected true error is the average prediction error 
over all possible scenarios of training samples and 

Table 2. Sensitivity and specifi city averaged over 100 cross-validations. 

 30 features 17 features
Methods Sensitivity Specifi city Sensitivity Specifi city
KNN1 0.67 0.79 0.67 0.84
KNN3 0.61 0.86 0.63 0.86
LDA 0.69 0.79 0.63 0.82
LogitBoost 0.62 0.87 0.63 0.85
NNET 0.57 0.86 0.46 0.86
PAM 0.64 0.89 0.57 0.92
QDA NA NA 0.18 0.98
RF 0.61 0.93 0.61 0.90
SVM.lin 0.78 0.83 0.58 0.84
SVM.rad 0.71 0.93 0.61 0.93
Tree 0.51 0.76 0.49 0.80

Figure 4. Prediction errors using 17 features and 4-fold cross-validation (100 runs).
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individual testing sample. The result of the 
17-feature scenario is shown in Figure 5. As can 
be seen, the SVM.rad is signifi cantly better than 
most of other approaches. RF and PAM, which 
follow SVM.rad, have similar expected true error 
and are also signifi cantly better than some of the 
other approaches. In summary, SVM.rad seems to 
be a preferred choice due to overall low prediction 
error. In addition, the variation of the error estimate 
of SVM.rad is comparable, if not smaller, to other 
approaches. RF and PAM are two alternative 
approaches which perform better than others. This 
result is very similar to the fi ndings in a study on 
MALDI (Wu et al. 2003), where the random forest 
method is found the best, followed by support vec-
tor machine (PAM was not evaluated in that 
study).

It is possible that some approaches are intrinsi-
cally “better” than others when applied to the mass 
spectrometry data in the sense that they have higher 
classifi cation accuracy even when there is very 
few/weak differential signals to distinguish the two 
groups. Since various algorithms transform the 
original data into different spaces, we conjecture 
that the magnitude of the separation of the two 
groups depend on the very nature of these spaces. 
Hence, it is possible that some algorithms might 
be able to magnify the few weak differential signals 
in the training data so that they can learn “better”. 
Nevertheless, such an effect will be masked when 
there are more very strong signals. To eliminate 
those strong differential signals, we adopt a 
permutation-based approach. Specifically, we 
assign “case” status to 29 samples randomly 

Table 3. Mean and standard deviation (SD) of classifi cation error rates under random assigned disease status 
(100 random assignments, 10 runs of 4-fold cross-validations for each assignment).

Methods 30 features 17 features
 Mean of error rates SD of error rates Mean of error rates SD of error rates
KNN1 0.45 0.11 0.45 0.10
KNN3 0.42 0.10 0.43 0.10
LDA 0.45 0.10 0.41 0.10
LogitBoost 0.50 0.10 0.43 0.10
NNET 0.43 0.11 0.41 0.11
PAM 0.36 0.09 0.35 0.09
QDA NA NA 0.34 0.06
RF 0.38 0.09 0.39 0.09
SVM.lin 0.43 0.10 0.39 0.09
SVM.rad 0.33 0.03 0.33 0.03
Tree 0.46 0.11 0.45 0.11

Figure 5. Estimate of expected true errors and their standard errors based on 17 features and 66 training samples.
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selected from the 88 samples and assign “control” 
to the rest so that differential signals will be rare 
and weak. Then we can assess the prediction 
accuracy via cross-validation as described previ-
ously. In Table 3, we show the mean and standard 
deviation of the error rates for various methods 
based on 100 random assignments and 10 4-fold 
cross-validations for each assignment. It seems that 
most approaches have similar performance except 
SVM.rad, which is consistently better than others. 
Thus, the superior performance of SVM.rad on real 
data could have come from the fact that the non-
linear transformation can even capture very weak 
signals. On the other hand, RF and PAM do not 
demonstrate obvious advantage over other meth-
ods, which suggests that their performance on real 
data actually come from their capability to make 
use of the strong signals that substantially differ 
between case and control samples.

Conclusion
In this study, we compare the prediction accuracy 
of hepatocellular carcinoma for several classifi ca-
tion algorithms based on SELDI mass spectra. We 
showed that the support vector machine with a 
Gaussian radial transformation performs better than 
other analytical methods examined. It is also shown 
that random forest and prediction analysis of micro-
arrays have sub-optimal performance. This result 
is similar to a previous report (Wu et al. 2003) that 
demonstrates the superiority of the support vector 
machine and random forest approaches when they 
are used to analyze MALDI mass spectrometry data 
to predict the presence of ovarian cancer. Hence, 
our work provides further evidence that certain 
types of classifi cation methods are preferable to 
others when applied to SELDI/MALDI mass spec-
tra. We also demonstrate that the better performance 
of SVM.rad is due to its superior background (e.g. 
learning based on small difference). On the other 
hand, the better performance of the random forest 
approach and prediction analysis of microarrays 
relies on their capability to make use of substan-
tially differential signals.

As shown in Figure 3–5, the classifi cation accu-
racy is at most around 85%, which is consistent 
with some previous studies (Baggerly et al. 2005; 
Karsan et al. 2005; Wu et al. 2006), yet lower than 
some others (Tong et al. 2004; Zhu et al. 2003), for 
the diagnosis of various cancers. Hence, the nature 
of the SELDI mass spectra data needs to be further 

explored before it can be applied to a clinical set-
ting. In particular, data pre-processing seems to be 
a crucial component, not only because background 
noise exists in the raw mass spectra, but also 
because an inappropriate processing procedure can 
distort the spectra and mask the true biological 
signals. In addition, to reduce noises and bias that 
might be introduced into the spectra during the 
experimental process, the experiment should be 
carefully designed. For instance, the time used for 
sample preparation and mass spectrometry analysis, 
physical conditions, processing procedures, hard-
ware and technicians should be as consistent as 
possible between cases and controls.

Mass spectrometry for high-throughput pro-
teomics analysis is still in its infancy and many 
problems remain to be addressed. The improve-
ment in reliability and accuracy will depend on 
the advancements in sample handling and 
analysis technique, and computational technique 
used to analyze the data. We expect that the 
challenge posed by the analysis of high-dimen-
sional data can be conquered via the evolution 
of both sides.
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