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SUMMARY
Regression calibration (RC) is a popular method for estimating regression coefficients when one or
more continuous explanatory variables, X, are measured with an error. In this method, the
mismeasured covariate, W, is substituted by the expectation E(X|W), based on the assumption that
the error in the measurement of X is non-differential. Using simulations, we compare three versions
of RC with two other ‘substitution’ methods, moment reconstruction (MR) and imputation (IM),
neither of which rely on the non-differential error assumption. We investigate studies that have an
internal calibration sub-study. For RC, we consider (i) the usual version of RC, (ii) RC applied only
to the ‘marker’ information in the calibration study, and (iii) an ‘efficient’ version (ERC) in which
the estimators (i) and (ii) are combined. Our results show that ERC is preferable when there is non-
differential measurement error. Under this condition, there are cases where ERC is less efficient than
MR or IM, but they rarely occur in epidemiology. We show that the efficiency gain of usual RC and
ERC over the other methods can sometimes be dramatic. The usual version of RC carries similar
efficiency gains to ERC over MR and IM, but becomes unstable as measurement error becomes large,
leading to bias and poor precision. When differential measurement error does pertain, then MR and
IM have considerably less bias than RC, but can have much larger variance. We demonstrate our
findings with an analysis of dietary fat intake and mortality in a large cohort study.
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1. INTRODUCTION
The problem of error in the measurement of covariates to be used in a regression analysis is
often important in epidemiological research, where accurate measurements are commonly
difficult to achieve. It is now well understood that such error can cause bias in the estimates
of regression coefficients, and a large collection of special methods for eliminating such bias
is available [1].
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Regression calibration (RC) [2,3] has been one of the most commonly used methods [4]. One
of the principal advantages of RC is its simplicity. In place of each individual’s mismeasured
covariate one uses a substitute value and then runs the same estimation procedure as would be
used with a precisely measured covariate. The substituted value is the expected value of the
true measurement conditional on the observed measurement and other exactly measured
covariates in the model.

Recently, it has been realized that two other ‘substitution’ methods are available that would
possibly share these advantages enjoyed by RC. The first is moment reconstruction (MR),
proposed by Freedman et al. [5]. The second is imputation (IM) or multiple IM [6], a class of
methods that is well established for handling missing data, but that has been proposed for
dealing with errors of measurement in covariates [7]. Cole et al. [8] applied this method to an
epidemiological study with a binary outcome and a mismeasured binary covariate. MR and IM
both allow the covariate measurement error to be differential, that is, informative about the
outcome variable, whereas RC requires the measurement error to be non-differential. All three
substitution methods require information about the measurement error, usually obtained from
a calibration study, in which the mismeasured covariate is supplemented by a reference
measurement.

In this paper we study and compare these three methods in the context of adjusting for
measurement error in dietary intakes, in studies relating diet to disease. We investigate studies
that have an internal calibration sub-study. For RC, we consider three variants: (i) the usual
version of RC; (ii) RC applied only to the reference measurements in the calibration study; and
(iii) an ‘efficient’ version of RC [9] in which the first two estimators are combined in an efficient
manner.

Our method of comparing the methods is primarily through simulation in which the models
used for simulation are motivated by nutritional epidemiology. We also give a practical
illustration of the methods applied to data from the NIH-AARP Diet and Health Cohort study.

Our results show that ‘efficient’ RC (ERC) is preferable among the methods we compare when
there is no reason to suspect differential measurement error. Under this condition, there are
cases where ERC is less efficient than MR or IM, but they rarely occur in epidemiology. We
show that the efficiency gain of ERC over MR or IM can sometimes be dramatic, and that the
price paid by the other methods for relaxing the assumption of non-differential measurement
error is high. The usual version of RC carries similar efficiency gains to ERC over MR and
IM, but becomes unstable when the measurement error is large, leading to bias and poor
precision. When differential measurement error does pertain, then MR and IM have
considerably less bias than RC and ERC, but can have much larger variance.

2. METHODS
In this section we describe the methods that we will investigate. We consider the following
situation. Let Y be the disease variable. We will allow Y to be either continuous, as for a disease
marker, or binary, as for a disease indicator. Let X be the exposure variable(s) of interest. We
would like to measure X exactly, but are not able. Instead we measure W, which is X with the
error.

The statistical models linking Y, X and W will consist of two parts, the disease model linking
Y and X, and the measurement error model linking X and W. When the measurement error is
differential, then the latter model will also include Y.

We express the disease model as
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(1)

where h is either the identity function when Y is continuous or the logistic function when Y is
binary. Our aim is to estimate βX as well as possible. In many applications, there will also be
covariates in the model that are measured without error. However, the insights that we hope
to gain from our study do not require their inclusion here.

We express the non-differential measurement error model as

(2)

where δ is a residual error with zero expectation that is independent of X and Y. Such a model
has been called the non-classical measurement error model to distinguish it from the classical
measurement error model where γ0 = 0 and γX = 1. The model is motivated by dietary self-
report data that appear to conform to this model after a suitable transformation [10]. Later, in
this paper we will discuss calibration studies that may be conducted to estimate the parameters
of model (2), which need to be known in order to implement the three statistical methods that
we now describe. Later, we will also consider differential measurement error models where
equation (2) will include some dependence of W on Y.

2.1. Regression calibration
In this method we first estimate the quantity

(3)

and then substitute this quantity into the regression model (1) in place of the unknown X, so
as to estimate βX. Under the assumption of non-differential measurement error (i.e. f [Y|X, W]
= f [Y|X]), the error term δ in (2) is independent of Y, and the resulting estimate of βX is known
to be consistent for linear regression [1, p. 90], and inconsistent, but usually with small bias,
for logistic regression [1, pp. 91–92]. The non-differential measurement error assumption is
critical here and RC will often give highly biased estimates if this assumption is violated.
Standard errors for the estimate of βX are most easily found by bootstrap methods, although
the stacking equations method may be used at the cost of some algebraic and programming
work [1, pp. 387–392].

2.2. Moment reconstruction
In this method the aim is to find a quantity XMR(W, Y) that has the same distribution as X and
then substitute this quantity into the regression model (1) in place of the unknown X, so as to
estimate βX. Standard errors for the estimate of βX are most easily found by bootstrap methods.
The quantity XMR(W, Y) is constructed so that its first two moments joint with Y are the same
as the first two moments of (X,Y). Freedman et al. [5] gave the expression for XMR(W, Y) as

where G = {cov(X|Y)}1/2{cov(W|Y)}−1/2. However, this expression was based on the
assumption that W follows a classical measurement error model, in which case E(X|Y)= E(W|
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Y). For non-classical measurement error E(X|Y) ≠ E(W|Y), so that a modification is needed to
the expression for XMR(W, Y) so as to preserve the first-moment relationship E[XMR(W, Y)] =
E(X). This is achieved by modifying the definition to

(4)

with G defined exactly as before, from which the desired equality of the first two moments
follows immediately on taking expectations conditional on Y.

Freedman et al. [5] demonstrated that when the measurement error model parameters are
known, MR is equivalent to RC in linear regression, and in logistic regression with normally
distributed covariates the MR estimate of βX is, unlike RC, consistent. A further potential
benefit of MR is that the conditioning on Y ensures that it can successfully handle differential
measurement error, where δ is dependent on Y. Furthermore, the method can be used in more
complex situations, such as evaluating the impact of measurement error on classification trees
[5].

2.3. Stochastic IM
In this method we estimate the quantity E(X|W,Y) and then compute

(5)

where e is a random draw from the distribution of residuals from the regression of X on W and
Y. We then substitute this quantity into the regression model (1) in place of the unknown X, so
as to estimate βX. Similar to MR, the method can accommodate differential measurement error
since both methods condition on Y.

Each method has several variants that can be considered for use. We have chosen to report on
variants that we believe are practical and make efficient use of the available data. The details
of each variant will be specified below.

3. IMPLEMENTATION
The description of methods in Section 2 is quite general. However, implementation of the
methods requires estimation of the measurement error model parameters, based on a calibration
study. We consider here the case of an internal calibration study, where the subjects are a
random sample of those in the main study sample. We assume that there is a single explanatory
variable X that is measured unbiasedly by a ‘marker’ M in the calibration study. The
measurement of M is considerably more expensive than that of W and can be performed only
in the smaller calibration study but not in the main study sample. M is related to X by the
classical measurement error model:

(6)

where u is a random error with zero expectation, independent of X, W and Y. We assume that
M is measured twice on each person in the calibration study and that the random errors u for
the two measurements are independent, so that the variance of u can be estimated. We consider
the calibration study design in which W and two values of M and the disease variable Y are
measured on each person. If Y is not measured in the calibration study, then the MR and IM
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methods are not directly available since they require estimates of moments of X conditional on
Y. Indirect versions of MR and IM, based on the assumption of the non-differential
measurement error, can be constructed in these circumstances, but we will not pursue these
here, deferring comment on these until Section 7.

To simplify the description of the implementation we assume that (Y, X, W, M) has a
multivariate normal distribution. In the case where Y is binary, we assume that (X, W, M) has
a multivariate normal distribution conditional on Y, and also marginally, so that all subsidiary
regressions required for our methods are linear. While the conditional and marginal normality
assumptions cannot hold simultaneously, they can be approximately true simultaneously when
the disease (Y = 1) is rare, which we will assume.

3.1. Details
3.1.1. Regression calibration—We consider here three separate estimates that have
previously been termed RC in the literature. The first estimate, β ̂X,RC1 is the standard RC
estimate when the calibration study is external to the main study.

The second estimate, β ̂X,RC2, is obtained from the RC estimate based on the individuals in the
calibration study using their outcome values, Y, and their repeated marker values, M1 and
M2, that are assumed to follow the classical measurement error model. This estimate is not
usually considered, but is of interest in its own right since it does not employ values of W, and
therefore is valid when the measurement error in W is differential. To distinguish it from the
other methods, we call this method ‘calibration study RC’.

The third estimate, proposed by Spiegelman et al. [9] is a weighted average of β ̂X,RC1 and
β ̂X,RC2. The two estimates are weighted by the inverse of their estimated variances; see
Appendix A for details. It is expected that this estimate will be more efficient than both
β ̂X,RC1 and β ̂X,RC2 and has been termed ERC [9].

We will denote the above three methods by RC1, RC2 and ERC, respectively. Note that the
RC1 and ERC estimates are based on the assumption of non-differential measurement error.

3.1.2. Moment reconstruction—XMR(W, Y) = E(X|Y)+ G{W − E(W|Y)} may be calculated
as follows. E(W|Y) and var(W|Y) are estimated from the main study. E(X|Y) and var(X|Y) are
estimated from the calibration study data, via the regression of M ̄ on Y using Ê(X|Y)= Ê(M ̄|Y)
and , where . G is then estimated by

 and XMR calculated for each individual in the main study. Finally, we
estimate β ̂X,MR as the coefficient of XMR in the regression of Y on XMR in the main study
sample.

3.1.3. Stochastic IM—We follow the general approach described in Appendix 2 of Cole et
al. [8]. For each person in the main study sample who is not also in the calibration study we
impute X using XIM(W, Y) = E(X|W,Y)+e, whereas for persons in the calibration study, we
impute using XIM(W, Y, M̄)= E(X|W,Y, M̄)+e*. In these formulas, e is a random draw from the
distribution of residuals in the regression of X on (W,Y), whereas e* is a random draw from the
distribution of residuals in the regression of X on (W,Y, M̄). We repeat the procedure K times,
thereby creating a total of K imputed sets of covariates . For each k from 1 to K, we then

regress Y on  in the main study to obtain the estimate  and the naïve model-based

estimate  that ignores the fact that X was imputed.

Finally, we estimate βX as
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and we estimate var(β ̂X,IM) as

The full details of the procedure are described in Appendix A. Cole et al. [8] in their Appendix
2 comment that their IM procedure is ‘proper’ in the sense of Little and Rubin [6, p. 214]. The
method is expected to give unbiased estimates of the model parameters, and confidence
intervals with coverage probabilities at the nominal level.

We investigated both K = 10 and 40, the value suggested by Cole et al. [8], in our simulations.
Parameter estimates with both K = 10 and 40 were essentially unbiased. However, the coverage
properties of the confidence intervals with K = 40 follow the nominal level, whereas with K =
10 the coverage is slightly below the nominal level (see Section 4). The results in our tables
(which deal with bias and precision of the estimates and not with confidence interval coverage)
are those based on K = 10.

3.1.4. Further remarks on the methods—It will become apparent when considering the
simulation results given below that the above five estimation methods RC1, RC2, ERC, MR
and IM actually fall into three classes. Methods RC2, MR and IM derive all or most of their
information from the marker (M) and disease (Y) measurements in the internal calibration study.
Method RC1 derives most of its information from the exposure (W) and disease (Y)
measurements in the main study. Method ERC combines these two types of information in an
efficient manner. When viewed in this manner, one could also ask how efficient combinations
of RC1 and MR, or of RC1 and IM, would perform. We content ourselves with studying just
one combination method (ERC) in this paper, choosing the method that has already appeared
in the literature [9].

4. SIMULATIONS
In this section, unless stated otherwise, we take as given that each method yields unbiased or
nearly unbiased estimates of βX. Our main interest is therefore in the precision of the methods,
and we use simulations to compare them. We begin with a simulation where the disease model
is a linear regression.

4.1. Linear regression
We generated data according to the following model parameters and conditions:

Disease model (1): Link function h−1 = Identity; β0=0; βX =0.3 or 0.6; var(X)= 1; Residual
error variance= var(Y |X)= 0.91 or 0.64 (corresponding to βX = 0.3 or 0.6). These two choices
correspond to (Y, X) having a bivariate standard normal distribution with correlation 0.3 or 0.6.

Measurement error model (2): γ0 = 0; γX = 0.5, 0.75 or 1; var(δ)= 1, 2, or 4; non-differential
error (δ⊥Y). The cases of var(δ)= 2 and 4 were run only for γX = 0.5, giving five combinations.

‘Marker’ (M) model (6): var(u)= 1.0.
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Main study: sample size (N)= 1000; one measurement of Y and W per person.

Calibration study: sample size (n)= 100; one measurement of Y and W, two measurements of
M per person.

Number of simulations per scenario: 1000.

Methods of estimating βX: RC1, RC2, ERC, MR and IM.

By varying the regression slope in the disease model, and the error variance in the measurement
error model, we compare cases where the disease–diet relationship is strong (larger slope) and
weak (smaller slope), and where there is a large measurement error (higher error variance) and
a small measurement error (lower error variance).

Note also that we do not yet include differential measurement error in these first simulations.

The results of these simulations are shown in Table I. The table shows the precision of β ̂X for
the various methods in the 10 (2×5) different scenarios. Examination of the table shows that
the naïve method was very biased, whereas RC2, ERC, MR and IM methods all had little or
no bias. When the measurement error was high then the ERC estimate was underestimated but
by less than 10 per cent in our examples. The precision of the ERC estimate was generally
greater than or similar to that of the RC2, MR and IM estimates. For example, when γX = 1,
var(δ)= 1 and βX = 0.6, then the empirical standard deviation of the ERC estimate was
approximately one-half of those for the RC2, MR and IM estimates. When the measurement
error was larger (var(δ)= 2 and 4), then the precisions of the ERC, RC2, MR and IM estimates
were closer to each other.

The table also shows the advantage of ERC over the standard RC estimate, RC1. It may be
seen that the latter becomes badly biased with inflated standard error as the measurement error
increases. However, its combination with the RC2 estimate (yielding the ERC estimate)
stabilizes the estimation procedure and yields standard errors considerably smaller than those
of the component parts. Note that the good results for ERC occur partly because the bias of
RC1 and its standard error increase together as the measurement error increases. As ERC is a
weighted average of RC1 and RC2 with weights equal to the inverse of their variance, the RC1
estimate has an ever-decreasing influence on ERC as its bias grows.

We also examined the empirical coverage of the multiple IM estimated confidence interval for
βX. With 40 multiply imputed data sets, the coverage was close to the nominal 95 per cent for
all 10 scenarios considered in Table I (range: 94.1–95.7 per cent). With only 10 multiply
imputed data sets, the coverage was slightly below the nominal level (range: 91.0–93.8 per
cent). Full data are available from the authors.

4.2. Logistic regression
We consider two types of study that may be analyzed by logistic regression: case–control and
cohort studies. In case–control studies dietary ascertainment is done after the occurrence (or
not) of the disease, resulting in greater opportunity for differential error. Therefore, for this
design we simulate scenarios with differential error as well as non-differential error. In cohort
studies dietary intake is assessed before any occurrence of the disease, and differential error is
much less likely. Therefore, for this design we simulate only non-differential error. Moreover,
the sample sizes of these two designs are typically very different. We therefore generated data
according to the following model parameters and conditions:

Disease model (1): Link function h−1 = Logistic.

Freedman et al. Page 7

Stat Med. Author manuscript; available in PMC 2009 May 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cohort: β0 = −2.2; βX = 0.3 or 0.6; var(X)= 1 and X has normal distribution marginally. (Since
we consider only rare disease, X is approximately normally distributed both among the controls
and among the cases. The value β0 = −2.2 ensures that approximately 10 per cent of the cohort
participants are cases. The value βX = 0.3 (0.6) corresponds to an odds ratio of 2.2 (4.6) between
the 90th and 10th percentiles of X.)

Case–control: Data are generated from the above cohort model, and cases and controls are
randomly selected so that there are equal numbers of each in the case–control study.

Measurement error model (2):

Cohort, non-differential error (δ⊥Y): As for linear regression γ0 = 0, γX = 0.5, var(δ)= 1, 2 or
4.

Case–control, non-differential error: As above.

Case–control, differential error: Three simulations with βX = 0.3, as follows (the extra suffix
in the symbols below denotes case/control status, with 0= control and 1= case):

‘Marker’ (M) model (6): var(u)= 1, as for linear regression above.

Main study

Cohort: sample size (N)= 100000; one measurement of Y and W per person.

Case–control: sample size (N)= 1000 cases and 1000 controls; one measurement of Y and W
per person.

Calibration study

Cohort: sample size (n)= 1000; one measurement of Y and W, two measurements of M per
person.

Case–control: sample size (n)= 100 cases and 100 controls; one measurement of Y and W, two
measurements of M per person.

Number of simulations per scenario: 1000

Methods of estimating βX: RC1, RC2, ERC, MR, IM.

The results are shown in Table II and show similar trends to those seen in Table I. For cohort
studies with non-differential measurement error, the RC1 and ERC estimates are more precise
than those of the RC2, MR and IM methods, sometimes dramatically so. The RC1 and ERC
estimates are subject to mild bias especially for larger exposure effects (βX = 0.6), but in our
simulations the bias was less than 5 per cent of the estimate. For larger exposure effects (βX =
0.6) and a higher degree of measurement error (var(δ)= 4), the ERC estimate is considerably
more precise than the RC1 estimate.

For case–control studies with non-differential measurement error, ERC is once again more
efficient than the RC2, MR and IM methods. The bias in the ERC estimate is a little higher
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than that in the cohort study simulations but still remains below 10 per cent of the estimate.
When the measurement error is large (var(δ)= 4), the advantage of ERC over MR and IM
lessens, but the mean-squared error of the ERC estimate remains smaller than that of the MR
and IM estimates. Note that in these simulations standard RC (RC1) is quite biased, particularly
as the exposure effect and the measurement error increases.

For case–control studies with differential measurement error, Table II shows that RC1 and
ERC estimates have considerable bias, but will often have smaller variance than the almost
unbiased RC2, MR and IM methods. In these situations the trade-off between bias and precision
will have to be weighed.

In these simulations, we again examined the empirical coverage of the multiple IM estimated
confidence interval for βX for the six scenarios of case–control studies with non-differential
measurement error that are listed in Table II. As with the linear regression model, we found
that with 40 multiply imputed data sets the coverage was close to the nominal 95 per cent
(range: 94.2–94.9 per cent), but that with only 10 multiply imputed data sets, the coverage was
slightly below the nominal level (range: 92.0–94.3 per cent).

5. ASYMPTOTIC VARIANCES IN A SIMPLIFIED SITUATION
Some aspects of the results presented in Section 4 were surprising to us and not easily
understood intuitively. It was particularly surprising that according to Tables I and II the
precision of estimates from the MR and IM methods appeared insensitive to the measurement
error model parameters, in contrast to the RC1 and ERC estimates. In order to gain better
insight, and also as a check on our results, we developed asymptotic expressions for the standard
error of β ̂X in linear regression of the methods in a slightly simpler context than our simulations,
where M is an exact measure of X, that is, where var(u)= 0. The asymptotic expressions are
based on the assumption that the main study sample size N is very large, and much larger than
n, the sample size of the calibration study. Thus, the expressions do not include terms of order
1/N, which is much smaller than the dominant term of order 1/n. It turns out that the expressions
are simple functions of two correlations, ρXW and ρXY. The expressions for the standard errors
are given below and outlines of proofs are provided in Appendix B. Furthermore, the
expressions agree well with empirical results of simulations (see Appendix B).

Standard regression calibration (RC1):

Calibration study RC (RC2):

ERC:
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Moment reconstruction (MR):

where ρXY is the correlation coefficient between X and Y.

Imputation (IM):

where  is the multiple correlation coefficient between X and (Y, W),

, and, under the assumption of non-differential error,
.

These formulas confirm that the asymptotic standard error for the RC1 and ERC estimators
are dependent on parameters ρXW and ρXY, whereas those of the RC2 and MR estimators are
entirely independent of ρXW. The reason is clear for RC2. It occurs for MR because the
definition of XMR includes calibration study information only on E(X|Y) and var(X|Y), and these
are estimated from data on X and Y, but not W.

Although the asymptotic standard error of the IM estimator does involve ρXW (through the

expression ), one can in fact show that it is bounded above by the asymptotic standard

error of the MR estimator. This follows directly from the observation that . In the

worst-case scenario that W provides no information about X, we have , and the
standard errors for the MR and IM estimators will be asymptotically equal. This demonstrates
that, using our implementation methods, IM is asymptotically superior to MR. It is also clear
from the formulas that both MR and IM are asymptotically superior to RC2. As shown in the
simulations of Section 4, the difference between RC2, MR and IM is, in practice, often small.

Tabulating these expressions for different values of ρXW and ρXY is informative (Table III). In
this table we have chosen the values of βX and n in each row to ensure that SE(β ̂X,RC) equals
1, enabling simple comparison between the standard errors of each method. The table shows
that ERC is asymptotically superior to MR and IM when correlations between X and Y are low
(0.2), as they generally are in epidemiological studies with binary outcomes. The advantage to
ERC increases as the measurement error decreases. A clear asymptotic advantage to MR or
IM over ERC is seen only for a high correlation between X and Y (0.6 or higher) in combination
with large measurement error (i.e. low correlation between X and W).

6. APPLICATION TO AARP STUDY
The NIH-AARP Diet and Health study is a large cohort consisting of 550 644 individuals (325
176 men and 225 468 women) over the age of 50 years, who completed a food frequency
questionnaire (FFQ) in 1995–1996 and have since been followed for mortality and cancer
incidence. Details of the study are provided by Schatzkin et al. [11]. We examine the question
whether dietary fat intake is related to mortality. At the time of the analysis, subjects had been
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followed for a median of 9.6 years, and 65 168 subjects (44 445 men and 20 723 women) had
died.

The internal calibration sub-study comprised 1953 subjects (987 men and 966 women), who
in addition to completing the FFQ also completed at least one of the two 24-h recalls (24HR)
(1890 completed both), to be used as reference measurements. Details of the calibration sub-
study are provided by Thompson et al. [12]. At the time of the analysis, 208 subjects (114 men
and 94 women) in the calibration sub-study had died.

For illustration of our methods, we estimate the parameters in a logistic regression of mortality
(Y) on the logarithm of per cent calories from fat in the diet (X) and age. Reported exposure
(W) is log per cent calories from fat as measured by the FFQ, and the reference measurements
(M1 and M2) are log per cent calories from fat as measured by the two 24HR. Note that there
is doubt over whether the 24HR measurements will indeed conform to the classical
measurement error model (6), but currently there is no measure of fat intake available that is
known to be a valid reference measurement (i.e. unbiased with errors that are uncorrelated with
Y, X and W).

Prior to the analysis, we excluded 5034 subjects (976 deaths) who reported dietary intakes that
were determined to be outliers of W or FFQ log total caloric intake. None of the excluded
subjects were in the calibration sub-study. For subjects in the calibration sub-study, we
excluded 20 values of M1 and 23 values of M2 that were also determined to be outliers. Outliers
were defined to be values that fell below the 25th percentile of the distribution of the variable
minus two interquartile ranges or above the 75th percentile plus two interquartile ranges.

We estimated parameters in the logistic regression of mortality on log per cent calories from
fat and age, separately for men and women, using six different methods: naïve regression of
Y on W, RC1, RC2, ERC, MR and IM. Standard errors were estimated using a bootstrap method
with 100 replications.

Table IV presents the estimates of the coefficient for log per cent calories from fat. The naïve
estimate indicates a moderate association with an odds ratio of 1.7–2.0 (exp(0.55)–exp(0.71))
for a 2.7-fold= exp(1.0) increase in per cent fat intake. This association is highly statistically
significant (z>20 for both men and women), because of the very large sample size. Adjustment
for the measurement error by RC1 or ERC indicates an even stronger association with an odds
ratio of 2.9–4.7 (exp(1.06)–exp(1.54)) for a 2.7-fold increase in per cent fat intake, which is
still highly statistically significant (z>10 for both men and women). However, the MR and IM
method estimates have standard errors that are 5–10 times larger than that of the RC1 or ERC
estimate, and consequently conventional statistical significance (z>1.96) is no longer seen.

This result appears even stronger than that in the first row of the simulated cohort studies seen
in Table II, where standard errors of the MR and IM estimates were approximately 4 times
larger than that of the ERC estimate. The key to linking the AARP result to the simulations
lies in considering the values of ρXY and ρXW for the two cases. In a logistic regression model,
a covariate X has a correlation with Y approximated by . In the simulation in
question  is 0.3×1.0×0.3= 0.09 and ρXW = 0.45. In AARP,

 is, for women, 1.54×0.21×0.29= 0.09 and ρXW is 0.64. Similar values are
found for men. Thus, in the AARP study although the value of ρXY is very similar to that of
the simulation, the value of ρXW is larger. Using the asymptotic formulas in Section 5, one may
predict that the standard error for MR and IM estimates will be approximately 9 and 7 times,
respectively, the standard error for RC1 or ERC, which is not far from the observed ratios of
6.3 and 5.3 seen for women in Table IV.
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Our main conclusion is that the MR and IM methods in this context are grossly inefficient
compared with RC1 or ERC. The finding, using RC1 or ERC, of a possibly highly important
association between per cent fat intake and total mortality needs further examination.
Confounding with other factors needs to be considered. The association may partly reflect the
known fat intake–cholesterol–heart disease pathway, which may be studied by examining the
association for selected causes of death.

7. DISCUSSION
We have described and compared three substitution methods for correcting regression
coefficients for measurement error in the covariates, in the context of nutritional epidemiologic
studies. We note that in place of our term ‘substitution’, we could have used the word
‘imputation’ (in its general sense), but to do so may have caused confusion. In fact, RC
corresponds to the conditional mean IM method described by Little [13], but it is not clear
where MR would fit into the array of current IM methods.

We have considered in this paper the case where the calibration study includes information on
the disease variable Y. Sometimes this information is not available in the calibration study. In
these cases, among the methods we have described, only RC1 is available, as others require
knowledge of Y in the calibration study.

The ‘efficient’ version of RC (ERC) that we have used appeared in our simulations to offer a
considerable advantage over the usual RC estimator (denoted by RC1 in our tables). Tables I
and II show the large advantage of ERC over standard RC when the measurement error is large.
We also found in simulations not reported here that ERC was preferable to using Fuller’s small-
sample correction for RC [14].

When the calibration study includes information on disease, and non-differential error pertains,
then ERC appears more efficient than MR and IM in almost all of the situations that we have
examined in our simulations. The simulations indicated that the gap between the methods
narrows as the measurement error variance increases, but we found only one case where the
standard error for the ERC estimate was larger than that of the other estimates. Our asymptotic
results indicate that when the correlation between X and Y is high (ρXY ≥0.6) and measurement
error is high (ρXW <0.4), MR and IM can hold an advantage over ERC, but the usual situation
in epidemiology is the reverse, with a correlation between X and Y that is low and less than the
correlation between X and W. In fact, in a cohort study with a disease prevalence of 10 per cent
and a normally distributed covariate, a value of ρXY equal to 0.6 would correspond to a relative
risk of 160 between the upper and lower quintiles.

We believe that the efficiency advantage provided by ERC stems primarily from its assumption
of non-differential measurement error. RC2, MR and IM do not make this assumption, and
payment in the form of increased variance is extracted for the privilege. In some cases the
payment is very high. It is in fact possible, although more complex, to construct versions of
MR and IM that are based on the assumption of non-differential measurement error and do not
use the knowledge of Y in the calibration study. We have studied this separately and have found
in simulations, not reported here, that they perform very similarly to ERC. This reinforces our
view that the increased variance of the MR and IM estimates (differential error version) relative
to the ERC estimates indeed results from relaxing the non-differential measurement error
assumption. The rare cases where MR and IM improve on ERC will occur through the former
methods’ use of Y, which, if it is highly correlated with X, can supply important extra
information for estimating X.

We note that ERC can be viewed as an efficient linear combination of the usual RC estimator
(RC1) and an RC estimator applied to the marker data in the calibration study (RC2). The
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insight that MR and IM also derive most of their information from the marker data in the
calibration study, leads to the suggestion of combining the RC1 estimator with MR or with
IM, instead of with RC2. As MR and IM will generally have somewhat greater precision than
RC2, one would expect the resulting combined estimators to have slightly greater precision
than ERC. We have not pursued this line here, as we made our aim to compare methods that
have been proposed in the literature, but it is of interest to do so. Examining the combination
of RC1 with IM would seem most worthwhile, firstly because IM is slightly more precise than
MR and, secondly, because the variance of MR can be determined only by bootstrap, making
it more cumbersome to obtain the best weights for the linear combination.

When the differential measurement error pertains, then RC2, MR and IM have considerably
less bias than ERC, but can have much larger variance, and the decision which to use has to
be weighed according to the expected degree of the bias arising in the ERC method. In the
important case of prospective studies, however, differential measurement is less likely and the
decision regarding which method to use can be based on the estimated variances, as in the
AARP example presented.

The methods of MR and IM perform similarly, but IM has greater precision in some
circumstances. Theoretical results indicate that, asymptotically, IM is always as efficient, or
more efficient than MR. These results are supported by our simulations, although in many cases
there is little practical difference between the two methods. One advantage of the IM estimate
is the ability to obtain direct estimates of the standard error without resorting to use of the
bootstrap. We found that the confidence intervals for the model parameters had good coverage
properties if they were based on 40 multiply imputed data sets.
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APPENDIX A: IMPLEMENTATION OF RC AND MULTIPLE IM

A.1. Regression calibration
The ERC estimate is a weighted average of two available RC estimates of βX. The first estimate,
βX,RC1 is obtained by (i) estimating the linear regression E (M ̄|W)=λ0 + λ1 W in the calibration
study to get estimates λ ̂0 and λ ̂1; (ii) calculating for each individual in the main study, XRC1
=λ ̂0 + λ ̂1W; and (iii) estimating the coefficient of XRC1 in the regression of Y on XRC1 in the
main study sample. For case/control studies, we use only the controls to obtain λ ̂0 and λ ̂1 in
step (i).

This is the usual RC estimate when the calibration study is external to the main study. However,
as we have an internal calibration study, we can improve upon this estimate.

The second estimate, β ̂X,RC2, is obtained by (i) estimating E(M ̄), var(M ̄) and var(u)= var(M2 −
M1)/2 in the calibration study, where M ̄ is the mean of the two determinations of M; (ii)
calculating  and ; (iii) for each individual in the
calibration study, calculating XRC2 = Ê(M ̄)+ λ ̂M {M ̄ − Ê(M ̄)}; and (iv) estimating the coefficient
of XRC2 in the regression of Y on XRC2 in the calibration study. For case/control studies, we
use only the controls to estimate E(M ̄) and var(M ̄) in step (i).

Finally, we combine the two estimates of βX as follows: (i) we estimate variances of β ̂X,RC1
and β ̂X,RC2, using formulas described in Spiegelman et al. [10] and Rosner et al. [15]; (ii) we

calculate the weight ; and we calculate β ̂X,RC as
the weighted average: β ̂X,RC = wRCβ ̂X,RC1 + (1−wRC)β ̂X,RC2.

A.2. Multiple IM
For each person in the main study sample who is not also in the calibration study we impute
X using XIM(W, Y) = E(X|W,Y)+e, whereas for persons in the calibration study, we impute using
XIM(W, Y, M ̄)= E(X|W,Y, M ̄)+e*. In these formulas, e is a random draw from the distribution
of residuals in the regression of X on (W,Y), whereas e* is a random draw from the distribution
of residuals in the regression of X on (W,Y, M ̄).

Freedman et al. Page 14

Stat Med. Author manuscript; available in PMC 2009 May 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Assuming that X has a normal distribution conditional on W and Y, and that u in (5) has a normal
distribution, then

(A1)

where μ(α; W,Y)= E(X|W,Y), Σ12(θ; W,Y)= var(X|W,Y) and Σ11(θ; W,Y)= var(X|W,Y)+ var(u).
Then (X|W,Y)~ N(μ (α; W,Y), Σ12(θ; W,Y)).

In addition, (X|W,Y, M ̄)~ N(μ (α; W,Y)+ R(θ; W,Y){M ̄ − μ (α; W,Y)}, Σ12(θ; W,Y){1−R(θ;
W,Y)}) where

The multiple IM procedure is therefore as follows:

i. Fit model (A1), where μ, Σ11 and Σ12 are known functions (defined below) of unknown
parameter vectors α or θ, in the calibration study to obtain estimates α̂, θ ̂,  and

.

ii. For k = 1 to K IMs,

a. Generate a random draw of the parameter estimates:
.

b. For each individual in the main study but not in the calibration study,
generate e(k) ~ N(0, Σ12(θ(k); W,Y)) and calculate .

c. For each individual in the calibration study, generate e*(k) ~ N(0, Σ12(θ(k);
W,Y){1−R(θ(k); W,Y)}) and calculate

.

d. Regress Y on  in the main study to obtain the estimate  and the naïve

model-based estimate  (that ignores the fact that X was imputed).

iii.
Estimate βX as .

iv. Estimate ( ) as

For continuous Y, the mean and variance functions are
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This parameterization is used to ensure that the estimates of variance are always positive.

For binary Y, the mean and variance functions are

APPENDIX B: THEORY FOR UNDERSTANDING THE RESULTS OF THE
SIMULATIONS IN SECTION 4

Assume the model

as in models (1) and (2) of the main text.

Assume that Y and W are measured in N individuals where N is very large.

Assume also that Y, W and X are measured in an independent sub-study of n individuals where
n is much smaller than N.

This is not exactly the same situation as we simulated (e.g. we assume here that we can measure
X exactly, whereas in the simulations we had repeat measurements of an unbiased of X), but
we think it is close enough to give us insight into the results of the simulations in Section 4.

Define the following quantities:

where subscript n denotes that the quantity is being evaluated in the calibration sub-study.

Estimates of βX considered in our paper are given by the OLS regressions of Y on X̂RC, X̂MR
and X̂IM in the main study (β ̂X,RC1, β ̂X,MR, β ̂X,IM, respectively). In addition, an estimate of βX
is given by regressing Y on X in the calibration sub-study (β ̂X,RC2). The ERC estimate that we
consider in this paper is given by
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where  is the estimated variance of β ̂X,RCi (i = 1,2). We assume in the following that these
variances are estimated sufficiently accurately to ignore their own uncertainty. In this case,

Furthermore,

Subscript N indicates that the estimate is being made across the full study.

Our task is to evaluate these variances.

1. Standard RC (RC1):

Assuming N very large, using the delta method, the approximate variance of this
expression is

2. Calibration study RC (RC2): It is simple to show that

3. ERC (RC1): From the above results it follows that the variance for β ̂X,RC is given by
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4. MR:

where φ ̂ is the sub-study estimate of the regression coefficient of X on Y, and ψ is the
regression coefficient of W on Y.

For large N, using the delta method liberally, the variance of this quantity simplifies
to approximately

5. IM:

where γ ̂ is the sub-study estimate of the regression coefficients of X on (Y, W).

Using the delta method liberally, the variance of this expression for large N turns out
to be

where under the assumption of non-differential measurement error,

To verify the accuracy of the variance expressions for ERC, MR and IM, we compared their
values with empirical variances obtained from simulations. In Table BI, the theoretical value
is given in the upper half of the cell, and the empirical value in the bottom half. The values var
(X)= 1, β0 = 0, βX = 1, γ0 = 1, γX = 1, N = 10000, n = 500 were fixed throughout.
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In most cases the approximate formulas agree well with the empirical values. The formula for
RC does not appear to do very well when var(ε) is large, i.e. 9. However, with a larger N (100
000) the empirical variance for ERC in this case reduces to 0.046, much closer to the theoretical
(asymptotic) value of 0.042.
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Table BI
Comparison of theoretical asymptotic standard errors (upper half of the cell) with empirical values (lower half of the
cell) for efficient regression calibration (ERC), moment reconstruction (MR) and multiple imputation (IM) estimators.

var(δ) var(ε) SE(β ̂X,RC) SE(β ̂X,MR) SE(β ̂X,IM)

1 1 0.032 0.032 0.030

0.033 0.034 0.033

1 0.04 0.0088 0.0086 0.0084

0.0088 0.0083 0.0087

1 9 0.042 0.121 0.097

0.061 0.127 0.099

4 1 0.040 0.032 0.031

0.039 0.032 0.032
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