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Summary
When we perceive a visual object, we implicitly or explicitly associate it with a category we know
[1-3]. It is known that the visual system can use local, informative image fragments of a given object,
rather than the whole object, to classify it into a familiar category [4-8]. How we acquire informative
fragments has remained unclear. Here, we show that human observers acquire informative fragments
during the initial learning of categories. We created new, but naturalistic, classes of visual objects
by using a novel “virtual phylogenesis” (VP) algorithm that simulates key aspects of how biological
categories evolve. Subjects were trained to distinguish two of these classes by using whole exemplar
objects, not fragments. We hypothesized that if the visual system learns informative object fragments
during category learning, then subjects must be able to perform the newly learned categorization by
using only the fragments as opposed to whole objects. We found that subjects were able to
successfully perform the classification task by using each of the informative fragments by itself, but
not by using any of the comparable, but uninformative, fragments. Our results not only reveal that
novel categories can be learned by discovering informative fragments but also introduce and illustrate
the use of VP as a versatile tool for category-learning research.

Results
Using VP to Create Shape Classes

The VP algorithm generates naturalistic object categories by emulating biological phylogenesis
(see Supplemental Data available online). With VP, we created three classes of novel objects,
classes A, B, and C and used 200 exemplars from each (Figure 1). Note that the three classes
are very similar to each other, so that distinguishing among them is nontrivial (see below and
Figure S1). Moreover, no two objects, including objects within a given category, were exactly
alike, so that distinguishing among them required learning the relevant statistical properties of
the objects and ignoring the irrelevant variations. Finally, note that the differences between
categories arose spontaneously and randomly during VP, rather than as a result of externally
imposed rules.

Extracting Informative Fragments
We isolated ten fragments (“Main” fragments, Figures 2A and 2B) that were highly informative
for distinguishing class A from class B (the main task in experiment 1, see Supplemental Data
for details). We also isolated ten “Control” fragments (Figures 2C and 2D) and ten “IPControl”
fragments (Figure S2) that were uninformative for the main task but visually comparable to
the main fragments. The mutual information (MI) value of a given fragment quantifies the
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information it conveys about a given category. The higher the fragment’s MI, the more useful
the fragment is for categorization. The MI values of all fragments used in this study are listed
in Supplemental Data.

Testing the Informativeness of Individual Fragments
The experiments consisted of training the subjects on whole objects and then testing them on
fragments. Because only whole objects, not fragments, were used during training, subjects
were not aware of the fragments or required to learn them. After the subjects were trained in
the task, we tested the extent to which subjects were able to perform the classification task by
using the fragments, each presented individually (see Figure 3 and Supplemental Data). We
hypothesized that if the subjects learned informative object fragments during the training, then
the subjects must be able to perform the categorization task by using the individual main
fragments, but not the control fragments.

The observed performance closely matched these predictions. Figure 4A shows the average
performance of six subjects using the main fragments. Subjects performed significantly above
chance with each of the fragments (binomial tests, p < 0.05 in each case). Moreover, with one
exception (see below), the performance of each individual subject with each main fragment
was indistinguishable from his/her performance with whole objects during the final two
training sessions (binomial tests, p > 0.05, data not shown). The only exception to this was the
performance of one subject with main fragment #9, for which she classified the object
containing the fragment as A in only 1/16 (6.25%) of the trials (also see below). Altogether,
these results indicate that the subjects were able to categorize the objects on the basis of each
of the fragments alone and that the performance with the fragments was generally
indistinguishable from the performance of the subjects with the whole object.

By contrast, subjects were unable to perform the task above chance levels by using any of the
control or IPControl fragments (Figures 4B and 4C; binomial tests, p > 0.05). That is, subjects
were about equally likely to classify an object as belonging to class A or class B on the basis
of a given control or IPControl fragment. Thus, although all three types of fragments belonged
to class A, only the main fragments were likely to be assigned to class A.

To ensure that above results were not a function of a fortuitous designation of object classes,
we performed experiment 2 in which we repeated the design of experiment 1, but with a
different set of class designations, whereby the main task was to distinguish class C from class
B (see Figure S4). A different set of four subjects participated in this experiment. The results
of this experiment were similar to those in experiment 1 (Figure S5).

Additional analyses indicated the performance showed no improvement during the testing
phase of the experiment, indicating that the subjects learned the fragments during the training
phase, i.e., before the testing began (see Figure S6).

Necessity of Prior Training
In additional experiments, subjects were tested with informative fragments without having
learned the categories beforehand (i.e., with the training phase omitted). Six subjects were
used, five of whom also participated in experiment 1 above and one who participated in
experiment 2. All subjects performed at chance levels (binomial tests, p > 0.05; Figure 4D).
The performance was also indistinguishable from chance when the testing was preceded by
training with similar, but task-irrelevant object categories (Figure 4E). This confirms that the
categorization task required learning and in particular that the subjects could not perform the
task during the testing phase by simply comparing the given fragment to the two whole objects
in the display.
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Learning Fragments Was Not Necessary
It is clear from the metric multidimensional scaling (MDS) plot of the three classes in Figure
1B that exemplars form three nonoverlapping clusters, each corresponding to one of the classes.
The three classes are obviously linearly separable in this plot, as evident from the fact that one
can draw a straight line separating any class from the other two. The fact that the projection
found by MDS is linear [9] means that the original images are also linearly separable (in the
pixel space). Therefore, subjects could have learned to separate the categories with complete
images and did not have to learn object fragments.

Discussion
Our study is novel in two important ways. First, it reveals that informative fragments are learned
during category learning. Second, it illustrates VP as a potentially powerful new tool for
category-learning research.

Fragment Learning as a Part of Category Learning
Our results indicate that subjects learn informative, intermediate-complexity fragments as a
matter of course when they learn new object categories, even when they were not explicitly
required to learn the fragments. In other words, fragment learning was incidental to category
learning. This result is significant because it straightforwardly links category learning with
categorization, in that informative fragments play a role in both.

The performance of the subjects was a function of the task relevance of the fragments because
subjects did not consistently associate task-irrelevant fragments to learned categories, even
when the fragments were otherwise visually interesting or were informative for distinguishing
the objects from another class. Together, these results reveal, for the first time, that humans
selectively learn informative fragments as a part of category learning. Note that it would not
have been possible to elucidate this by testing fragments from familiar categories (e.g., faces
or cars; q.v. [7,8].) because objects of these categories are frequently seen occluded, so that
fragment learning could be attributed to the necessity for overcoming occlusions.

In previous studies of novel category learning, the algorithm for generating novel objects
depended on the algorithm for classifying them into categories [1,2], whereas the two were
independent in our case, as they are in nature. To the extent that our stimuli and the experimental
conditions reflected category learning under natural conditions, our results indicate that such
incidental learning of fragments may be a common principle of learning of natural object
categories (see below).

Subjects’ performance with task-relevant fragments was comparable to performance with the
whole objects, suggesting that the learning of each of the fragments could, in principle, account
for all or most of the category acquisition. Moreover, subjects performed close to perfect with
most individual task-relevant fragments, indicating that the subjects were able to acquire most
of the information conveyed by the individual task-relevant fragments (all of which had MIs
at or near 1, see Supplemental Data).

Some models of perceptual learning, most notably the reverse-hierarchy theory [10], have
suggested that subjects learn local features only when more global features do not suffice. In
brief, reverse-hierarchy theory posits that learning takes place in spatially global-to-local
fashion, such that the visual system initially learns large-scale features relevant to the task and
“resorts” to finer-scale features when the large-scale features do not suffice. In our case, it was
clearly not computationally necessary to learn the fragments because the tasks could be
performed on the basis of whole objects (see Figure 1B). One reason why subjects nonetheless
learned the fragments may be that the fragments were highly informative about the task in our
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case. Another, mutually nonexclusive possibility is that fragments represented the optimal
spatial scale for learning in this case because the individual fragments were small enough to
fit in the fovea, whereas it would have necessitated integration of information across multiple
fixations to perform the task at level of the whole object. Further experiments are needed to
resolve these issues.

Implications for the Mechanisms of Category Learning
Two previous studies, Harel et al. [7] and Lerner et al. [8], have examined the extent to which
informative fragments support categorization of objects into familiar categories. Both showed
that the ability of subjects to decide whether a given fragment was a part of a familiar object
(e.g., a car or a face [7]) correlated with the MI of the fragment. Our study differed from these
previous studies in several key respects, three of which are particularly worth noting. First, by
using novel stimuli classes, we were able to study category learning, rather than just
categorization. Second, because we controlled subject training, our fragments were extracted
from the same set of images used by subjects during category learning. Third, we eliminated
the possibility that the subjects might have learned the fragments out of necessity (e.g., to cope
with occlusions) by ensuring that (1) the training images were completely unoccluded and (2)
the classes were linearly separable, so that the categorization tasks could be performed on the
basis of whole objects.

Our experiments did not test whether new categories can be learned solely from informative
fragments. This is because our goal was to study learning under natural viewing conditions. In
general, views strictly confined to informative fragments are highly unlikely under natural
viewing conditions. Our result that subjects learned informative fragments even when
presented with whole objects is therefore of greater relevance to natural vision.

Usefulness of VP in Categorization Research
Apart from the fact that the VP algorithm represents a novel method of creating object
categories (c.f., “Greebles” [3,11]), the resulting categories have several desirable features for
the study of categorization and category learning. First, the categories have measurable, but
randomly arising, within-class shape variations (c.f., [12,13]). In most of the earlier studies
using object categories created by compositing shape primitives, there tends to be little or no
within-class variation (for reviews, see [14-16]). However, in natural scenes, two exemplars
of a given category are seldom identical. Second, if necessary, both within-class variants and
between-class variants in VP can be artificially selected to fit desired distributions (although
we did not impose any such distributions in the present study). This means that the categories
can be generated on the basis of, or independently of, an a priori classification algorithm, as
desired. Third, VP can be used to generate a hierarchy of categories, directly analogous to the
phylogenetic hierarchy of categories of biological objects in nature, so that VP can be a useful
tool for exploring our hierarchical understanding of natural objects [1-3,13,16]. Finally, note
that although we used “digital embryos” as the substrate for VP in the present study (Figure
1A), any virtual object, biological or otherwise, real-world or novel, can be used as a VP
substrate and the algorithm can be readily modified to simulate a more complex phylogenetic
process (e.g., convergent evolution, in which different taxa, such as whales and fish, come to
resemble similar visual categories). Altogether, VP represents a powerful and versatile tool for
generating naturalistic categories.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Generating Naturalistic Shape Classes by “Virtual Phylogenesis”
(A) The VP algorithm emulates biological evolution in that in both cases, novel objects and
object classes emerge as heritable variations accumulate selectively. In the present study, we
used a class of novel objects called “digital embryos,” which develop from a given parent object
through simulated embryonic developmental processes [17]. At each generation Gn, selected
embryos procreate, leading to generation Gn+1. The progeny inherit the shape characteristics
of their parent but accrue random shape variations of their own as they develop. Thus, children
of a given parent constitute a shape class. In the present study, embryos were grown for four
generations with the VP algorithm, starting from a single common ancestor, an icosahedron.
Three shape classes (A, B, and C) were chosen at generation n = 4, each with ~1500 “siblings.”
Note that the entire object-generation process operated completely independently of the
fragment-selection process or any other classification scheme. For larger images of exemplar
objects from each class and for a demonstration that the categorization task is nontrivial and
cannot be performed without learning the relevant classes, see Figure S1.
(B) A metric multidimensional scaling (MDS) plot of the 600 objects, 200 each from class A,
B, and C, used in this study. Pixel-wise correlations of gray-level values were used as the input
to MDS. Each data point represents one individual object, and the plotting symbol (A, B, or
C) denotes the class to which the object belonged. MDS plots the data points so as to cluster
similar data points together and disperse dissimilar data points from each other (for details, see
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[9,18]). The values on either axis denote the class distance measures used by the MDS. Note
that the two axes have different scales. The objects of the three classes formed three
nonoverlapping clusters (ellipses), so that each cluster contained all the objects, and only the
objects, of a given class.
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Figure 2. Informative Object Fragments
(A) Main fragments, which are 20 × 20 pixel fragments of objects from class A that are useful
for distinguishing class A from class B (main task).
(B) Location of the main fragments, overlaid on a typical object from class A. Fragment borders
are outlined in yellow for clarity.
(C) Control fragments, which are fragments of objects that are not useful for the main task
from class A (see Supplemental Data for details).
(D) Location of the control fragments.
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Figure 3. The Testing Paradigm
A test object (center) and two sample objects, one from each class (left and right), were
simultaneously shown. The test object was occluded by a translucent surface with a hole, such
that only the given object fragment was visible, unoccluded, through the hole, and the location
of the fragment relative to the overall object was apparent through the translucent occluder.
Subjects had to classify the object into the class exemplified by the sample object on the left
or right on the sole basis of the fragment visible through the hole. Subjects were informed that
only the fragment, but not the darkened remainder of the test object, was useful for the task.
See Supplemental Data for details. The fragment shown in this figure is the same as fragment
5 in Figures 2A and 2B.
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Figure 4. Classification Performance Using Fragments
In each panel, each bar shows the average percentage (±SEM) of trials in which the subjects
classified a given fragment as belonging to class A. The thin dotted line denotes 50%, or chance
level performance. The thick black lines in the background in (A) denote the mean (solid line)
and the SEM (dashed lines) of the subjects using whole objects during the last two sessions of
training.
(A and B) Performance in experiment 1a (six subjects) with main fragments (A) and control
fragments (B).
(C) Performance in experiment 1b with IPControl fragments (three of the six subjects). The
IPControl fragments are shown in Figure S2. The performance with main fragments from
experiment 1b is shown in Figure S3.
(D) Performance with main fragments without prior training. Subjects were tested with the
same paradigm as above, but without any prior training in the categorization task. The data are
averaged from six subjects.
(E) Testing with irrelevant training. Data are shown from one subject. The subject was trained
in a similar, but irrelevant, categorization task and tested with the main fragments with the
same paradigm as above.
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