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Abstract

Traditional analysis of spectroscopic optical coherence tomography (SOCT) signals is limited by an
uncertainty relationship between time (depth) and frequency (wavelength). The use of a bilinear
time—frequency distribution for analysis, such as those that compose Cohen’s class of functions, may
provide a way to avoid this limitation. Here we present the relationship between traditional SOCT
analysis and the relevant Cohen class functions: the Wigner and Choi-Williams distributions. While
cross terms that arise in these bilinear time—frequency distributions have been viewed as an artifact,
here we identify these terms with temporal coherence, which contains significant information about
the signal through phase relationships. The utility of time—frequency distributions is illustrated
through analysis of calculated signals.

1. INTRODUCTION

Coherence gating is a powerful means of examining light returned from a localized region of
a sample of interest. The approach relies on detecting the phase delay of several frequency
components in a broadband spectrum to obtain the time of propagation. This approach is the
operating principle behind optical coherence tomography (OCT), a depth-resolved biomedical
imaging method [1,2]. Recently, coherence gating has also been applied to enable depth-
resolved scattering measurements for tissue analysis [3,4]. Among many specialized
applications, an interesting development is the use of coherence gating to execute depth-
resolved spectral analysis [5]. In this application, the acquired signal is processed to obtain
information about the time delay (depth information) as well as the frequency distribution
(wavelength information) of the detected signal. When this analysis is applied to coherence
gated imaging, it has become known as spectroscopic optical coherence tomography (SOCT)
[6,7], while when applied as an analysis method, it has been known as Fourier-domain low-
coherence interferometry [8,9].

In previous studies, the preferred method of processing of SOCT signals has been to use a short
time Fourier transform (STFT) or Morlet wavelet transform. However, this approach contains
an inherent uncertainty relationship that results in a trade-off between time and frequency
resolutions. Recently, the use of joint time—frequency distributions (TFDs) was considered for
processing SOCT signals [10]. In this study, several TFDs were compared to assess their
relative strengths in detecting spectral modulation due to absorption. The conclusion of this
study was that different signal representations were more or less well suited to specific signal
processing goals. However, this study did not give explicit expressions for processing the
simulated and experimental data, which may have prevented further application of this
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formalism that was newly introduced to OCT. Further, the study exclusively examined time-
domain OCT signals without drawing a distinction between their difference in origin from
Fourier (or spectral-) domain OCT signals.

In this paper, the general relationship between coherence gated signals and bilinear TFDs is
examined. Traditional OCT signals in the time domain and frequency domain are considered
using the framework of the TFD. SOCT signals are also examined in this framework, with
particular attention paid to the choice of analysis window and the type of TFD that is generated.
Finally, the utility of the TFD is shown by processing of numerically simulated data.

2. THEORY

The general form of an interferogram can be written as
1, =|E+EI’=|E [’ +|E |*+2Re(E, E: cos¢), )

where I is the total detected intensity and Eg, Eg are the amplitudes of the reference and sample
fields, respectively. In general, the sample and reference fields are complex, and the relative

phase between the two, ¢, can be used to isolate the interferometric signal. Measurements of
the total intensity given in Eq. (1) may be executed in either the time or frequency domain. In
the time domain, ¢ is made to vary linearly in time, allowing one to create a heterodyne signal
that is linear with the sample field. In the frequency domain, the frequency dependence of ¢ is
measured and Fourier transformed to yield the temporal profile of the sample field.

To obtain information about the interferogram signal in both the time and frequency domains
simultaneously, the signal must be processed using one of two main approaches. Linear
operations can be applied to the signal to yield a linear TFD or higher-order functions such as
the bilinear TFDs that comprise the Cohen class of functions can be calculated. In this section
we will lay out the basic formalism of each approach and then examine the relationship between
the two.

A. Linear Representation

To generate a TFD from data acquired in a single domain, a linear operation such as the STFT
can be applied. Here a window is generated mathematically with a finite width and center and
applied to the acquired signal. In the case of a time-domain signal, I, a temporal window W
of width T and center ty can be applied,

I (kto)= [T, OW (1, 1o)e™ dt, @)

to yield the spectrum of light associated with the signal at time tg. By executing this operation
at several values of ty successively, the TFD of the signal is obtained. The one potential
drawback of this approach is that there exists an uncertainty relationship between the resolution
in the frequency domain and that in the time domain such that improved knowledge of the
frequency k comes with reduced knowledge of the temporal distribution. Alternatively, for data
acquired in the frequency domain, a spectral window can be applied to obtain the TFD with a
similar trade-off between time and frequency resolutions.
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B. Bilinear Representation

In bilinear signal representations, higher-order correlations are analyzed to obtain the joint
TFD. As an example, one bilinear representation is the Wigner distribution, which is defined
as

W(k,)= [ (E(k+q/2)E*(k - g/2)y e 'dq @)

for an electrical field E and where {..) denotes a statistical average and k is the wave vector,
which is related to the frequency as k=cw/c. For a multicomponent signal, such as that found in
an interferogram, the Wigner distribution of the total electric field, Et = Eg + Eg, can be written
as

WT(k’l):f<ET(k+q/2)E7(k — q/2))>e—iqldq
= WR * WS + W(‘mxx ’ @

where Wr and Ws denote the individual Wigner distributions for the reference and sample
fields, respectively, and Wcrqss gives the Wigner function for the cross terms. Although the
cross terms are often regarded as undesired artifacts, they contain useful information about the
temporal coherence of the sample field, which is useful for coherence gated measurements, as
we shall explore below.

C. Relationship Between Linear and Bilinear Representations

To illustrate the connection between linear and bilinear signal representations, let us consider
a frequency-domain OCT signal:

1(k)=|E, |*=|E,|*+|E > +2Re(E, E, cos(¢(k))). ®)
Upon elimination of the sample and reference intensities, we are left with the interferometric

term:

Lin(k)=ERE  +c.c.=2Re(E  E cos(¢(k))). ®)

As mentioned above, this term is usually processed to give an autocorrelation function:

[(@)= [T(k)exp(ikz)dk, %)
which gives the temporal profile of the signal (alternately given here in terms of path length
z=c t, where c is the speed of light) but with ambiguity about t=0 (z=0).

Instead of the linear representation of the signal shown above, let us consider |fin(k)|2, where
~ is the Fourier transform:

|;in[(k)|2:|r(z)|2:fER(k)E; (k)exp(ikz)dka;(k')Es (k")
xexp(—ik’z)dk’. 8)
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This can be cast in the form of the bilinear Wigner distribution, through a simple coordinate
transform, with

— k+k’

q 4q
k=
2

,g=k — K, k=k+=, kK'=k — =,
g 2 2

9)

where the Jacobian of the transform is unity. This substitution yields

IC)P=[ [dkdgE, (k+%) E; (k- )

; (104) . (2o w

Now, according to Eq. (3), the Wigner distribution of the sample field is

W, (k,z)=% JE, (k+2) E: (k - £) expligz)da, an

which can be inverted to yield the ambiguity function:

2 Wy (k.2)exp(—igz)dz=E, (k+%) E; (k- £). 12)

This form can be inserted into Eq. (10) to yield

IC2)P=[ [dkdgE, (k+%) E; (k- £)

X [27r fw, (Lz)exp(iqz’)dz’] exp(igz)

=2n [ [dkdz’ W, (k.2') [dqE, (k+%)

XE; (k- §) explig(z+2)

=Qn)? [ (W, (k2 YW, (k.2 +2)dkdz . (13)

Thus, the bilinear representation of the interferogram signal is given by the overlap of the
Wigner distribution of the sample field with that of reference field.

D. Bilinear Representation of a SOCT Signal

The TFD of a SOCT signal can be generated in a similar manner as the bilinear representation
given above. Consider a frequency-domain SOCT signal that is processed with a window W
to enable joint knowledge of the TFD:

()= [ E (k)W (k k) E? (k)exp(ikz)dk. (14)

Here the window can take the form of a Gaussian distribution such as
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W(k k) =Aexp (M) .
2AKZ (15)
For the case in which the width of the window is significantly smaller than the bandwidth of
the source (Aky, << A k), we can approximate this signal as
[() ~ [E(k,)W(k.k,)E: (k)exp(ikz)dk. 16)
This is a reasonable approximation in most practical cases, as the aim of processing the SOCT
signal is to obtain frequency resolution.
The squared magnitude of the signal can again be cast in terms of the Wigner distribution by
using a transform similar to that given above in Egs. (8)—(13). The processed signal
S (kyys2)=I0 (@ ko )P =|E (ko) [ Wk Ko ) E (K)expikz)dk
X [W*(K' k) Eg (K Yexp(—ik'z)dk’ (17)
upon coordinate transformation becomes
S (ky,2) =2 E o (k)P [ Wy (k.2 YW, (k — k242 )dkdZ . 18)
In Eq. (18), the SOCT signal has been processed to yield the temporal (depth) profile of the
sample field at the specific frequency (wavelength) given by the center of the window, k. By
systematically varying the center frequency of the window, the TFD of the SOCT signal is
generated. The resultant signal is given as the overlap of the Wigner distribution of the sample
field with the effective Wigner distribution of the window function.
3. ANALYSIS

The utility of the TFD can be seen by examining a few simple cases that demonstrate its
properties. Analysis of the distributions for time- and frequency-domain OCT signals shows
that the knowledge of temporal coherence obtained with a TFD can clearly illustrate the
advantage of frequency-domain OCT measurements versus data acquired in the time domain.
In this section, we analyze the TFDs for OCT signals and relate the results to the signal acquired
in each domain. This line of analysis is then extended to examine SOCT signals to demonstrate
that knowledge obtained from TFD analysis reveals temporal coherence properties that can
improve measurements of the structure of a sample.

A. TFD of a Two-Component Field

Let us consider a total optical field at frequency wg composed of two components separated
by a time delay T, as one might find for a Michelson interferometer (Fig. 1) with the arms
possessing a path-length mismatch, such that
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where each component is a Gaussian pulse of width a and amplitude Eg:

E =Eyexp (—(’%) exp(iwot),
E,=Eoexp (— Gy ) exp(iwot).

a?

The TFD of this total field can be determined using the Wigner distribution,
1 % T T é
W(t,w):afET (z - 5) E, (t+ i)exp(lwr)dr,
to yield

Ela 2 az(w0+w)z)
2

W(t,w)= 7 SXP (— %

Eja 20-TP  (wotw)
+—=ex T —
P ( o 2

Ega
+ ‘/2_”COS(T(Q§)+CU))
xexp(z(;z%)_ - al(w%w)l)‘
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(19)

(20)

(21)

(22)

We can see from Eq. (22) that the Wigner distribution develops into the sum of three terms as
presented in Eq. (4). The first two terms are Gaussian terms that we will call Wg and Ws. Wg
is delayed by T with respect to Wg. The third term is a cross term (Wcross) that has a Gaussian
envelope and a sinusoidal oscillation. Figure 2 shows how the cross term emerges as the time
delay T increases from zero. This term is distinct only when T # 0 and is localized between
Wr and Ws with respect to the time axis with all three terms centered about the frequency

.

B. Time-Domain OCT Signal

Let us now consider scanning the reference mirror of the Michelson interferometer, as in a
time-domain OCT system, through all time delays z, corresponding to a full depth scan. Figure

3 shows the signal for six selected time delays as a distribution in time and frequency,

represented by the Wigner distribution. The cross term is seen to oscillate with a frequency
characteristic of the time delay between pulses. At each time delay the signal is detected using
a photodiode, effectively integrating the TFD across frequency. This reduces the distribution

to the time marginal defined as the intensity per unit time:

[W(t,w)dw=|s@)P.

(23)

Figure 4 presents the time marginals corresponding to the delays shown in Fig. 3. As T moves
closer to zero, the path-length mismatch of the sample and reference arms also gets smaller.
The cross term appears between the two Gaussian peaks. As T crosses the zero point the path-

length mismatch grows once again.
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The time-domain OCT signal is recorded as intensity as a function of the path-length difference.
For each path-length difference, the signal detected is the time average of the time marginal.
In terms of the Wigner distribution, each point of an OCT depth scan is simply the two-
dimensional integral of the distribution for the corresponding value of T. The plots in Fig. 4
show the time marginals for six different depths of an OCT scan. Integrating each plot with
respect to time will leave us with six discrete points that help make up the interferogram seen
in Fig. 5.

C. Frequency-Domain OCT Signal

Figure 6 shows another example of a Wigner distribution for an optical signal from the
Michelson geometry with mismatched path lengths as well as the corresponding time and
frequency marginals. When the distribution is integrated with respect to frequency to obtain
the time marginal, the sinusoidal cross term integrates to zero. If we instead integrate the
distribution with respect to time, we generate the frequency marginal given as the intensity per
unit frequency:

[W(tw)dr=|S (). 24

Fourier-domain OCT systems [11-13] seek to measure the frequency marginal. However, most
detection schemes recover the wavelength distribution of the signal where the wavelength is

inversely proportional to the frequency. In such arrangements, the signal can be interpolated

and rescaled to obtain the frequency distribution.

In its most simple form, Fourier-domain OCT uses a Michelson interferometer geometry like
that of time-domain OCT. However, in Fourier-domain OCT the reference mirror is not
scanned to selectively probe depths of the sample. Instead, the detected intensity is dispersed
with respect to wavelength by using a diffraction grating. The recorded intensity is a frequency
spectrum. Figure 6(c) shows the |S(w)|2 marginal of the Wigner distribution, corresponding to
a typical Fourier-domain OCT scan. This scan is a frequency spectrum that exhibits an
oscillation due to the cross term. Unlike time-domain OCT, in Fourier-domain OCT it is not
necessary to integrate the frequency marginal, although some averaging occurs due to the
resolution limit imposed by the finite pixel size of any practical detector. The frequency-
dependent oscillation of the spectrum can be Fourier transformed to yield the time delay
between the two components, effectively producing a depth scan with a single measurement.

D. TFD for a SOCT Signal

To analyze the TFD for a SOCT signal, it is more useful to use an example in which the sample
field exhibits a spectral modulation. Let us consider a sample field consisting of two
components:

ES=E1+E2. (25)

The corresponding Wigner distribution can be found using Eq. (4) to contain three components,
one for each of the two field components and a cross term. As shown above, the cross term
will produce an oscillation with a frequency characteristic of the delay between the two
components.

The sample field given in Eq. (25) can be generated by a sample containing two reflectors.
However, if these two reflectors are spaced too closely, such that the delay between the
components is less than the pulse duration [a in Eq. (20)], the individual components cannot
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be resolved using conventional OCT, regardless of frequency- or time-domain signal
acquisition. On the other hand, by reconstructing the TFD of the sample field from the detected
signal, knowledge of the induced temporal coherence of the field due to the sample can be
obtained. This knowledge can enable one to determine the structure of the sample on finer
scales than is possible with the usual resolution associated with the pulse duration.

Figure 7 shows the Wigner distribution of the two component sample field given in Eq. (25).
We reiterate here that with either frequency- or time-domain OCT, knowledge of the sample
field is not obtained directly but rather the detected signal is the convolution of the signal field
with a reference field, as shown in Eq. (13). To determine the delay between the two
components of the sample field, we can analyze its TFD to obtain knowledge of the induced
temporal coherence of the field due to the sample.

To construct the TFD for this sample field, the signal is processed using a window, as in the
STFT. For a Gaussian window, as given in Eq. (15), there exists a trade-off between frequency
and time resolution. Figure 7 illustrates this trade-off by showing the window based on two
possible frequency widths. For the window with a narrow frequency width (green), high-
frequency resolution is obtained but at the cost of poorer time (depth) resolution. On the other
hand, a window with a wider frequency width (red) can be used, which preserves higher time
(depth) resolution but yields poorer frequency resolution.

Processing via the use of the window produces another form of TFD. In the linear
representation, the windowed signal gives the spectrogram of the signal [14]. In the bilinear
representation, the TFD of the sample field is smoothed by that of the window function, as
given by Eqg. (18). Here, the Choi-Williams distribution for the sample field is obtained [14].
Figure 8 illustrates the TFD resulting from the use of each of the two Gaussian windows
described above. Here we see that upon using a broad spectral window with good temporal
resolution [Figs. 8(a) and 8(c)] the two peaks are just barely resolved. When using a narrow
spectral window, the temporal resolution is degraded so that the two components of the sample
field are not resolved [Fig. 8(b)]. However, the temporal coherence that is induced due to the
structure of the sample causes a spectral modulation [Fig. 8(d)]. This modulation can be made
more apparent by dividing through by the source spectrum [Fig. 9(a)]. Fourier transforming
this spectral modulation yields a correlation function [Fig. 9(b)], which shows a sharp peak at
the round-trip distance between the two sample interfaces. The correlation distance of 2 in Fig.
9(b) corresponds to two spectral oscillations [as seen in Fig. 9(a)] over the range of 6 frequency
units. Dividing this by 2z and inverting, we recover the 1 spatial unit spacing seen in the original
sample field distribution (Fig. 7).

4. DISCUSSION

In the above analysis, we have examined the relationship between bilinear TFDs and OCT
signals. We have shown that conventional OCT measurements reveal one aspect of the TFD
of the total field, composed of the sum of the sample and reference fields. Time-domain OCT
signals are described by integrating the TFD for the total field over frequency to yield the time
marginal. The time marginal is then further integrated over time to yield the interference at a
particular delay (depth) of the reference field relative to the sample field, with the complete
delay (depth) scan requiring multiple successive measurements. In contrast, Fourier-domain
OCT signals are obtained by integrating the total field TFD over time. Here no additional
integration is needed but instead a Fourier transform is used to yield the delay (depth) scan.
The increase in fidelity of Fourier-domain OCT [11-13] can be seen to originate from this
difference in measurement. While these OCT measurements can be viewed as generated from
the TFD, itis important to note that the true TFD of the total field may not be a physical quantity,
making it inaccessible with a direct measurement such that it must be generated by other means.
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Although the TFD is not directly measured in OCT, we have shown that the measured OCT
signal can be easily related to the individual TFDs of the sample and reference fields. In Fourier-
domain OCT, the detected signal is given by the overlap of the Wigner distributions for the
sample and reference fields. Although not presented here, a similar derivation can be written
for time-domain OCT signals. In SOCT, the window function takes the place of the reference
field in the overlap integral. In this case, the detected signal takes the form of a different type
of TFD. The overlap relations presented here are newly introduced to the field OCT but have
been known in other fields for years. For example, similar relations are used in quantum
mechanics and quantum optics [15].

In the Cohen class of functions [14], an infinite number of distributions can be generated with
the appropriate choice of kernel. As an example, the Wigner distribution has a kernel equal to
unity. In describing OCT signals, the Wigner function for the sample field is convolved with
the Wigner function of the reference field. In the typical case where the reference field is a
Gaussian distribution in time and frequency, the detected signal is then given by the Choi—
Williams distribution [14], which can be viewed as a smoothed Wigner distribution. Although
these relationships have been known in signal processing for decades, the concept of the TFD
was only recently introduced to analysis of OCT signals [10]. However, this introductory work
did not give explicit forms for the TFDs discussed, nor did it relate them to detected OCT
signals, which may explain its limited impact.

The smoothing property of the Choi-Williams distribution results in a distribution that is
positive definite, an essential feature for representing a detected signal. The Choi-Williams
distribution is often applied to quell the cross terms that arise in the TFD represented by the
Wigner distribution. As such, its use can eliminate the cross terms in the TFD of an OCT signal,
which can reveal the existence of temporal coherence. For a measured signal given as a Choi—
Williams distribution, the cross terms that describe temporal coherence generated due to the
structure of a sample are often not readily identified in the detected signal.

Knowledge of this temporal coherence can be used to improve structural information obtained
from OCT measurements. As shown above, processing the signal using a window function can
generate a TFD for the detected signal. By judicious choice of the window parameters, features
in the frequency spectrum can be uncovered that are characteristic of the temporal coherence
induced in the field due to structures in the sample. This approach has been applied in Fourier-
domain low-coherence interferometry to enable the size of scatterers to be determined with a
precision and accuracy that exceeds that possible with conventional OCT images [8,9]. More
recently, this type of processing has been introduced to OCT imaging to improve knowledge
of the sample scattering features [7,16,17].

Although the TFDs presented here are instructive for understanding the role of temporal
coherence in analysis of SOCT signals, they have not provided a means to skirt the trade-off
between time and frequency resolutions associated with application of a Gaussian window.
However, by connecting the analysis of OCT signals with the vast literature on processing
time—frequency distributions, a new avenue for improving the applicability of SOCT has been
established.

5. CONCLUSION

In summary, we have examined the relationship between OCT signals and bilinear time—
frequency distributions. We have shown that OCT signals in the time and frequency domains
can be viewed as marginals of the total field TFD. Further, we have shown that the detected
OCT signals are given by overlap integrals of the individual Wigner distributions of the sample
and reference fields. Examination of spectroscopic OCT signals in this framework shows that
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the cross terms that appear in TFDs contain information on temporal coherence that can be

an

alyzed to improve our knowledge of samples of interest. New directions for analysis of OCT

signals have been suggested based upon using bilinear representations of the OCT signals and
employing well-established methods from conventional signal processing of time—frequency
distributions.
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Fig. 1.

(@) Michelson interferometry scheme, in which modulation of the reference arm path length
generates (b) an interferogram as in a time-domain OCT system using a low-coherence source.
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Fig. 2.

Wigner distributions for a two-component signal with delay between pulses of (a) T=0, (b)
T=3; (c), (d) T=5.
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Wigner distributions for time delay T and a center frequency of wg =12.5.
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Fig. 5.

Interferogram from the distributions in Figs. 3 and 4.
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Fig. 6.
(a) Wigner distribution with T=5, (b) |s(t)|2 marginal, (c) |S(e)|? marginal.
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Fig. 7.
Wigner distribution of a two-component sample field with windows of narrow frequency width
(green/dashed) and narrow time width (red/solid).
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Fig. 8.

Comparison of processing of SOCT signals using (a) broad and (b) narrow spectral windows.
Using a broad spectral window maintains high temporal resolution but cannot resolve two
closely spaced peaks (c). In comparison, using a narrow spectral window does not permit the
peaks to be resolved but achieves spectral resolution (d) that shows a modulation of the spectral
profile (blue/solid) compared with the original spectrum (green/dashed).

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2009 May 2.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Graf and Wax

a8

as

0.4

Fig. 9.

Page 19

(a) Spectral modulation due to temporal coherence induced by sample. (b) Fourier-
transforming spectral modulation yields a correlation function with the peak indicating the

spacing of the two peaks in the signal field.
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