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Platelet-Derived 
Microparticles
and the Potential of Glycoprotein IIb/IIIa  
Antagonists in Treating Acute Coronary Syndrome

Platelet glycoprotein IIb/IIIa receptors are major platelet membrane constituents. They are 
integral to the formation of the surface fibrinogen receptor on activated platelets, in which 
73% of platelet-derived microparticles are positive for the glycoprotein IIa/IIIb receptor. Ac-
tivated platelets can shed platelet-derived microparticles, especially during the course of 
an acute coronary syndrome. Data have shown that platelet-derived microparticles can bind 
to the endothelium, to leukocytes, and to the submatrix of vascular walls, and launch some 
signal-transduction pathways, such as the pertussis-toxin-sensitive G protein, extracellu-
lar signal-regulated kinase, and phosphoinositide 3-kinase pathways. One research group 
found that platelet-derived microparticles transfer glycoprotein IIb/IIIa receptors to isolated 
and whole-blood neutrophils. The receptors can co-localize with β2-integrins and cooper-
ate in the activation of nuclear factor κB (NF-κB), which can be inhibited by glycoprotein 
IIb/IIIa receptor antagonists. Accordingly, it is possible that glycoprotein IIb/IIIa receptor 
antagonists produce a direct and marked effect on endothelial cells, smooth-muscle cells, 
and leukocytes through a platelet-derived microparticle pathway that will lead to a potential 
treatment for acute coronary syndrome.

Herein, we review the medical literature and discuss the potential application of platelet-
derived microparticles toward the treatment of acute coronary syndrome. (Tex Heart Inst 
J 2009;36(2):134-9)

P latelet glycoprotein (GP) IIb/IIIa receptors, which are major constituents of 
platelet membranes, are integral to the formation of the surface fibrinogen re-
ceptor on activated platelets. The GP IIb/IIIa receptors are present in a pre-

ponderance of platelet-derived microparticles (PMPs). Activated platelets can shed 
PMPs, especially during an acute coronary syndrome. Platelet-derived microparticles 
can bind to vessel walls and launch signal-transduction pathways, such as the pertussis-
toxin-sensitive G protein, extracellular signal-regulated kinase, and the phosphoinosi
tide 3-kinase (PI3-kinase) pathways. Here, we review the medical literature and discuss 
how GP IIb/IIIa receptor antagonists, acting through a PMP pathway, suggest a re-
search focus toward the treatment of acute coronary syndrome.

The Character and Function of Platelet-Derived Microparticles
The term microparticles usually refers to particles larger than 100 nm in diameter 
that are derived from the plasma membrane among the various membrane vesicles 
that cells release. Smaller vesicles (40–100 nm) that originate from endoplasmic mem-
branes are referred to as exosomes, and larger particles (>1.5 µm) that contain nucle-
ar material are known as apoptotic bodies.1

	 In 1967, Wolf 2 described the membrane fragments that are shed from activated 
platelets as “platelet dust,” or “platelet vesicles.” After having been observed in elec-
tron micrographs, the particles were characterized as procoagulative in 1985.3 These 
are the particles now widely referred to as PMPs.
	 All microparticles harbor cell-surface proteins and contain cytoplasmic components 
of their original cells. They exhibit negatively charged phospholipids, chiefly phospha-
tidylserine (PS), at their surface, which accounts for the procoagulative character and 
proinflammatory properties of microparticles, including the alteration of vascular func-
tion. The membranes of PMPs contain platelet GP Ib, IIb, IIIa, P-selectin, and throm-
bospondin,4,5 in addition to other platelet membrane receptors, such as chemokine 
(C-X-C motif ) receptor 4 and protease-activated receptor 1.6,7 It has been reported that 
arachidonic acid released from PMPs directly activates GP Mac-1 and the intercellular 
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adhesion molecule-1 on monocytes and the P- and E-se-
lectins on endothelial cells.6,7 Bode and colleagues8 found 
that 73% of PMPs were positive for the GP IIb/IIIa re-
ceptor, which is a Ca2+-dependent heterodimer on ac-
tivated platelets that can bind 1 of 4 different adhesive 
proteins (fibrinogen, fibronectin, von Willebrand fac-
tor, and vitronectin). The binding of fibrinogen primar-
ily enables platelet aggregation; fibronectin and the von 
Willebrand factor may also enable adhesion and aggre-
gation on the subendothelium.9

	 Platelet-derived microparticles have been observed 
in vivo in clinical conditions that are associated with 
platelet activation, including idiopathic thrombocyto
penia purpura, transient ischemic attacks, and dur-
ing cardiopulmonary bypass. Increased concentrations 
of circulating PMPs are also found during aging, and 
further increases are encountered in peripheral arteri-
al disease and myocardial infarction.10 The biological 
function of PMPs remains speculative, but the tenase 
and prothrombinase activity that includes factor Va,  
high-affinity-factor Xa, and factor-VIII activity11 is con-
centrated on these particles. In addition, PMPs display 
anticoagulant activity, since they inactivate prothrom-
binase by means of activated protein C. These obser-
vations suggest that PMPs play a role in modulating 
hemostasis and thrombosis.12

The Increase of Platelet-Derived  
Microparticles in Acute Coronary Syndrome
The erosion, f issure, or rupture of an atherosclerot-
ic plaque is the signaling event in acute coronary syn-
drome, and rupture can also occur during percutaneous 
coronary intervention. When plaque rupture occurs, the 
subendothelial protein matrix is immediately disrupt-
ed, which allows platelet-adhesion molecules such as 
von Willebrand factor and collagen to interact with cir-
culating platelets. Platelets adhere to collagen and von  
Willebrand factor at the site of injury by means of specif-
ic GP receptors. This results in platelet activation, with a 
change in the platelets’ shape, the release of storage gran-
ules that contain platelet agonists such as adenosine di-
phosphate and thromboxane A2, and a conformational 
change in the platelet fibrinogen receptor GP IIb/IIIa. 
Although platelet deposition is restricted by circulating 
blood, already-activated platelets (with PMPs released) 
provide a new prothrombotic interface for fibrin, circu-
lating blood, and a growing thrombus. This results in 
the growth of thrombus and narrowing of the vessel. In-
creases in shear stress, associated with vascular narrow-
ing, favor this process by further promoting new platelet 
activation and the release of PMPs. An occlusive throm-
bus forms, and patients experience catastrophic events.
	 When platelets are activated by agonists such as colla-
gen or thrombin, several responses occur: shape change, 
secretion, aggregation, phosphorylation of specific plate-
let proteins,13 exposure of anionic phospholipid on the 

extracellular face of the platelet membrane,14 and release 
of microparticles that are rich in procoagulant activ-
ity.15 These microparticles possess platelet–subendo-
thelium attachment receptors (GP IIb/IIIa, Ib, Ia, and 
IIa),4,16,17 and P-selectin,16 a receptor that is involved in 
platelet–leukocyte interactions18-20 and in inflammatory 
response.20

	 Siljander and colleagues21 found that PMPs are asso-
ciated with developed fibrin f ibrils. Moreover, the in-
vestigators showed in vitro that PMPs, when separated 
from platelet remnants, did bind to fibrin, where they 
were able to act as procoagulants in the presence of plas-
ma and tissue factor. Finally, granular GP IIb/IIIa and 
P-selectin-positive material were seen to decorate fresh, 
embolectomized thromboemboli in a fibrin-strand-like 
pattern. The PMPs were shown to bind to the forming 
thrombus, and specifically to fibrin.
	 Glycoprotein IIb/IIIa antagonists cannot only inhibit  
the GP IIb/IIIa receptors on platelets; they also have an 
effect on PMPs.22 However, few studies have probed this 
effect.
	 Different biological effects have been attributed to 
PMPs, including their possible participation in the 
pathogenesis of atherosclerosis and vascular injury dur-
ing inflammation,14 and in the promotion of bone-cell 
proliferation.23 The attachment of isolated PMPs on 
subendothelia24 has suggested a hemostatic function for 
PMPs. Glycoprotein IIb/IIIa-positive PMPs appear to 
be promising prognostic indicators in patients who have 
chest pain, but whose cardiac troponin levels are with-
in normal range and whose electrocardiograms are non
diagnostic.25

Acquisition of Glycoprotein IIb/IIIa  
Receptors via Platelet-Derived Microparticles
Platelet glycoprotein IIb/IIIa receptors are major plate-
let-membrane constituents that are integral to the for-
mation of the surface fibrinogen receptor on activated 
platelets. Approaches to achieve more profound platelet 
inhibition at the site of injured coronary plaque have fo-
cused on the integrin GP IIb/III receptor on the platelet 
surface membrane, which binds circulating fibrinogen 
or von Willebrand factor and cross-link platelets as the 
final common pathway to platelet aggregation.
	 The GP IIb/IIIa receptor is largely confined to plate-
lets and megakaryocytes. It is also found on some mel-
anoma cells,26 where, by linking the stromal connective 
tissue to the M3Dau melanoma cells, the receptor may 
enable the stromal matrix to regulate tumor growth 
and differentiation in vivo.26,27 However, recent stud-
ies have shown that some phagocytes may acquire the 
GP IIb/IIIa receptor from PMPs. Salanova and cowork-
ers28 found that GP IIb/IIIa receptors are transferred to 
isolated and whole-blood neutrophils via PMPs. Using  
specif ic antibodies in neutrophils that were treated 
with granulocyte macrophage colony-stimulating fac-
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tor (GM-CSF), the investigators observed that acquired 
GP IIb/IIIa receptors co-localized with β2-integrins and 
cooperated in the activation of nuclear factor κB (NF-
κB). The Src and Syk nonreceptor tyrosine kinases, in 
addition to the actin cytoskeleton, controlled NF-κB 
activation. These acquired receptors are functional, and 
they enable NF-κB activation in GM-CSF–stimulated 
neutrophils that interact with fibronectin.28 It was not 
determined exactly how acquired GP IIb/IIIa receptors 
link to the neutrophil-signaling machinery. However, 
similar to GP IIb/IIIa receptor signaling in platelets, 
Src and Syk kinases (and the actin cytoskeleton) seem 
to be involved.28

	 A large body of data suggests that macrophages can 
recognize PS specifically. Several research groups have 
found that human and rodent macrophages, and insect 
phagocytes, preferentially take up negatively charged 
liposomes, particularly those that contain PS.29-34 In 
addition, human and rodent macrophages (including  
freshly isolated human alveolar and splenic macro-
phages, human bone-marrow–derived macrophages 
cultured for 10 ± 14 days, cultured human monocytes, 
and resident and thioglycolate-elicited mouse perito-
neal macrophages) can bind to and engulf symmetric 
red-cell ghosts, red cells with PS inserted externally, oxi
dized red cells, or sickled red cells, all of which express 
PS externally.35-41 Accordingly, PS plays a key role in sig-
naling phagocytes to perform. These phagocytes can 
be professional (the leukocytes) or amateur (including  
fibroblasts, epithelial cells, and vascular smooth-muscle  
cells). Exposure of PS on the external leaf let of the 
plasma cell membrane appears to be common to many 
apoptotic cells,42-50 and this phospholipid appears to 
be recognized in a stereospecif ic fashion by subsets of  
macrophages,42,43,51 by melanoma cells,52 by vascular 
smooth-muscle cells,47 and by Sertoli cells.50 As men-
tioned above, on the surface of PMPs there is plenty of 
PS, which serves as a cofactor for the coagulation cas-
cade. Therefore, PMPs can probably be engulfed by the 
phagocytes, suggesting also that GP IIb/IIIa antago-
nists have an effect on the phagocytes through their 
acquired GP IIb/IIIa receptors via phagocytosis. How-
ever, other than the report by Salanova and coworkers,28 
studies are few.

The Effects of Platelet-Derived  
Microparticles on Cells
The binding of PMPs to cells can modify the cells’ 
functional properties. The PMPs can bind hemato-
poietic progenitors and stimulate their engraftment.53 
The binding of PMPs to neutrophils induces a signifi-
cant increase in both CD11b expression and phagocyt-
ic activity in a concentration-dependent manner. These 
f indings suggest a possible role for PMPs in addition 
to providing platelet factors: specifically, as an activator 
and mediator of neutrophils in ischemic injury, throm-

bosis, and inf lammation.54 Janowska-Wieczorek and 
associates53 found, rather surprisingly, that mobilized-
peripheral-blood (mPB) CD341 cells expressed a sig-
nif icantly higher level of GP IIb/IIIa(CD41 antigen) 
than did CD341 cells that were isolated from either 
non-mPB or bone marrow. Hence, the investigators 
hypothesized that the presence of the CD41 antigen on 
mPB CD341 cells results from the binding of PMPs to 
their surfaces.53

	 Platelet microparticles bind to the subendothelial  
matrix in vitro and in vivo and can act as a substrate for 
further platelet binding. This interaction may play a sub- 
stantial role in the adhesion of platelets to the site of en
dothelial injury.55 Platelet-derived microparticles provide 
a catalytic surface that accelerates coagulation: they can 
bind to neutrophils54 to mediate leukocyte–leukocyte 
interaction, and elevated levels of PMPs may amplify 
leukocyte-mediated tissue injury in thrombotic and in-
flammatory disorders.56 Therefore, PMPs can bind neu-
trophils, mediate their aggregation, and activate their 
phagocytic properties.54

	 Some data provide evidence that PMPs can transfer 
biological information between cells, acting as veri-
table vectors of signal molecules. Even though PMPs 
can act on hematopoietic and circulating cells, most of 
the exchange of information from PMPs takes place 
at the level of the endothelium and contributes to the 
physiologic and pathophysiologic role of microparticles. 
Accordingly, PMPs can affect vasodilation and the an-
tithrombotic and antiadhesive properties of the vascu-
lar wall. Also, they may be involved in the regulation of 
vascular permeability and the proliferation of smooth 
muscle cells. In addition to their role in the regulation 
of hemostasis and thrombosis, PMPs evoke mono-
cyte adhesion to endothelial cells (ECs) by inducing  
adhesion-molecule exposure, stimulating the prolif-
eration, survival, adhesion, and chemotaxis of he-
matopoietic cells, and increasing the engraftment of 
hematopoietic stem cells.53 Also, PMPs induce angio-
genesis in vitro,57 probably through activation of ECs.58,59

	 How do PMPs work to cause the effects? Nomura 
and co-authors60 thought that cytoskeleton served as a 
bridge to signal paths so that the GP IIb/IIIa complex 
could perform its function. Platelet-derived microparti-
cles can be viewed as a pathway that can be used by cells 
to exchange information in addition to the transduction 
linked to the activation of classically known receptors 
or transporters. Platelet-derived microparticles taken 
from patients who were experiencing acute myocardial 
infarction caused severe endothelial dysfunction in rat 
aortas by affecting the endothelial nitric oxide transduc-
tion pathway, but not the endothelial nitric oxide syn-
thase expression.61 Paradoxically, it has been observed 
that PMPs affect ECs by protecting them from apopto-
sis and by inducing the proliferation and formation of 
tubule-like structures.57 On the other hand, PMPs can 
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inflict damage on ECs by inducing an inflammatory 
response and diminishing endothelium-dependent ves-
sel dilation.62

	 The PMP-stimulated proliferation, chemotaxis, and 
tube formation of ECs has been mediated via the per-
tussis toxin-sensitive G protein, extracellular signal-reg-
ulated kinase, and the PI3-kinase pathway.57 Pertussis 
toxin, a G-protein inhibitor, blocks the effects of PMPs 
on GP IIb/IIIa.63 Therefore, the G proteins, which reg-
ulate (for example) the activity of adrenergic recep-
tors, may be involved in coupling agonist interaction to 
the receptor function of GP IIb/IIIa.9 The PI3-kinase 
plays a pivotal role in mediating EC survival, prolifer-
ation, cytoskeletal reorganization, and cellular motility,  
which are all crucially important for vessel growth.64 The 
PI3-kinase is activated by angiogenesis-related cytokines,  
such as vascular endothelial growth factor and basic fi-
broblast growth factor.65

	 As stated above, PMPs can bind to at least the endo-
thelium, the leukocyte, and the submatrix of a vascu-
lar wall, and probably be swallowed by leukocytic and 
smooth-cell phagocytes to pass the GP IIb/IIIa recep-
tors to them. Salanova and coworkers28 also found that 
therapeutic GP IIb/IIIa inhibitory compounds such as 
abciximab, eptif ibatide, and tirofiban prevent NF-κB 
activation through acquired GP IIb/IIIa receptors and 
may have novel implications in anti-inflammatory treat-
ment protocols. This suggests that the advantageous  
effect of GP IIb/IIIa antagonists results not only from 
its platelet inhibition, but partly and probably from its 
influence on PMPs through GP IIb/IIIa receptors that 
have originated from platelets.
	 It is a novel and exciting finding that PMPs can trans-
fer GP IIb/IIIa receptors to other cells, and the presence 
and consequential effect of PMPs and their receptors 
in human cells invite further investigation. If GP IIb/
IIIa receptor antagonists indeed produce a direct and 
marked effect on ECs, smooth-muscle cells, and leu-
kocytes through a PMP pathway, investigators have a 
potential focal point for treatment of acute coronary 
syndrome.
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