Table I.
Empirical means of β̂X (with empirical standard deviations in parentheses) in 1000 simulations where the disease model is linear, estimated by naïve linear regression of Y on W, regression calibration for W in the main study (RC1), regression calibration for M̄ in the calibration study (RC2), efficient regression calibration (ERC), moment reconstruction (MR) and multiple imputation (IM); main study sample size= 1000, calibration sample size= 100.
| βX | γX | ρXW* | Naïve | RC1 | RC2 | ERC | MR | IM | |
|---|---|---|---|---|---|---|---|---|---|
| 0.3 | 1 | 1 | 0.71 | 0.150 (0.022) | 0.307 (0.071) | 0.312 (0.135) | 0.303 (0.061) | 0.310 (0.129) | 0.301 (0.115) |
| 0.3 | 0.75 | 1 | 0.60 | 0.144 (0.025) | 0.309 (0.077) | 0.299 (0.068) | 0.301 (0.127) | 0.298 (0.118) | |
| 0.3 | 0.5 | 1 | 0.45 | 0.119 (0.028) | 0.323 (0.131) | 0.293 (0.084) | 0.301 (0.125) | 0.296 (0.122) | |
| 0.3 | 0.5 | 2 | 0.33 | 0.067 (0.022) | 0.363 (0.422) | 0.285 (0.100) | 0.300 (0.122) | 0.294 (0.121) | |
| 0.3 | 0.5 | 4 | 0.24 | 0.036 (0.015) | 0.563 (3.498) | 0.279 (0.106) | 0.297 (0.118) | 0.287 (0.121) | |
| 0.6 | 1 | 1 | 0.71 | 0.300 (0.020) | 0.614 (0.104) | 0.605 (0.138) | 0.595 (0.083) | 0.604 (0.124) | 0.590 (0.121) |
| 0.6 | 0.75 | 1 | 0.60 | 0.289 (0.023) | 0.621 (0.121) | 0.600 (0.095) | 0.609 (0.127) | 0.596 (0.126) | |
| 0.6 | 0.5 | 1 | 0.45 | 0.239 (0.027) | 0.654 (0.252) | 0.593 (0.115) | 0.612 (0.122) | 0.599 (0.124) | |
| 0.6 | 0.5 | 2 | 0.33 | 0.133 (0.020) | 0.745 (0.909) | 0.585 (0.119) | 0.609 (0.124) | 0.594 (0.125) | |
| 0.6 | 0.5 | 4 | 0.24 | 0.071 (0.016) | 0.984 (4.524) | 0.581 (0.130) | 0.610 (0.124) | 0.594 (0.125) |
ρXW is the correlation of X and W.