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A new vibrational subsystem analysis �VSA� method is presented for coupling global motion to a
local subsystem while including the inertial effects of the environment. The premise of the VSA
method is a partitioning of a system into a smaller region of interest and a usually larger part
referred to as environment. This method allows the investigation of local-global coupling, a more
accurate estimation of vibrational free energy contribution for parts of a large system, and the
elimination of the “tip effect” in elastic network model calculations. Additionally, the VSA method
can be used as a probe of specific degrees of freedom that may contribute to free energy differences.
The VSA approach can be employed in many ways, but it will likely be most useful for estimating
activation free energies in QM/MM reaction path calculations. Four examples are presented to
demonstrate the utility of this method. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3013558�

I. INTRODUCTION

Modeling the dynamics and free energy of biomolecular
systems remains a major challenge for computational biolo-
gists. Currently, minimization, molecular dynamics �MD�,
and harmonic analysis are the primary tools employed to
examine the structure and dynamics of biomolecules. MD
approaches have dominated the biosimulation community;
however, the timescales required to observe global motion,
which can be on the order of milliseconds to seconds, have
prevented many systems from being studied.1 Although this
is a particular problem for larger systems, MD is still the
most commonly employed method for three main reasons.
First, harmonic analysis does not account for multiple
minima although newly developed course grain methodology
has mitigated this problem.2–4 Second, there is often too
much “noise” in large biomolecular systems which makes
extracting the desired observables difficult. Third, although
the computational cost of second derivative techniques is
less computationally expensive than running long MD simu-
lations the O�N3� memory requirements have been prohibi-
tive until recently. For example, a 50 000 atom system would
require a computer with over 150 Gb of memory.

Normal mode analysis �NMA� methods have been pro-
posed and utilized to extend the range of biomolecules re-
searchers are capable of examining.5–9 This ability is predi-
cated on the theory that harmonic dynamics are sufficient for
understanding the collective motions of near-native states
with low frequency normal modes dominating the qualitative

dynamics.7,10–14 This assertion has been shown to be a good
approximation by numerous groups15–23 and has led to the
development of elastic network model �ENM� methods.2–4

These methods typically replace all-atom descriptions with
C�-centered harmonic potentials that utilize a single force
constant to account for all pairwise interactions within some
cutoff distance �Rc�. For example, the energy of an ENM
representation can be defined as

EENM =
1

2 �
dij

0
�Rc

C�dij − dij
0 �2, �1�

where dij is the distance between C� atoms and dij
0 is the

reference value from experiment �i.e., crystal structure,
NMR, etc.�. Given the simplicity of these models, previously
impossible NMA can be performed using ENM methods.
This approach has been shown to to be an effective means of
extracting patterns of low frequency motion.24

In the current work we present the vibrational subsystem
analysis �VSA� method for coupling global motion to a local
subsystem. This method is a partitioning scheme that sepa-
rates �and integrates out� the motion of the environment from
a user defined subsystem �see Methods section� while still
allowing the environmental motion to perturb the local sub-
system dynamics. It was originally applied to ENM models25

but is now generalized and extended for all-atom representa-
tions and hybrid quantum mechanical/molecular mechanical
�QM/MM� potentials. Below is a brief list of possible uses.

�1� Initially described as an ENM methodology, the VSA
method is well suited to describing local-global cou-
pling in coarse-grained macromolecular systems.26 In
the current work we have extended this approach to
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include a mass term in the ENM-NMA procedure
which allows for better coupling of timescales since
the inertial terms in the environment are handled more
appropriately.

�2� Eliminating specific degrees of freedom without the
detrimental effects of constraining the motion �i.e.,
making the system too rigid� or deleting part of the
system �i.e., artificially increasing flexibility�. A par-
ticularly useful illustration of this is in the “tip effect”
�Ref. 27� which refers to small pieces of proteins that
can protrude out of the main globular body �e.g., sur-
face loops, unresolved density, etc.�. Using the VSA
method these problematic degrees of freedom can be
integrated out of the environment while still being in-
cluded as a perturbation to the subsystem of interest.

�3� Elimination of noise when computing harmonic vibra-
tion free energy of large biomolecular systems. The
term noise is used to depict unwanted weak coupling
between degrees of freedom in the environment and
degrees of freedom in the subsystem that makes it dif-
ficult to calculate properties of interest. This is particu-
larly important when performing QM/MM free energy
calculations as the classical entropic effects from the
environment can be included as a first order perturba-
tion to the QM harmonic free energy. In addition, this
can also be a very useful tool in describing how global
motion of a protein can couple to the active site before
and during biochemical reactions.

�4� Combining VSA with simulation approaches. For ex-
ample, the use of quasiharmonic analysis to generate an
effective force constant matrix from a detailed simula-
tion can allow exploration of “hidden” couplings that
ENM models cannot capture. In general, the VSA ap-
proach can be combined with numerous additional nor-
mal mode treatments; such as reduced basis methods
�i.e., block normal mode method� to further reduce the
number of degrees of freedom treated.28

�5� Inclusion of very light or mass-less particles into NMA
without the need for constraints or inclusion of un-
wanted high frequency heat capacity. This could be par-
ticularly useful as Drude oscillator approaches become
a standard classical polarization technique.

�6� One of the most popular reaction path following tech-
niques currently in use is the intrinsic reaction coordi-
nate �IRC� method.29,30 The IRC method, which re-
quires knowledge of the transition state, employs
internal coordinates to map the minimum energy path-
way connecting reactants and products. Although this is
an effective approach, IRC mapping is typically not
performed on high dimensional systems �i.e., proteins�
for various reasons. One benefit of the VSA approach is
that by integrating out the environment, rather than fix-
ing or deleting it, second order methods that have pre-
viously been sparingly used �i.e., IRC� will again be-
come available. Taking this in combination with the full
QM/MM analytic second derivatives introduced in the
current work QM/MM IRC calculations on biomolecu-
lar systems could easily gain mainstream use.

In Sec. II �Methods� we improve the original approach
for vibrational subsystem analysis26 and derive the formula
for including environmental inertial effects in the VSA
method in two different ways. Also described is the exten-
sion of the vibrational capabilities of CHARMM to utilize
hybrid QM/MM potentials. In Sec. III �Results and Discus-
sion� we give four examples of where VSA can be applied
and discuss how the results correspond to full NMA; �1�
VSA is applied to a simple harmonic string of beads and
computed results are compared to analytically derived re-
sults. �2� VSA is applied to the torsional potential of butane
with only carbon atoms defined as the subsystem. �3� VSA is
applied to the cyclohexane chair to boat conversion with
only carbon atoms defined as the subsystem. �4� QM
�B3LYP /6-31G*� NMA, VSA, and block normal mode
�BNM� methods are applied to a peptide radical rearrange-
ment. Full NMA, VSA, and BNM results are compared and
implications of the choice of subsystem is explored. Section
IV �Conclusions� is an overview of the VSA method with
results and future directions highlighted.

II. METHODS

A. The VSA method

To specify the vibrational subsystem methodology, the
entire system is first divided into two components: �1� the
subsystem, which is defined as the region of interest �i.e.,
part of the system that controls functionality�; �2� the envi-
ronment, which consists of the less important remaining por-
tions of the molecule. The main idea is to study the coupling
of these two regions and how this affects the dynamics of the
subsystem. To do this the potential energy of the full system
is defined as

2Epot = xTHx = �xs
Txe

T�H�xs

xe
�

= xs
THssxs + xs

THsexe + xe
THesxs + xe

THeexe, �2�

with xs and xe defined as the displacements of the system and
environment atoms, respectively, and the full Hessian de-
fined as

H = �Hss Hse

Hes Hee
� , �3�

where Hss, Hse, and Hee are the subsystem-subsystem,
subsystem-environment, and environment-environment Hes-
sians, respectively. xe is then integrated out by setting
�E /�xe=0 as a constraint, which leads to

xe
0 = − Hee

−1Hesxs, �4�

which further leads to the redefinition of the potential energy
using an effective Hessian �Hss

ef f�

2Epot = xs
T · Hss

ef fxs = xs
T�Hss − HseHee

−1Hes�xs. �5�

The fundamental approximation that is made by per-
forming this partitioning is that the environment will be able
to respond to structural changes from the subsystem by mini-
mizing the total energy. Using this approximation and choos-
ing an appropriate subsystem induced global changes can be
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predicted. Additionally, performing a standard �NMA� em-
ploying Hss

eff will yield the local modes that describe sub-
system dynamics with a flexible environment. Following
from the definition of the energy, the free energy conforma-
tional integral can also be defined and separated,

Z =� e−�xs
THssxs+xs

THsexs+xe
THesxe+xe

THeexe�/2kBTdxsdxe

=� e−xer
T Heexer/2kBTdxer �� e−xs

THss
ef fxs/2kBTdxs, �6�

with xer representing the motion of environment atoms
relative to the derived positions satisfying Eq. �4� �i.e.,
xer=xe−xe

0�. This also leads to a formal splitting of the vibra-
tional free energy via

F = − kBT log�Z�

= Fe + Fs = − kBT log	� e−xer
T Heexer/2kBTdxer


− kBT log	� e−xs
THss

ef fxs/2kBTdxs
 . �7�

Since we are primarily interested in the dynamics of the
subsystem �xs� we can ignore differences in Fe and focus
entirely on changes in Fs. For example, in larger systems Fe

is likely to be “noisy,” but may be safe to ignore whereas Fs

contains subsystem data hopefully with suitable accuracy. If
either of these conditions is not satisfied then repartitioning
of the subsystem and environment is required and the VSA
procedure needs to be repeated. More specifically, the parti-
tion of subsystem and environment should be done several
times when exploring the importance of specific degrees of
freedom for a reaction coordinate of interest.

To more realistically describe the system we also intro-
duce mass into the subsystem partitioning. The addition of
mass allows better timescale coupling as inertial terms in the
environment are treated more consistently,

HV = �MV , �8�

where Eq. �8� is the secular equation and H the full Hessian,
V the eigenvectors/normal modes, � the eigenvalues/
frequencies squared, and M the kinetic energy matrix with
mass elements along the diagonal. Eq. �8� can be written as

HssVs + HseVe = �MsVs,

�9�
HesVs + HeeVe = �MeVe,

where subindex s or e refers to system or environment, re-
spectively. Elimination of Ve from Eq. �9� gives

Hse��Me − Hee�−1HesVs = ��Ms − Hss�Vs, �10�

with ��Me−Hee�−1�−Hee
−1−�Hee

−1MeHee
−1 in the limit of small

� thus leading to an expansion of a first order generalized
eigenvalue problem,

�Hss − HseHee
−1Hes�Vs � ��Ms + HseHee

−1MeHee
−1Hes�Vs.

�11�

The left side of Eq. �11� has the same effective Hessian as
Eq. �5� while the right hand side of Eq. �11� has an effective
kinetic energy matrix that includes the inertial effects of the
motion of the environment.

Another equivalent derivation uses Lagrange multipliers.
If L denotes the Lagrangian of the system, each of the con-
straints fk�x�=0 can be taken into account by adding a term
�kfk�x� to L. Hence an additional set of variables ��k, the
Lagrange multipliers, are introduced and the Lagrangian of
the constrained system becomes

L = T − V + �
k

�kfk�x� . �12�

In the case of VSA, one keeps all atoms in the environment
force free, and the Lagrangian reads

L = T − V − �
e

3ne

�e
�V

�xe
, �13�

with ne defined as the number of atoms in the environment.
In order to get the harmonic oscillator approximation, the
Lagrangian is expanded up to second order in the displace-
ments of xs, xe, and �e.

L = 1
2 ẋe

TMeẋe + 1
2 ẋs

TMsẋs − 1
2xe

THeexe − 1
2xs

THssxs − xe
THeexs

− �e
THeexe − �e

THesxs. �14�

In the unconstrained case, the Euler–Lagrange equations lead
to Newton equations, which are first order. Here the VSA
constraints generate 3ne extra equations for the Lagrange
multipliers,

Msẍs + Hssxs + Hsexe + Hse�e = 0, �15�

Meẍe + Hesxs + Heexe + Hee�e = 0, �16�

Hesxs + Heexe = 0. �17�

Eliminating xe and �e from Eqs. �15�–�17�, the VSA eigen-
values � and vectors V�= �Vs ,Ve ,V�� are easily found from
the following eigenvalue problem for the subsystem:

�Hss − HseHee
−1Hes�Vs = ��Ms + HseHee

−1MeHee
−1Hes�Vs �18�

and consequently

Ve = − Hee
−1HesVs, �19�

V� = − �Hee
−1MeHee

−1HesVs. �20�

These equations are formally identical to those derived with
perturbation theory above.

B. Hybrid QM/MM analytic second derivatives

Expanding on the functionality of subsystem partition-
ing, we implement hybrid QM/MM analytic second deriva-
tives into the Q-CHEM software package and interface this
with VIBRan module of CHARMM.5–7,31,32 Both restricted
and unrestricted wave-functions are supported at the HF and
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DFT levels of theory, whereas previous work in this area
focused only on RHF and RDFT treatments.33 We briefly
review standard SCF derivative theory and illustrate how this
differs from applying hybrid QM/MM methodology.

Using Pople’s compact notation,34 where � � denotes the
trace of a matrix, the SCF energy can be defined as

E = �PH� + 1
2 �P��P� + � , �21�

where P is the density matrix, H is the core Hamiltonian, and
� are the antisymmetrized two-electron integrals over spin
orbitals �, �, �, �, and � is the nuclear repulsion energy. The
Fock operator is then defined as

F = H + P�� �22�

and the standard SCF can be written as

FPS = SPF, �23�

with S defined as the overlap matrix. Now, taking the second
derivative with respect to atomic perturbations the following
expression is derived:

�2E

�x�y
= �PHxy� +

1

2
�P��xyP� + �PyHx� + �Py��xP�

− �PFPSxy� − ��PFP�ySx� + �xy . �24�

At this point the coupled perturbed equations �CPHF for
Hartree-Fock and CPKS for DFT� need to be solved. How-
ever, in contrast to standard QM theory the Hessian matrix
has four blocks: QM-QM, QM-MM, MM-QM, and
MM-MM with the QM-MM and MM-QM block being
equivalent. At first glance solving the CP equations would
appear to be impossible for very large �thousands of atoms�
systems, but given the nature of classical point charge terms
involving overlap matrix derivatives �Sx ,Sxy� and two-
electron integral derivatives ���x , ��xy�can be dropped �Table I�.
This simplification, combined with improved techniques for
solving CP equations34 lead to the case where problems that
were previously impossible to examine are now feasible.

C. Classical, quantum, and hybrid QM/MM transition
state searching

In addition to implementing QM/MM analytic second
derivatives, we also added eigenvector following routines to
the Newton–Raphson minimization routines in CHARMM.
This is done in a flexible manner that allows efficient mini-
mization both in and out of a harmonic well. If the system

can be approximated harmonically then standard Newton–
Raphson minimization occurs making use of the energy �E�,
gradient of the energy ��E� and Hessian of the energy ��2E�.
However, if the system cannot be approximated as a set of
harmonic oscillators then a line search is performed along
the specified eigenvector�s�. In addition to the three pieces of
information already gathered �vide supra� two additional
gradient calculations are performed along the positive and
negative directions of eigenvector�s�. These five pieces
of information are then fit to a third order polynomial �f�x�
=ax3+bx2+cx+d� and solved via a linear least squares fit
procedure.

Using classical QM and QM/MM potentials we have
adapted the current minimization procedure to change the
direction of eigenvector�s� searching. Typically, minimiza-
tion occurs along all eigenvectors, however, in the new rou-
tines saddle points can be searched for by specifying the
order of the stationary point that is desired. For example,
searching for a transition state �first order saddle point� oc-
curs by determining if the eigenvalue is below a user defined
threshold. If this criteria is met then all eigenvectors except
that which corresponds to the lowest eigenvalue will be
minimized and the specified eigenvector will be maximized.
Since eigenvalues are used to determine the mode to follow
it is useful to initially perturb the structure in the direction
that the desired saddle point is located. This can be done
easily with coordinate fixing or restraining potentials in
CHARMM or other software.

III. RESULTS AND DISCUSSION

In the following section the results of four test cases are
reported: �1� harmonic beads on springs, �2� classical tor-
sional barrier of butane, �3� classical chair to boat inversion
of cyclohexane, and �4� quantum mechanical eclipsed-
antitorsional barrier of retinol.

TABLE I. Overview of the integrals that can be neglected �denoted with an
�� when considering QM, QM/MM, and MM/MM blocks of the Hessian
matrix.

QM-QM QM-MM/MM-QM MM-MM

PHxy � � �
P � xyP � � �

�PFP�Sxy � � �

PyHx � � �
Py � xP � � �

�PFP�ySx � � �

�xy � � �

FIG. 1. Illustration and results of harmonic beads on strings. The subsystem
is defined as the middle two beads with various treatments applied to the
“environment.” �1� Full treatment, �2� environment deleted, �3� environment
fixed, �4� rigid environment, and �5� environment integrated out �i.e., VSA�.
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A. Harmonic beads on springs

The first, and simplest, test system consists of four beads
with the mass of each set to 1.0 amu. The beads are con-
nected by springs of force constant k=1.0 kcal /mol /Å �Fig.
1�. In this example, the subsystem �middle two beads and the
spring connecting them� and the environment �the outer two
beads and the springs connecting them to the subsystem� are
initially defined. Five cases are constructed and examined
with frequencies being computed and compared: �1� full ex-
plicit system of four beads and three springs; �2� subsystem
with environment deleted; �3� full explicit system with
environmental beads being fixed �i.e., their masses being
set to infinity�; �4� rigid environment approximation �i.e.,
MBH�;35–37 �5� integration of environmental degrees of free-
dom �i.e., VSA�. For each system a Hessian matrix was con-
structed, mass weighted, and diagonalized to yield the eigen-
values �i.e., frequencies 	�.

Results for case 1 are taken as the benchmark and deter-
mined to be 	=0.8 cm−1. Case 2, where the environment is
deleted results in a near doubling of the frequency yielding
	=1.4 cm−1. Fixing the environment �case 3� enhanced the
motion even further and resulted in a frequency of 1.7 cm−1.
Approximating the environment as rigid rods �case 4� pro-
duced 	=1.0 cm−1 which is the same result obtained for the
VSA �case 5� treatment where the environment was inte-
grated out. It should be noted that the results �	=1.0 cm−1�
for cases 4 and 5 do not have to be the same. However, given
the simplicity of the system and because the masses and
springs are symmetric the results work out to be the same.
For more complicated systems this will not be the case. It
should also be noted that the kinetic energy matrix was in-

cluded �Eq. �18�� in all results and is clearly needed to ac-
count for the inertia of the environment. For example, the
frequency of the VSA result would be 2.0 cm−1 if inertial
effects are ignored.

B. Torsional barrier of butane

All atom and VSA NMA calculations are carried out to
examine the eclipsed-antibarrier of butane. Block normal
mode �BNM� calculations are also performed and compared
to VSA results. The different subsystems employed for VSA
and BNM calculations are illustrated in Fig. 2 and results are
presented in Tables II and III. It should be noted that both the
VSA and BNM calculations are set up to produce twelve
normal modes which is approximately a 70% reduction in
system size. Additionally, the newly developed saddle point
optimization routines are used to locate the eclipsed transi-
tion state.

We also compute activation free energies �
G298� for
all atom, VSA and BNM approaches. The VSA and
BNM results 
G298=5.5 and 5.5 kcal /mol, respectively,
are in very good agreement with the all atom result,

G298=5.6 kcal /mol. Although, the 
G298 results agree well
between VSA and BNM it is clear that the VSA method did
a better job of reproducing high frequency motion in both the
anti and eclipsed rotomers of butane. For example, the
eclipsed rotomer where hydrogen bumping is known to play
a much larger role in determining conformational free ener-
gies, the maximum frequency computed with VSA is
1182 cm−1 compared to 946 cm−1 with BNM �Table III�.
This difference can be attributed to the inclusion of the en-
vironmental hydrogen motion in the VSA modes, whereas
in the BNM procedure the internal motion within blocks is
constrained.

TABLE II. Vibrational subsystem analysis and BNM results for butane in
the global minimum �i.e., anti conformation�. All frequencies are listed in
cm−1.

VSA Freq.
Full NMA

Freq. �% overlap� BNM freq.
Full NMA

Freq. �% overlap�

122 122 �100� 128 122 �100�
294 290 �100� 308 290 �100�
397 392 �100� 445 392 �98�
993 866 �77� 511 219 �82�

1107 �56� 743 �51�
1047 1012 �80� 711 256 �72�

985 �52� 829 �49�
1058 �35�
1161 �36�

1146 1036 �83� 991 866 �72�
1351 �45� 1036 �34�

1107 �58�

TABLE III. Vibrational subsystem analysis and BNM results for butane at
the highest transition state �i.e., eclipsed conformation�. All frequencies are
listed in cm−1.

VSA Freq.
Full NMA

Freq. �% overlap� BNM Freq.
Full NMA

Freq. �% overlap�

−165 −175 �99� −154 −175 �98�
314 310 �100� 320 310 �99�
516 501 �99� 540 304 �82�

684 �50�
870 814 �92� 569 501 �97�
1093 968 �64� 703 286 �69�

1074 �65� 1160 �40�
1182 1018 �42� 946 814 �81�

1110 �70� 1111 �54�

FIG. 2. Illustration of the schemes used to examine the butane anti to
eclipsed rotation. The top scheme was employed with the VSA method with
the bottom scheme being used with the BNM method.

FIG. 3. Illustration of the four extreme points located along the cyclohexane
interconversion from the chair to the boat form. The reaction proceeds from
left to right with the chair �a� being the global minimum, �b� the global
transition state �i.e., reclined chair�, �c� a local twist-boat minimum, and �d�
the boat form �a local transition state�.

214109-5 Vibrational subsystem analysis J. Chem. Phys. 129, 214109 �2008�



To further examine mode mapping in the VSA and BNM
approaches, mode overlap matrices are computed. This is
done by taking the dot product of eigenvectors generated by
the VSA and BNM methods with eigenvectors of full NMA.
This analysis allows determination of which modes from the
full NMA the VSA/BNM results correspond to. Results of
this analysis are listed in parentheses in Tables II and III.

C. Chair to boat inversion of cyclohexane

The chair to boat interconversion pathway of cyclohex-
ane is examined using both the all atom and VSA models
�Fig. 3�. The subsystem employed includes only the ring car-
bons of cyclohexane which is a 67% reduction in system
size. Additionally, we compute the 
G298 between the four
extreme points located along the pathway: �1� the global
minimum chair conformer, �2� the global maximum/

transition state, �3� a local minimum twist-boat conformer,
and �4� the boat conformer which is a local transition state.
All transition states are located using the newly implemented
saddle point finder. The free energies are defined relative to
the global minimum �i.e., chair conformer� and are listed in
Table IV.

The average errors in the three 
G298 examined is
0.25 kcal /mol with the majority of that being contributed by
the global max transition state �0.3 kcal /mol�. Using this as
a guide, it is expected that hydrogen motion should be most
critical at the global transition state. Further analysis and
results listed in Table V confirm this hypothesis. For ex-
ample, examining the internal coordinate derivatives shows
that an important mode associated with H–C–C angle bend-
ing and H–C–C–C torsional motion does not overlap signifi-
cantly with the VSA modes at the global TS. In contrast, this
mode does map into VSA modes at the chair, twist-boat and
boat conformers. This mode encompasses H1–C1 motion
which is important because the global TS is a “reclined
chair” with all but one ring carbon �C4� being approximately
coplanar �Fig. 3�. Therefore, the C1 carbon is associated with
the major motion of a normal chair becoming a reclined
chair. To further demonstrate this, we perform additional
VSA calculations where the hydrogens connected to C1 were
included in the subsystem and found that the average error in

G298 dropped from 0.25 to 0.16 kcal /mol, which is in

TABLE IV. Relative free energies for the boat to chair inversion of cyclo-
hexane. Results are listed for both the standard NMA and VSA. All values
are listed in kcal/mol and are computed using the global minimum as the
reference. See Fig. 3 for definition of states.

Conformer Full NMA VSA

TS �chair �A� - transition state �B�� 9.8 10.1
Twist-boat �chair �A� - twist boat �C�� 6.5 6.7
boat �chair �A� - boat �D�� 7.1 7.3

TABLE V. Cyclohexane boat to chair conversion results comparing full NMA to VSA. All frequencies are listed in cm−1 and degenerate modes are designated
a and b.

Chair Transition state Twist-boat Boat

VSA Freq.
Full NMA

Freq. �% overlap� VSA Freq.
Full NMA

Freq. �% overlap� VSA Freq.
Full NMA

Freq. �% overlap� VSA Freq.
Full NMA

Freq. �% overlap�

241a 236a �100� −219 −234 �100� 93 93 �100� −88 −88 �100�
236b �0�

241b 236b �100� 24 24 �100� 253 243 �100� 222 215 �100�
236a �0�

402 377 �100� 327 313 �99� 297 286 �100� 314 302 �100�
464a 454a �99� 478 462 �98� 481 478 �100� 481 478 �100�
464b 454b �99� 480 473 �99� 483 461 �97� 488 467 �97�
675 565 �86� 733 644 �79� 688 598 �87� 689 596 �86�

905 �51� 893 �46� 888 �44� 888 �49�
862 800 �91� 822 785 �89� 854 797 �85� 850 804 �87�

1079 �38� 839 �31� 932 �51� 944 �44�
973a 880 �68� 951 900 �90� 962 906 �86� 954 899 �94�

938a �65� 888 �41�
938b �0�

973b 880 �68� 972 883 �79� 977 874 �78� 981 869 �80�
938a �0� 1035 �44� 1046 �49� 1043 �50�

938b �65�
1144a 777 �35� 1171 1072 �76� 1164 1089 �72� 1172 1093 �73�

1076a �85� 1342 �39� 1372 �46� 1365 �51�
1374a �0�

1144b 777 �35� 1196 1100 �75� 1190 1069 �76� 1188 1070 �76�
1076b �0� 1389 �44� 1376 �53� 1382 �56�

1374b �85�
1200 1079 �76� 1245 1141 �68� 1211 1114 �75� 1214 1118 �74�

1184 �65� 1342 �34� 1337 �65� 1335 �64�
1352 �41�
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agreement with the error attached to the other states where
the H–C–C and H–C–C–C mode is mapped correctly.

The VSA modes capture the important motions of ring
interconversion. Specifically, in the global minimum chair
state degenerate modes exist in the full NMA. These modes
are correctly reproduced in the VSA results. Modes associ-
ated with the following frequencies were determined to be
degenerate: 241, 464, 973, and 1144 cm−1 �Table V�. In an
effort to clarify the degeneracy of these modes, we project
out �via rotation� the degenerate mode and determine how
the two modes overlapped with corresponding VSA modes.
This is done by diagonalizing the 2�2 overlap matrix be-
tween the two degenerate full Hessian modes and the two
degenerate VSA modes. This yields the linear combinations
of the full Hessian modes that best overlap with the VSA
modes.

D. Quantum mechanical peptide radical rearrangement

The harmonic limit free energy for intramolecular hydro-
gen atom transfer in a model dipeptide radical �Gly-Gly� is
examined using full NMA, VSA, and BNM at the B3LYP/6-
31G�d� level of theory �Fig. 4�. The definitions of the various
subsystems and blocking schemes are illustrated in Fig. 5.
The Gly-Gly dipeptide radical has been recently studied as a
benchmark for hydrogen transfer reactions in peptides.38 In
the current study, the 
E, 
G298, and forward and reverse

G‡ are reported. Moran et al. found the 
E and barriers at
the G3�MP2�-RAD level of theory to be −5.5, 18.4, and
23.9 kcal /mol, respectively. This is in relatively good agree-
ment with the B3LYP/6-31G�d� results presented in Table VI
although B3LYP over stabilizes the reactant by 0.7 kcal /mol
�Fig. 4�a��. The free energies are defined relative to the glo-
bal minimum.

The harmonic limit free energy of the full system results
in a 
G298 of −5.1 kcal /mol and a 
Gfwd

‡ of 20.4 kcal /mol.
We next test the VSA method using a small subsystem

�Fig. 5�a�� consisting of only the terminal CH3 and radical
CH2 groups. This yields good agreement with the results
from the full NMA having a 0.7 kcal /mol RMS error �RMS
error is determined using both the free energy and free en-
ergy of activation� while reducing the system size by over
60% �i.e., reducing the number of modes from 54 down to
21�. We also examine two blocking schemes and employ the
BNM method. The least restrained of these �Figure 5�d��
consists of five blocks and keeps the transfer hydrogen com-
pletely free �total of 33 modes, a nearly 40% increase from
the VSA method�. The results of this BNM scheme again
agree nicely, however, the RMS error increases slightly to
1.0 kcal /mol �nearly a 20% increase over VSA results�.

Moran et al. found that energetically carbon centered
radicals are “more stabilized by electron donation from an
adjacent N-atom lone pair than delocalization into an adja-
cent carbonyl group.” Using the VSA method and schemes
5�b� and 5�c� we explore the entropic contributions to this
stabilization. Although both schemes 5�b� and 5�c� agree
well with full NMA free energy results, there is a significant
shift in relative state stabilization. For example, examining
results from schemes 5�b� and 5�c� shows a reverse in stabi-
lization of the product state �Fig. 4�c�� relative to the reactant

FIG. 4. Illustration of the reactant �a�, transition state �b�, and product �c� of
the hydrogen transfer reaction in the glycine-glycine dipeptide radical.

FIG. 5. Definition of subsystem and blocking schemes used to examine the
hydrogen transfer reaction in the glycine-glycine dipeptide radical. Schemes
�a�, �b�, and �c� were applied to the vibrational subsystem analysis method
while schemes �d� and �e� were employed with the BNM method. See Table
VI for results.

TABLE VI. QM Full normal mode and VSA free energy results for hydro-
gen transfer in the glycine-glycine dipeptide radical. 
G /
E, 
Gfwd

‡ /
Efwd
‡

and 
Grev
‡ /
Erev

‡ refer to the �free� energy of reaction, forward, and reverse
�free� energy of activation. For comparison standard QM energy of reaction
and barriers are listed. All calculations were performed at the B3LYP/6-
31G�d� level of theory in Q-CHEM with results reported in kcal/mol.

System 
E 
Efwd
‡ 
Erev

‡

Full −4.8 19.0 23.8
System 
G298 
Gfwd

‡ 
Grev
‡

Full −5.1 20.4 25.5
VSA I �Fig. 5�a�� −5.2 19.3 24.5
VSA II �Fig. 5�b�� −5.6 19.2 24.9
VSA III �Fig. 5�c�� −4.8 19.7 24.4
BNM I �Fig. 5�d�� −5.4 18.9 24.3
BNM II �Fig. 5�e�� −4.9 18.1 22.9
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�Fig. 4�a��. More specifically, when the N–H group is in-
cluded in the subsystem the product state is destabilized,
however, the reactant state is more destabilized. This leads to
a lowering for the forward and reverse barriers while 
G298

is increased. In contrast, when the CvO group is included
in the subsystem the product state is destabilized more so
than the reactant state. Again, this leads to both the forward
and reverse barriers being lowered, but with the 
G298 also
being decreased.

The results obtained for this model system, employing
VSA coupled with quantum mechanics, are not only able to
extend the understanding of radical biochemistry but also
serve as an example of the powerful and accurate analysis
that can be undertaken using these new techniques. For ex-
ample, comparing 
G298 for scheme 5�b� �−5.6 kcal /mol�
and scheme 5�c� �−4.8 kcal /mol� indicates that inclusion of
the N–H group in the subsystem has a stabilizing effect on
the reaction whereas inclusion of the CvO group actually
exerts a destabilization. This tends to confirm the assertion of
Moran et al. that the N–H group is more beneficial to the
stabilization of the Gly-Gly radical.

IV. CONCLUSIONS

In the current work we presented the detailed derivation,
implementation, and testing of the VSA methodology and the
coupling of this with quantum mechanical and newly imple-
mented hybrid QM/MM analytic second derivative tech-
niques. Four illustrative examples were presented, ranging
from simply solved analytical models �the harmonic beads�
to complicated isomerizations where localized hydrogen mo-
tion was analyzed and determined to be critical to compli-
cated radical rearrangements that employed QM methods
coupled with full normal mode analysis, BNM analysis, and
VSA.

We reiterate that the VSA method will be useful in a
variety of situations: examination of local-global motion,
performing accurate NMA while eliminating unwanted de-
grees of freedom, eliminating excess noise from large NMA
�i.e., QM/MM�, employing dynamic simulations coupled
with VSA via quasi harmonic analysis, and integration of
light particles during NMA �e.g., application to polarizable
models�.

Using the test cases designed and employed we were
able to illustrate that the VSA method performs at least as
well as the BNM and in many cases can outperform it while
using substantially smaller subsystems �i.e., with fewer
modes included�. However, we feel that the primary strength
of the VSA method is its use as an analysis tool. As stated
previously, the VSA can be employed to study complicated
local-global couplings in proteins using course grained mod-
els, but we have also shown that the VSA can be a powerful
tool when analyzing complicated electronic systems. For ex-
ample, using the VSA method we were able to demonstrate
that carbon centered radicals in peptides are not only gov-
erned by electronic stabilization but also will be influenced
by entropic factors related to motion of electronically impor-
tant substituents. The VSA as an analysis tool has limitless
possibilities.
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