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Abstract
Introduction—An expanding understanding of the importance of angiogenesis in oncology and
the development of numerous angiogenesis inhibitors are driving the search for biomarkers of
angiogenesis. We review currently available candidate biomarkers and surrogate markers of anti-
angiogenic agent effect.

Discussion—A number of invasive, minimally invasive, and non-invasive tools are described with
their potential benefits and limitations. Diverse markers can evaluate tumor tissue or biological fluids,
or specialized imaging modalities.

Conclusions—The inclusion of these markers into clinical trials may provide insight into
appropriate dosing for desired biological effects, appropriate timing of additional therapy, prediction
of individual response to an agent, insight into the interaction of chemotherapy and radiation
following exposure to these agents, and perhaps most importantly, a better understanding of the
complex nature of angiogenesis in human tumors. While many markers have potential for clinical
use, it is not yet clear which marker or combination of markers will prove most useful.
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1 Background
Angiogenesis, defined as the formation of new blood vessels, is a necessary process for tissue
survival in physiologic and pathologic states. The study of angiogenesis has rapidly expanded
since Judah Folkman first suggested in 1971 that angiogenic dysregulation could be required
for tumor growth and metastasis [1]. Angiogenesis has since become an accepted target for
anti-cancer therapy [2–5]. In 2003, bevacizumab became the first angiogenesis inhibitor to be
approved by the FDA for use in the U.S. Currently there are several anti-angiogenic agents in
clinical use or in testing for cancer therapy as well as many others that exhibit anti-angiogenic
properties as part of their mechanism of action (Table 1). There are currently over 1,000
interventional clinical trials investigating over 40 anti-angiogenic agents in cancer treatment
(Table 2, www. clinicaltrials.gov).
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Angiogenesis is a complex process with numerous potential therapeutic targets. In cancer,
angiogenesis is initiated when a tumor cell produces a pro-angiogenic signal, or angiogenic
factor, activating resting endothelial and stromal cells. The activated endothelial cells then
acquire the ability to remodel adjacent extracellular matrix, proliferate, migrate, then
differentiate and stabilize as new blood vessels [6,7]. Known angiogenic factors include
vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), hepatocyte
growth factor (HGF), basic fibroblast growth factor (bFGF), matrix metalloproteinases
(MMPs), transforming growth factor (TGF) -β, interleukin (IL) -8 and angiopoietins [4]. The
most well-characterized and most commonly targeted pathway is VEGF and its tyrosine kinase
receptors (VEGFR-1 and -2) [8,9].

The majority of the agents in use or in development target angiogenic factor pathways or the
endothelial cell (Tables 1 and 2; reviewed in [6,10]). The most common target in anti-
angiogenic therapy is disruption of the angiogenic signal. This can be done in many ways.
First, the angiogenic factor itself can be targeted by either direct inhibition, such as with
bevacizumab, a monoclonal antibody to VEGF-A, or by creating a sink for the factor,
exemplified by VEGF-Trap (aflibercept), a soluble form of VEGFR. Inhibiting angiogenic
factors is possible by decreasing production, (i.e. interferon (IFN) -α, COX-2 inhibitors) or
activity (i.e. suramin). Toxins bound to angiogenic factors are another potential anti-angiogenic
method currently in preclinical studies [11,12]. Targeting the receptor also disrupts the
angiogenic signal, shown by cetuximab, a monoclonal antibody to the epidermal growth factor
receptor (EGFR). Several drugs act on signaling pathways, specifically by targeting the
tyrosine kinase receptors of angiogenic factors (i.e. sunitinib, sorafenib, erlotinib, gefitinib).

Agents that act on endothelial cell functions can be divided into those that (1) inhibit endothelial
cell proliferation such as fumagillin analogs, squalamine and endoge- nous inhibitors
endostatin and angiostatin; (2) inhibit endothelial cell invasion and motility like the matrix
metalloproteinase (MMP) inhibitors (3) inhibit endothelial cell adhesion such as drugs
targeting αvβ3 integrin. Other agents, often with multiple or unknown mechanisms are being
investigated such as thalidomide and its analogs.

The impact anti-angiogenic agents will have on treating cancer remains unclear. As
monotherapy, anti-angiogenic agents have low objective response rates [13,14], potentially
due to development of resistance by the induction of secondary pathways of angiogenesis
[15]. Angiogenesis inhibitors in combination with other cytotoxic modalities may yield the
best results for cancer patients [16]. Several clinical trials of angiogenesis inhibitors in
conjunction with radiation therapy are underway (www.clinicaltrials.gov;[5])

Radiation and angiogenesis are connected at the molecular level [17,18]. Cells in a hypoxic
environment are resistant to radiation ([19–21]. Tumors respond to radiation and stressors like
hypoxia by producing hypoxia-inducible factor (HIF)-1, a strong survival mediator which
inhibits apoptosis in endothelial cells [22,23]. Inhibition of HIF-1 activity results in long-term
growth suppression in tumor xenografts [24]. It would be expected that inhibition of
angiogenesis would cause an increase in HIF-1 expression and hypoxia as a result of impaired
vascularization leading to radioresistant states in tumors. However, HIF-1 expression also leads
to VEGF transcription and angiogenesis induction [13,25–28]. With this understanding,
angiogenesis inhibition in vivo might either induce radiation resistance or sensitivity.

In fact, most studies favor increased radiosensitivity with inhibition of angiogenesis. One of
the earliest observations of this phenomenon of sensitization to radiation with inhibition of
angiogenesis also showed an improved oxygenation in tumors subjected to anti-angiogenic
therapy [29]. Recent evidence shows some normalization of vasculature with angiogenesis
inhibition and a subsequent period of increased oxygenation and susceptibility to radiation
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[30–34]. Riesterer et al. demonstrated extended tumor growth delay and tumor-cell apoptosis
with combination anti-angiogenic and radiation therapy as well as reducing the hypoxic
response to radiation [35].

1.1 The pursuit of surrogate markers for angiogenesis
Traditional cytotoxic cancer therapies are typically titrated to achieve a maximum tolerated
dose for a selected population. Unlike conventional cytotoxic chemotherapies, targeted
therapies, such as angiogenesis inhibitors, may achieve therapeutic levels long before toxicities
arise [36]. For this reason, it is necessary to identify biomarkers that accurately reflect the effect
of a drug on its known targets and predict response to treatment [37–39]. Current angiogenesis
inhibitors are typically cytostatic, and are thought to alter vessel structure instead of resulting
in direct tumor kill. For this reason, investigators are aggressively pursuing suitable markers
of anti-angiogenic modulation of tumor vasculature. This search has been challenging due to
variations of tumor vasculature between tumor types, tumor histologies, tumor size, and degree
of differentiation [40–44].

In general, markers of angiogenesis inhibitor effect can be divided into three major categories:
invasive measures, minimally invasive measures, and non-invasive measures. Many
technologies can be applied to more than one type of biospecimen such that they can be used
as an invasive (biopsy) or minimally invasive measure (serum). Each of these markers can
provide different information regarding the effect of the agent on tumor vasculature.
Information can vary from anatomic to physiologic. It is not yet clear whether one marker may
be most appropriate in certain clinical situations or whether a panel of markers may be required
for an optimal assessment of angiogenic state of the tumor. We provide a general overview of
each of these classes of markers and a brief discussion of the results and limitations of several
markers that have been tested in this setting (Table 3).

2 Invasive measures: tissue biomarkers
The most intuitive method to measure the effect of any drug is to evaluate the target tissue, the
tumor. Biopsies provide a way to thoroughly characterize tumor, histology and molecular
processes with techniques such as immunohistochemistry, microarray, and proteomic analysis.
These methods may be helpful in examining therapeutic effects of radiation, chemotherapy,
targeted therapies, and their combinations. While evaluation of tissue provides an excellent
mechanism to evaluate drug effect, the method raises practical and ethical concerns. The ethical
implications of subjecting patients to serial biopsies in the context of a clinical trial have been
debated [45,46]. At this time, there is no consensus in the research community regarding the
appropriateness of repeated biopsies.

In addition to ethical concerns, the logistical and monetary costs of multiple biopsies are
significant, making this option impractical for larger studies. Smaller series have successfully
used this technique and gained a wealth of information. An excellent example of the successful
use of tissue biopsies to evaluate tissue effects of an anti-angiogenic agent is a study of
combined chemoradiotherapy and bevacizumab in rectal cancer patients [47,48]. Finally, the
use of tissue markers requires biopsy of a portion of tumor. This technique may lead to sampling
error, disruption of normal tumor biology after each biopsy, and the potential for wound healing
problems when performed concurrently with the delivery of an anti-angiogenic agent,
radiation, or cytotoxic chemotherapy.

2.1 Microvessel density and structure
Evaluation of microvessel density (MVD) is performed by immunostaining endothelial cells
in tissue, identifying “hot spots” of angiogenesis and counting the number of vessels per high
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power field. Within tumors, MVD has been identified as a potential prognostic indicator of
progression, overall survival, and disease-free survival in multiple histologies [49–52]. MVD
has also been explored as a method to predict and evaluate the efficacy of anti-angiogenic
therapy [53,54]. Regardless of the prognostic value of MVD, its utility in evaluating response
to anti-angiogenic therapy has been disappointing.

Pre-clinical data [53,55] and numerous clinical trials show that microvessel density does not
predict response to anti-angiogenic therapy, nor does it predict the dose required to elicit an
anti-angiogenic response [56–61]. In addition, MVD does not appear to be associated with
other non-invasive serum markers and imaging techniques used as markers of angiogenic state
[62]. However, two recent trials in gastric and head and neck cancer patients found statistically
significant decreases in MVD before and after COX-2 inhibitor therapy, which is thought to
act partially as an anti-angiogenic agent [63,64].

There are several potential reasons for the conflicting reports of the utility of MVD in the setting
of evaluation of efficacy of anti-angiogenic therapy [65,66]. For one, the choice of
immunostained antigen may affect MVD prognostic and predictive value. Several studies have
measured MVD with antibodies to CD105, a protein expressed in higher quantities in
proliferating tumor endothelial cells compared to normal microvasculature [67–70]. Because
other antigens such as CD31 and CD34 are present on the surface of tumor endothelial cells
regardless of proliferation status, they may not reflect the presence of targeted proliferating
neo-vessels as effectively as CD105 [71].

One major concern with any biopsy marker, such as MVD, involves sampling error. As
mentioned, measurement relies on selection of “hot spots” within tissue that could vary
substantially. Also, the MVD of the biopsy may not be representative of the remainder of the
tumor. Additionally, as MVD is a measure of vessels per area of tumor, the measurement
reflects the balance of tumor cells and vessels. If a proportional number of tumor cells and
vessels are eliminated with a therapy, the vessel density measurement may remain stable, even
though both tumor and endothelial cells have been killed [53]. Questions also arise concerning
whether MVD reflects the functionality of vasculature present as well as thedegreeofthe
tumor’s dependence upon the vasculature identified [65].

Yet another concern is the affect additional treatments, besides anti-angiogenic therapy, will
have on MVD. In 1945 it was discovered that radiation has an independent effect on MVD as
well as vessel length and diameter. Both single dose [72,73] and fractionated radiation [74]
result in altered tumor vascularization, noted as early as 12 h post-irradiation. These changes
reflect a decrease in the intercapillary distance in irradiated tumors, possibly leading to
reoxygenation following radiation [74].

The concerns about MVD sampling challenges, modulation by other therapies and the observed
lack of correlation with anti-angiogenic response indicate that MVD cannot be supported as a
direct measure of angiogenesis in clinical trials. More promising results might be found with
greater characterization of neoangiogenesis as well as more qualitative structural analysis of
tumor vasculature [71]. While anti-angiogenic therapy may not consistently alter MVD,
evidence suggests that microvascular structure may be “normalized” as angiogenesis is
inhibited [30,31,33,34,75]. This parameter can be measured through techniques such as
vascular casting or vascular contrast, which typically require large samples of tissue for
evaluation. Evaluation of vessel structure during a lead-in phase with neo-adjuvant delivery of
the angiogenesis inhibitor alone may help distinguish what effects are attributable to the
angiogenesis inhibitor.
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2.2 Proteomic analysis
The field of proteomics was developed to allow the simultaneous evaluation of numerous
peptide biomarkers. The concept evolved from the theory that the pattern of expression of a
number of peptides in biologic samples might provide a better diagnostic tool than the
evaluation of single proteins [76–78]. Advances in the field of proteomics such as 2D gel
electrophoresis, mass spectrometry technologies, and protein array technologies such as
surface-enhanced laser-desorption/ionization time-of-flight (SELDI-TOF) mass spectroscopy
allow the generation of a descriptive “fingerprint” of polypeptide expression in serum samples
[76]. The spectra generated through this analysis can be compared to the spectra of other
subjects to generate a pattern predictive of the presence of cancer [79–82], disease stage [83,
84], and therapeutic effect [78,85].

Direct tissue profiling of small biopsy sections can yield full-scale proteomic analysis revealing
relevant biomarkers or patterns [86,87]. In tissue samples, techniques such as laser capture
microdissection can allow collection of specific cell subtypes. This powerful technology may
allow the generation of specific expression profiles from primary tumor cells, metastatic tumor
cells, and endothelial cells that will allow assessment of response to each cell type to therapy
[88,89]. Additionally, by creating a fingerprint for each cell type and how they are altered in
response to therapy, intermittent evaluation of serum profiles may allow an assessment of
response in each cell line through shedding into the vascular compartment. The continued
introduction of numerous technological advancements such as artificial intelligence-based
pattern recognition algorithms will allow a more rapid and sensitive detection of patterns that
will assist in detecting and monitoring cancers [78,90,91]. New methods like linear ion trap
quadrupole mass spectrometers enhance quantification abilities [92,93] and capillary
electrophoresis mass spectrometry is allowing better evaluation of large data sets, more precise
differentiation of proteins and more rapid monitoring of data quality [94].

Recent studies have investigated the use of proteomic techniques to identify proteins associated
with tumor endothelial cells [95–99]. The study that to date best represents this application
defined 15 proteins differentially upregulated in tumor endothelium of lung metastases from
breast primaries compared to normal rat lung [100]. Another study noted differential expression
of four proteins in glioma vasculature not found in normal brain tissue [101]. Some of these
proteins have been validated using specific antibodies to label tumor and normal tissue [100–
102].

Since proteomic profiles can be generated from tissue as well as biological fluids, various
limitations may apply. With tissue samples, the same concerns that exist for MVD often apply
here, namely sampling error, invasiveness of the procedure, and the requirement for multiple
biopsies to compare prior to and after therapy. The use of this technique for evaluation of
biological fluids minimizes these concerns, however it remains unclear if the use of serum
proteomic profiling will allow an accurate estimation of angiogenic state within a tumor.
Furthermore, it is unclear if a signature or pattern representative of altered angiogenic state
will apply across multiple primary sites (variable leak into the plasma compartment),
histologies, grades of tumor, and different total tumor burdens.

2.3 Gene expression profiling
Technologies such as DNA microarrays and serial analysis of gene expression (SAGE) are
creating opportunities to investigate gene expression in tumors [103]. This implies the potential
to use tumor biopsies, circulating tumor cells, circulating endothelial cells, and whole blood
to identify new surrogate markers of angiogenesis. Multiple genes have been implicated in
angiogenesis by gene expression profiling for a number of tumors [77]. St Croix et al. purified
and concentrated colon cancer endothelial cells and used SAGE to identify 79 genes that were
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upregulated or downregulated. Among those discovered were novel tumor endothelial markers
found to be overexpressed in other tumors [104,105], some with potential therapeutic
implications [106,107]. SAGE has also been employed to identify genes in brain tumors and
breast cancers [108–110]. Some investigators have proposed the use of gene expression
databases using similarities of ordered gene lists approach for comparisons and pooling of data
to increase identification of genes involved in angiogenesis or the response to these agents
[76,111,112]. However, the large scale combination of these data sets would be limited by
technical and statistical problems.

In addition to identification of genes involved in angiogenesis, expression profiling also
provides other potential applications to the investigation of angiogenesis inhibitors. With the
use of dynamic contrast imaging as a guide, areas of tumors thought to be active from an
angiogenic standpoint can be targeted for biopsy [113–115]. Techniques such as laser capture
microdissection allow comparisons of expression profiles in regions of tumors thought to be
of interest [113,116–119]. By evaluating which proteins are expressed in regions of tumors
with significant angiogenic activity, tumors from protocol candidates may be screened for
expression to help determine the relative angiogenic state of their tumor. Once gene expression
profiles of tumors responsive to angiogenic therapy or combination angiogenic and cytotoxic
therapy are known, an initial tissue biopsy could help determine which patients would benefit
prior to initiation of therapy. Finally, by evaluating changes in tumors which are a result of
angiogenic therapy or the combination of angiogenic therapy and radiation, the mechanisms
of the additive and synergistic responses may be better understood. These techniques require
the ability to safely and accurately target a specific region of a tumor based on imaging.

2.4 Skin biopsies
Angiogenesis is known to play an important role in wound healing, and the effect of anti-
angiogenic treatment on wound healing has been studied in clinical trials [120]. Because
angiogenesis is required for wound healing, skin biopsies may be helpful in evaluating the
response to anti-angiogenic agents or in titrating agents to an appropriate dose by performing
serial punch biopsies of the skin, each time removing the previously biopsied site (Reviewed
in [121]). Clearly, the same ethical issues for multiple biopsies apply in this instance as well.
In addition, it is not entirely clear that inhibition of angiogenesis in a well-vascularized skin
wound correlates with that observed in the heterogenous environment of a tumor. Few studies
have performed this technique.

Zhang et al. evaluated anti-angiogenic effects of MEDI-522, a monoclonal antibody to αvβ3
integrin, in a phase I dose-escalation study. Pre-treatment and post-treatment punch biopsies
of the skin were assessed for vascular area, endothelial cell proliferation and apoptosis, and
β3 integrin levels. None of the above parameters after MEDI-522 treatment were found to be
significantly different when compared to the pre-treatment tissue in spite of adequate drug
presence identified in the vasculature by immunohistochemistry [122]. Mundhenke et al.
evaluated the response to endostatin in patients by serial skin biopsies. While no significant
changes were noted in vascular density or blood vessel maturity in biopsied skin, it is important
to note that changes were also not appreciated in tumor biopsies after endostatin therapy
[123]. Lockhart et al. used a similar approach to assess wound healing and the activity of a
matrix metalloproteinase inhibitor. Rather than focusing on specific angiogenic parameters,
they recorded wound healing by visual wound assessment, reporting a statistically significant
difference in time to target healing level between treatment and control groups [124].

These studies show that this method is practical and well-tolerated. With continued
investigation, this innovative procedure or similarly designed methods might play a role in
assessment of individual response to anti-angiogenic drugs at various dose levels.
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3 Minimally invasive measures: circulating markers
Identifying circulating markers of angiogenesis that could assist in diagnosis, staging, treatment
response and follow-up is being aggressively pursued. Such markers would have the advantage
of being minimally invasive allowing repetitive sampling throughout treatment and follow-up
without the ethical and technical implications of multiple biopsies. In addition, sampling for
these minimally invasive markers would not disrupt tumor physiology. There are currently
three main categories of markers being investigated as minimally invasive measures of
angiogenic state including growth factors and cytokines, cell surface molecules, and circulating
endothelial and endothelial precursor cells.

3.1 Growth factors and cytokines
Multiple angiogenesis growth factors and cytokines in blood and urine have been investigated
in a range of tumor histologies. For example, elevated VEGF, FGF, and HGF in various
biological fluids have been associated with staging, progression, and prognosis [125–139].
Similar to most markers of angiogenesis, studies in this area have yielded conflicting results
[140–142]. Various factors may reflect the varying results obtained with these markers,
including microenvironmental variations such as vascular permeability altering the quantity
of protein that intravasates into the blood stream [65]. Another possible confounding factor
includes tumor heterogeneity in regards to elaboration of these factors.

Recent studies have shown promising results for use of growth factors as a marker of anti-
angiogenic response in a variety of treatment conditions ([143,144]. Drevs et al. described a
time- and dose- dependent reduction in soluble VEGFR-2 with once-daily oral AZD2171 in
36 patients with solid tumors and liver metastases. Increases in VEGF and PlGF were detected
after treatment, but there was no suggestion of a dose relationship [145]. This increase in VEGF
after anti-angiogenic treatment has been reported often since first noted in 2003 [14,146].

Because most anti-angiogenic agents are combined with other modalities, it is important to
understand how other therapies perturb the levels of these growth factors as well. Similar
correlations have also been reported in anti-angiogenic therapies combined with other
treatments [147]. Evaluations of these growth factors with radiation have yielded interesting
results, with a clear time dependence of the kinetics of these markers after therapy and a
correlation with outcome. Chan et al. found significant predictive value in the kinetics of urine
VEGF levels in patients treated with one month of radiation for various tumor types. Increasing
serum levels of VEGF after radiation were correlated with eventual failure or progression
[127]. Ria et al. found decreases in serum FGF-2, VEGF, and HGF following radiation to
primary or metastatic tumors of various histologies, with a correlation between radiation dose
and decreases in serum FGF-2 and VEGF [148]. Others have found the higher pretreatment
serum VEGF levels to be predictive of poor outcome following combined chemotherapy and
radiation [149,150].

More data regarding the kinetics and utility of these minimally invasive markers are needed to
successfully incorporate them into clinical use. Many ongoing trials continue to include these
important markers, hopefully leading to firmer conclusions about their utility in diagnosing,
staging and following patients treated with standard and anti-angiogenic therapies.

3.2 Endothelial cell surface molecules
Endothelial cells release various molecules into the circulation, implying the potential for
angiogenesis markers related to cellular adhesion. Some soluble molecules (i.e. sVCAM-1,
sICAM-1, sFLT-1) have been elevated in patients with cancers, relative to normal controls or
patients with benign neoplasms [151–156]. Shariat et al. found that circulating sVCAM-1
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levels increased incrementally from healthy controls to prostate cancer patients with localized
disease and then to those with lymphatic spread and metastasis. In a pre-operative model,
elevated plasma sVCAM-1 and VEGF were both associated with biochemical progression
[136]. Since inflammatory processes in the vasculature may cause elevation of cell surface
markers, inflammatory response to radiation therapy may alter the kinetics of these molecules
[157,158]. As with other potential markers, cell surface markers for angiogenesis may be more
useful in the pretreatment and surveillance setting due to perturbations during therapy by other
concurrent therapies such as cytotoxic chemotherapy and radiotherapy.

3.3 Circulating endothelial and endothelial precursor cells
Tumor angiogenesis involves locally derived circulating endothelial cells (CECs) and bone
marrow-derived endothelial precursor cells (EPCs) [159]. As tumors grow, pro-angiogenic
molecules recruit nearby tumor endothelial cells, perivascular cells, and circulating EPCs to
the vascular bed [160,161]. Anti-angiogenic agents have been shown to inhibit EPC
mobilization. [162]. A sufficiently strong correlation between CECs and EPCs and
angiogenesis appears to support the potential use of these cells to monitor anti-angiogenic
effects [163].

Measurement of CECs and EPCs has been reported in vascular surgery patients and following
myocardial infarction [164,165]. Recently, Norden et al. treated imitinab-resistant
gastrointestinal stromal tumor patients with sunitinib. In this series, the presence of VEGF
bearing CECs and monocytes differentiated patients with progressive disease and those who
exhibited a clinical response [144]. Another potential marker from endothelial cells is VE-
Cadherin. One study measured elevated circulating VE-Cadherin RNA levels in breast cancer
patients and pregnant women but found none in healthy controls [166]. As VE-Cadherin is an
endothelial-specific gene, it is proposed that this may be a marker for CECs. Measuring CECs
and EPCs in cancer patients undergoing anti-angiogenic therapy may allow titration of dose
to the desired effect. However, before these markers will be effectively incorporated into
clinical use, further characterization of these cells’ response to other modalities is needed to
understand the complex interactions which appear to be present. For example, Furstenberger
et al. described an elevation of CECs and EPCs in 10 patients with locally advanced breast
cancer. Neoadjuvant chemotherapy resulted in a decrease in CECs and an increase in EPCs
[167].

4 Non-invasive markers: imaging
The application of existing imaging technologies to the measurement of metabolism,
oxygenation, and perfusion is a field of intense research (Table 4) [62,121,168–170]. Imaging
offers the distinct advantage of being able to serially evaluate anatomical and physiological
processes in tumors without disrupting tumor tissue. To use these non-invasive methods, a
better understanding of the invasive correlates of the images and information obtained with
these technologies is needed. In addition, if the various imaging modalities available are to be
effectively incorporated into widespread clinical trials, standardization is necessary.

4.1 PET
Positron emission tomography (PET) has played an ever increasing role in the staging of
malignancy and assessment of response to anticancer therapy. The use of fluoro-deoxy-D-
glucose (FDG) PET to evaluate the response to anti-angiogenic therapy or radiation has been
described in variety of tumor types and disease sites [121,171–175]. This is complicated by
the fact that hypoxia, theoretically induced by anti-angiogenic agents, increases the expression
of the Glut-1 glucose transporter and the uptake of FDG into tumor cells ([176,177]. Other
variables, such as the proportion of metabolism due to aerobic versus anaerobic mechanisms
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may also affect the accumulation of FDG [178]. The effects of the tumor microenvironment
on FDG uptake are incompletely understood and complicate the quantitation of FDG
accumulation and comparisons between tumors in different subjects.

While FDG PET plays an important role in modern oncology, the development of new tracers
for PET imaging promises to improve the understanding of the physiologic state of individual
tumors. Physiologic variables such as tumor blood flow, metabolism, and hypoxia can be
measured with PET utilizing various specialized tracers. For example, tumor hypoxia can be
imaged by utilizing nitroimidazole tracers that are absorbed into tissues and trapped in their
reduced state [179–183]. Cher et al. showed that 18F-FMISO PET provided a noninvasive
assessment of hypoxia in glioma that was prognostic for treatment outcomes in the majority
of patients, and hypothesized that it may have a future role in monitoring anti-angiogenic
treatment [184]. The use of 18F-FMISO PET has been incorporated into clinical trials of
chemoradiation in conjunction with tirapazamine, a toxin targeting hypoxic cells [185–187]
To our knowledge, this has not yet been included in human clinical trials with anti-angiogenic
agents.

Tumor blood flow can be measured with the use of H15
2O as a tracer. As water is freely

diffusible, this tracer will rapidly equilibrate and is metabolically inert. A number of laboratory
studies have assessed this technique in combination with anti-angiogenic agents [181,188,
189]. Clinical studies with radiation, chemotherapy or anti-angiogenic agents have
incorporated this technique as a measure of tumor perfusion [62,171,174,190–193]. It remains
to be determined whether H15

2O PET imaging will play a significant role in assessing response
to anti-angiogenic agents in the clinic. Another tracer developed to measure vascular volume
is C15O which binds to the hemoglobin of red blood cells. A combination of H15

2O and C15O
may be the best method to reflect vessel density changes [194].

Design and manufacture of PET probes that bind to signaling intermediates or are ligands for
angiogenic receptors are under investigation and may help to better define the angiogenic state
of tumors [195–203]. Examples include radiolabeled peptides that bind to VEGFR [204,205]
and also to the αvβ3 integrin receptor expressed on endothelial cells [206,207]. These
approaches are being actively evaluated in the laboratory, and it is unclear what role they will
play in the clinic.

Limitations of PET imaging include the relatively poor anatomic resolution compared to CT
and MRI and the requirement of a radioactive isotope generated in a cyclotron. Additionally,
attempts to quantify PET data require an ability to correct for the attenuation of emitted photons
in tissue [181,208]. Registration of PET images to computed tomography (CT) or magnetic
resonance imaging (MRI) can significantly improve the diagnostic accuracy of PET [209,
210], partially correcting for decreased anatomic resolution of PET by integrating the anatomic
data of CT.

4.2 MRI
Dynamic contrast-enhanced MRI (DCE-MRI) is currently the most useful method for assessing
early changes in tumor vasculature in clinical trials [211,212]. The technique involves the
acquisition of magnetic resonance images before, during, and after the delivery of contrast to
evaluate physiologic parameters such as perfusion and capillary permeability [213]. DCE-MRI
can distinguish malignant and benign tissue based on differences in the function of tumor
microvasculature [214]. A number of contrast agents can be used to perform DCE-MRI,
including low molecular weight agents, high molecular weight agents, and agents that
accumulate at sites of angiogenesis (reviewed in [168,215]. The choice of contrast agents for
DCE-MRI depends on the physiologic process to be evaluated [211].
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Low molecular weight agents rapidly diffuse into the extracellular fluid space, with as much
as 12–45% of the contrast media passing into the extracellular space during the first pass
[216]. Tissue perfusion and blood volume can be measured using T1 and T2-weighted MR
imaging sequences with low molecular weight contrast enhancement [217]. In addition, regions
of tumors with necrosis and fibrosis have differing vascular function which can be visualized
with these techniques [214].

Tumor vasculature is highly permeable to macromolecules including high molecular weight
contrast agents [218]. These agents can be used to assess changes in vascular permeability in
tumors after treatment with radiation [201] or anti-angiogenic therapy.

Agents designed to image tumors by binding to angiogenic molecules have been evaluated in
preclinical studies including ανβ3 integrin and E-selectin antibody contrast agents [122,219–
223]. These agents may be difficult to image due to the low concentration of their target in
tumors, typically below the detection level for MRI [224]. Solutions to this problem would
include agents designed to accumulate at sights of angiogenesis through modulation or
amplification [170].

Some difficulties in the use of DCE-MRI to assess angiogenesis have become apparent. Studies
evaluating the correlation of microvessel density and DCE-MRI have found conflicting results
[213,225]. This discrepancy may be due to a lack of correlation between vessel permeability
and perfusion. Some regions of the body are better candidates for evaluation with DCE-MRI
due to technical considerations such as immobilization. Registration of images can be difficult
for non-stationary organs, and lack of immobilization resulting in motion artifact may cause
difficulties in image sequence registration [226]. Additional concerns for DCE-MRI imaging
include the injection rate and the timing of sequence timing [213].

Quantitation of data obtained with DCE-MRI is complex and requires consideration of multiple
variables corrected with standardized values taking into account the patient’s weight and
cardiac output. Technical limitations and physiologic considerations that affect the accuracy
of quantitation with DCE-MRI have been described in detail [211,214].

Anti-angiogenic agents have been shown to reduce tumor vascular permeability in pre-clinical
studies [227,228]. Several clinical trials evaluating alterations in DCE-MRI parameters
following therapy with anti-angiogenic agents have been completed with promising results
[61,229–232]. Liu et al. showed a decrease in vascular parameters measured by DCE-MRI
after anti-angiogenic therapy that indicate utility as an indicator of drug pharmacokinetics
[233]. However, questions remain about the optimal timing of DCE-MRI evaluation in relation
to delivery of anti-angiogenic drugs [214] in order to appropriately evaluate for response.
Regardless, recent clinical trials have demonstrated that measurements obtained from DCE-
MRI correlate with plasma concentration of anti-angiogenic agents and can potentially predict
clinical response after anti-angiogenic treatment [61,234–236].

4.3 CT
Functional CT imaging may provide an evaluation of tumor blood flow, blood volume, and
permeability [237–239]. Many of the concepts used to evaluate these variables with MRI can
be extended to CT. The procedure involves injection of a contrast agent followed by serial
evaluations at various time points to assess these physiologic endpoints ([65]. Advantages of
CT include a linear relationship between signal and contrast concentration allowing for simple
quantification and widespread availability. However, lack of experience and technology with
CT and concerns about recurrent exposure to ionizing radiation have limited its progress as a
marker.
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The procedure has been used to evaluate the angiogenic state of tumors and compared favorably
to MVD [240–242]. Ma et al. found that sixteen-slice spiral CT perfusion imaging was
significantly associated with tumor angiogenesis and reflected MVD measurement and cyclin
D1 expression in untreated peripheral lung cancer patients less than 1 week before surgery
[243]. Other trials have investigated angiogenic evaluation with functional CT for different
malignancies before and after anti-angiogenic therapy with both mixed results [244–247].
Comparisons of contrast-enhanced dynamic CT and DCE-MRI show similar results can be
obtained with either modality [248].

4.4 Ultrasound
Ultrasound is playing an ever increasing role in the staging of primary tumors and metastatic
disease in a variety of malignancies including lung, gastrointestinal, and urologic malignancies
[249–254]. The ability to apply ultrasound probes in proximity to these tumors in concert with
numerous technical advancements allows accurate determination of tumor depth and lymph
node involvement.

In addition to anatomic imaging, ultrasound can evaluate tumor blood flow and the tumor
microvasculature. Advancements such as color Doppler and power Doppler allow assessment
of response to anticancer therapy with an assessment of tumor blood flow and microvascular
anatomy [255]. Color Doppler imaging allows quantitation of blood flow through
computerized image analysis [256]. Unfortunately, the low velocity of capillary flow is
typically not evaluable by Doppler sonography [257]. The use of blood pool ultrasound contrast
agents has allowed the investigation of smaller vessels, including those measuring 30 to 60
μm[170].

Ultrasound has also been evaluated for molecular imaging using ultrasound contrast agents
designed to bind to specific ligands such as the ανβ3 integrin [258]. Analysis of the amount of
bound targeted ultrasound contrast through ultrasound induced microbubble destruction may
allow quantitation of contrast binding [170] and can demonstrate vessels as small as 70 μm
[121]. Advances such as these may allow an evaluation of the density or function of specific
receptors in tumors that an anti-angiogenic therapy may target.

Ultrasound is being used increasingly in clinical trials to evaluate the vasculature in tumors,
and seems to compare favorably with more established techniques [259,260]. Transcranial
imaging has been shown to be effective for evaluating blood flow in high grade gliomas, with
similar results as those obtained with perfusion MR imaging [259]. Ultrasound has effectively
been used to evaluate the response of preclinical tumor models and human tumors to anti-
angiogenic drugs [261–263]. As with any marker, conflicting results have been obtained with
attempts at clinical translation. In one Phase I trial, ultrasound blood flow parameters in
metastatic liver tumors were explored as a marker for PTK/ZK response. Only a non-
statistically significant trend towards higher blood flow with increasing doses of drug was seen
and no dose-related changes were noted for a calculated resistance index [264].

While ultrasound may provide an accurate prediction of blood flow, a major problem with the
incorporation of Doppler imaging into a clinical trial is the dependence on experienced
operators [265]. A lack of experience may lead to significant inter- and intra-observer
variability in measurements, complicating longitudinal evaluations. Additionally, physical
characteristics of the tissues through which tumors will be visualized can affect the quality of
imaging. Benefits to this technology include the relatively low cost, portability, and non-
invasive nature of the procedure [255].
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4.5 Optical imaging
Technologies such as near-infrared spectroscopic diffuse tomography and orthogonal
polarization spectroscopy are under evaluation for their utility in imaging angiogenic
vasculature. Optical imaging generates images using measurements of visible or near-infrared
light scattered across human tissues [266]. The technology is inexpensive and portable, but the
consistent challenge has remained the limited penetration and intense scattering of light.
Nevertheless, optical imaging is considered feasible in superficial tumors such as in the breast,
eye and pediatric neoplasms [267]. Some trials investigating the sensitivity and specificity of
optical imaging techniques measuring total hemoglobin and relative oxygenation to compare
normal to malignant breast tissue [268] and to differentiate malignant from benign breast
masses [269] have been performed with promising results [270].

5 Conclusion
Anti-angiogenic therapies are part of a growing body of molecularly targeted therapies for
cancer. Such treatments are imposing changes on the process of drug development, evaluation
and approval. Recent interpretations of FDA regulations allow for phase 0 clinical trials to be
performed, which would involve developing assays to evaluate target modulation and tissue
effects of a drug and to obtain preliminary pharmacokinetic data [36]. The benefits of this
process cannot be realized without the use of accurate biomarkers.

Numerous candidate markers of angiogenesis have been identified, but the use of these markers
in diagnosis, prognosis, and monitoring of treatment remains investigational and of uncertain
utility. It is improbable that any one biomarker will provide all relevant clinical information
in the setting of a trial of anti-angiogenic therapy alone or in combination with additional
cytotoxic therapies. Rather, a combination of markers obtained from tissue, biological fluids,
and imaging is more likely to result in a comprehensive understanding of the complex process
of angiogenesis and any perturbations from therapy. Additionally, putative markers will
probably vary with differences in tumor attributes (histology, size, proliferation rate, etc) and
the treatment regimen employed. Future clinical trials of anti-angiogenic agents should seek
to forward discovery of new biomarkers and to validate promising candidate markers and
imaging modalities already described. Following this pattern in the progress of anti-angiogenic
therapy will hopefully lead to better outcomes in cancer patients while establishing a model
for investigation of future molecularly targeted therapies.
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