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Abstract
The candidate gene approach to pharmacogenetics is hypothesis driven, and anchored in biological
plausibility. Whole genome scanning is hypothesis generating, and it may lead to new biology. While
both approaches are important, the scientific community is rapidly reallocating resources toward the
latter. We propose a step-wise approach to large-scale pharmacogenetic association studies that
begins with candidate genes, then uses a pathway-based intermediate step, to inform subsequent
analyses of data generated through whole genome scanning. Novel computational strategies are
explored in the context of two clinically relevant examples, cholesterol synthesis and lipid signaling.

INTRODUCTION
Genotype-phenotype association studies are being performed on an unprecedented scale. They
are being conducted in cohorts that are disease-based, treatment-based, practice-based, and/or
population-based. They typically follow one of two strategies: (1) a candidate gene approach
(which tends to be hypothesis-driven), or (2) a genome scanning approach (which tends to be
hypothesis generating). It was initially argued that genome scanning would lead to the
identification of numerous causative genetic polymorphisms - both genic and intergenic - with
previously unappreciated biological function, yielding insight into a myriad of novel cellular
signaling pathways. While this expectation has partly been realized (e.g., elucidation of the
role of INSIG2 in the development of obesity) [Herbert, A. et al. 2006], it remains unclear
whether the resulting data will justify the large amount of resources currently being redirected
toward genome scanning in populations.

The strengths and limitations of genome-wide association studies have recently been reviewed
by Dupuis and O’Donnell [2007]. There exists both optimism [Couzin, J. and Kaizer, J.
2007] and skepticism [Shriner, D. et al. 2007; Williams, S.M. et al. 2007] about whether a
dense map of single-nucleotide polymorphisms (SNPs) from across the human genome will
lead to a panacea of new genetic risk factors for common diseases. The datafiles generated by
genome scanning are typically enormous, and strategies for dealing with multiple testing
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remain unresolved, particularly for large scan platforms. Even with less stringent strategies to
correct for multiple testing, it remains difficult for investigators to identify gene variants that
are consistently associated with phenotypic changes. This is in part attributable to the clinical
heterogeneity of most common diseases. Furthermore, many of the genetic factors associated
with common disease have very small effect size.

Misclassification bias and lack of standardized phenotypes may confound replication of
associations identified through genome scanning. Variability in sample size, differing
infrastructure, and unquantified environmental factors also lead to ambiguous results. As
Williams, S.M. et al. [2007] point out, genes such as PPAR-γ may not have been convincingly
identified as a genetic risk factor for type 2 diabetes in genome-wide association studies [Scott,
L.J. et al. 2007;Ziggini et al. 2007] without an overwhelming amount of prior genetic and
biological evidence suggesting the importance of these genes.

Unlike genome scanning, the candidate gene approach works with small numbers of
polymorphisms in a biological framework that provides an interpretive context for association.
Even in the absence of a single main effect, variant alleles contributing to phenotypic variability
can often be identified by considering gene-gene interaction (epistasis) specifically within the
context of a well characterized biological pathway [Moore, J.H. and Ritchie, M.D. 2004;
Moore, J.H. 2005; Moore 2007a; 2007b; 2007c]; i.e., a congenitally altered enzyme may have
no impact on phenotype unless it occurs in the context of another congenitally variant enzyme
in the same pathway(s). Therefore, the importance of the suspect allele may only be recognized
if it is characterized through the application of an analytical approach that considers epistasis.
Nonetheless, the identification of epistasis is computationally intense, and the computational
time is proportional to the number of genes being evaluated.

Thus, both candidate gene studies and genome wide association studies contain inherent
challenges. To address these challenges, we explore a stepwise approach that combines
information generated from candidate genes (i.e., a gene-centric foundation) with growing
knowledge about biological pathways (i.e., a pathway-based framework), to inform the
analysis of whole genome association studies (i.e., genome-wide data).

MODEL PATHWAYS
Epistasis is a ubiquitous component of the genetic architecture underlying complex phenotypic
traits such as disease onset, disease progression, and treatment outcome [Moore, J.H. 2003]
[Moore, J.H. 2005; Wilke, R.A. et al. 2005]. The detection of epistasis in large association
studies is both statistically and computationally difficult due to the dimensionality associated
with putting multiple genotypes together. Often, an enormous number of potential
polymorphism combinations need to be evaluated. Further, the complexity increases when an
individual polymorphism exhibits epistasis in the absence of independent main effects.
Therefore, a number of new computational methods for detecting, characterizing and
interpreting gene-gene interactions are needed [Thornton-Wells, T.A. et al. 2004].

The robust nature of biosynthetic pathways suggests that the development of novel methods
for detecting epistasis may be optimized if the analyses can be informed by existing biological
knowledge. One way to implement this may be to view individual candidate gene products as
contributing to biological pathways that are either linear or spatial. A simple linear biosynthetic
pathway is illustrated in Fig. (1).

In concept, this pathway represents a Serial Circuit. A single rate limiting enzyme (produced
by a single gene) leads to the production of a linear array of metabolic intermediates (each with
limited biological activity) and a final product with known biological relevance. A number of
analytical strategies can be utilized for the characterization of epistasis within the context of
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such a linear pathway. Examples include combinatorial partitioning methods (CPM) and
multifactor dimensionality reduction (MDR). MDR currently represents one of the most widely
used computational methods available for characterizing epistasis [Ritchie, M.D. 2001; Moore,
J.H. 2004; 2005; 2006; 2007a; 2007b].

Simple linear biosynthetic pathways such as that shown in Fig. (1) typically lack signal
amplification; i.e., only one product molecule will be generated by every molecule of substrate
entering the sequence. In such a situation, the candidate gene most likely to determine
phenotype would be the gene for the rate limiting enzyme. Nonetheless, this would not preclude
polymorphisms in the genes encoding the more distal enzymes from altering phenotype through
an interaction with polymorphisms in the proximal enzymes. To capture such an epistatic
interaction, analytical methods may need to weight the candidate genes according to the relative
proximity of each respective gene product to the rate-limiting enzyme in the pathway. For a
simple linear pathway, one way to approach this would be to assign likelihood coefficients for
each candidate gene based upon the position of that gene in the series. However, biological
pathways are typically far more robust. Oftentimes, a substrate may undergo any of a number
of potential enzymatic conversions, determined in part by the relative affinity of that substrate
for each respective enzyme. As suggested in Fig. (2), it may be more advantageous to weight
each candidate gene based upon previously determined in vitro enzyme affinity. Thus, prior
biological knowledge is required regarding the pathway and the gene products.

Fig. (2) represents a complex spatial metabolic network. In concept, this is a Parallel
Circuit. Although a single rate limiting enzyme controls the flow of substrate into this model,
the substrate can undergo an array of metabolic conversions leading to a complex network of
intermediate products (each with variable biological activity). The primary pathway and the
final product are determined by enzyme affinity at the decision point. In this example, the
decision point represents a “choice” between three isoforms. However, it is important to note
that although enzyme affinity is determined genetically, the effects of this genetic variability
may not become evident until a group of subjects is challenged with a drug (i.e., gene-
environment interaction). This is illustrated in Fig. (3) and Fig. (4).

The scenario in Fig. (3) treats the three “decision point” enzymes as genetically variant. The
first panel (top) represents a physiologic product distribution in the context of no genetic
polymorphism(s). The second (middle) and third (bottom) panels represent product distribution
for polymorphisms altering the activity of one or more decision point enzymes. Even with
relative differences in substrate affinity (isoform 1 > isoform 2 > isoform 3), these
polymorphisms would likely have only a limited impact on clinical phenotype. In the context
of drug exposure, however, the impact of these polymorphisms becomes much more evident.
The net effect is a drug-induced change in phenotype that varies widely according to genotype.
The difference is illustrated in Fig. (4).

In this scenario, a drug will lead to either the desired outcome (top) if given to a subject with
no decision point polymorphism, or an adverse drug reaction (middle) if given to a subject with
one decision point polymorphism, or a therapeutic failure (bottom) if given to a subject with
multiple decision point polymorphisms. Hence, in the context of pharmacogenetic association
studies, gene-environment interactions (with drug as the environmental perturbation) and gene-
gene interactions (epistatic interaction between enzymes) must both be considered. To leverage
such a study for success, the analytical strategy must be designed to identify such complex
relationships. Within this context, the likelihood of success increases if the strategy is informed
by pathway-specific data.
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CLINICAL EXAMPLES
To illustrate the clinical utility of these models, we summarize two biosynthetic pathways
known to impact the pharmacological management of coronary artery disease (CAD), the
leading cause of death in the U.S. [Thom, T. et al. 2006]. The first application explores
cholesterol synthesis in the context of an idealized linear pathway. In the clinical arena, this
pathway is commonly manipulated pharmacologically by a class of drugs referred to as the
statins (HMG CoA reductase inhibitors). The second application reviews a more complex array
of lipid signaling molecules derived through the biotransformation of membrane-bound
arachidonic acid. In the clinical setting, this pathway is manipulated pharmacologically by a
variety of agents, including the non-steroidal anti-inflammatory drugs (NSAIDs).

EXAMPLE 1 - Cholesterol Synthesis as a Linear (Serial) Pathway
Under the conditions pictured in Fig. (1), it may be tempting to speculate that genetic
polymorphisms affecting any of the enzymes within this linear sequence would be equally
likely to alter phenotype. The available data, however, suggest that this may not be the case.
As discussed above, one explanation might be that linear biosynthetic pathways tend to lack
signal amplification; i.e., only one product molecule is generated for every single molecule of
substrate entering the sequence. In such a situation, the candidate gene most likely to determine
phenotype may actually be the gene for the rate limiting enzyme. Consider the situation for
lipid-lowering therapy with the statins.

Multiple large clinical trials have demonstrated that statins reduce the incidence of both primary
and secondary coronary artery disease in patients at risk. Each of the six currently available
statin drugs is highly efficacious (See Sidebar 1) [Downs, J.R. et al. 1998; Shepherd, J. et
al. 1995; Herd, J.A. et al. 1997; Pedersen, T.R. et al. 1998; Sever, P.S. et al. 2003; Shepherd,
J. et al. 2003]. Recently, a number of retrospective association studies have been conducted
with the specific purpose of elucidating genetic factors underlying the differential lipid
lowering efficacy of statins at the population level. Cholesterol and Pharmacogenetics (CAP)
was designed to address this issue [Simon, J.A. et al. 2006]. American patients of African and
European ancestry were treated with simvastatin for 6 weeks. Patients of European ancestry
had a larger reduction in LDL-cholesterol (−3 mg/dl) and a higher increase in HDL-cholesterol
(+1 mg/dl; p<0.001). This effect was independent of other covariates. Older patients and
smokers had larger treatment-induced changes in LDL-cholesterol; women had larger
treatment-induced changes in HDL-cholesterol [Simon, J.A. et al. 2006]. This cohort has
recently undergone whole genome scanning, and the resulting genotype-phenotype datasets
will likely require extensive analyses, based both upon statistics and known biology.

The rate-limiting step in the de novo production of cholesterol is HMG CoA Reductase. This
enzyme represents a biochemical portal of entry for simple 2-, 3-, and 4-carbon molecules (e.g.,
acetate, via acetyl CoA) into an essentially linear string of anabolic enzymes, leading to the
production of cholesterol as their final product [Tolbert 2003; Thompson, P.D. et al. 2003].
This biosynthetic sequence may therefore be interpreted in the context of the idealized linear
schematic shown in Fig. (1). In the case of cholesterol synthesis, the rate limiting enzyme
generates a variety of multi-carbon metabolic intermediates commonly referred to as
isoprenoids [Lewis, K.A. et al. 2005]. Under such conditions, it is tempting to hypothesize that
genetic polymorphisms affecting any of the enzymes within this linear sequence would be
equally likely to alter drug outcomes related to statin therapy. The available data, however, do
not support this hypothesis [Mangravite, L.M. et al. 2006].

In a retrospective study of 148 SNPs in 10 candidate genes, Chasman and colleagues identified
2 intronic SNPs in the HMG CoA Reductase gene that were associated with the magnitude of
LDL cholesterol lowering by pravastatin (40 mg/day) [Chasman, D.I. et al. 2004]. While their
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study also included candidate gene SNPs from enzymes occurring more distally within this
biosynthetic pathway (e.g., squalene synthase), the impact of these SNPs was marginal. One
possible reason for the marginal nature of this effect could be the position of the enzyme within
the biosynthetic pathway. This is consistent with our earlier claim that the candidate gene most
likely to determine phenotype would be the gene for the rate limiting enzyme. In the case of
cholesterol synthesis, this enzyme is also the most proximal enzyme (HMG CoA reductase).
In order to determine whether polymorphisms in the genes encoding the more distal enzymes
(such as squalene synthase) are capable of altering phenotype, analytical strategies need the
capability to interrogate the data for epistasis. Even in the absence of a single main effect,
polymorphisms in the distal enzymes could have clinical meaning (i.e., altering lipid lowering
efficacy of the statins) through a combinatorial interaction with polymorphisms in the more
proximal enzymes. To our knowledge this possibility has not yet been evaluated within the
biosynthetic pathway for cholesterol. Work published recently by Murthy suggests that this
may be worth testing [Murthy, S. et al. 2005].

EXAMPLE 2 - Eicosanoid Signaling as a Spatial (Parallel) Pathway
The biotransformation of arachidonic acid (AA) represents a well characterized spatial network
with profound impact on cardiovascular disease outcomes. AA is liberated from membrane
phospholipids by acyl hydrolases. Free AA then serves as a substrate for a variety of tissue
oxygenases. As shown in Figs. (2) –(4), this can be viewed as an enzymatic decision point.
Cycoloxygenases convert AA to a series of lipids capable of modulating inflammation,
vascular tone and platelet function. Conversely, lipoxygenases convert AA to a complex,
combinatorial set of immune modulating lipids. Most of these lipid-derived products are
referred to as eicosanoids, because they are derived from essential fatty acids containing a 20-
carbon backbone. Aspirin (ASA) and other nonsteroidal anti-inflammatory drugs (NSAIDs)
are widely used, clinically, to modify the relative production of eicosanoids. Each NSAID
alters the production of lipid signaling molecules derived from AA through the inhibition of
cyclooxygenases (COXs). Aspirin, in particular, is highly efficacious in the treatment of
coronary artery disease (See Sidebar 2). However, recent clinical observations have revealed
that COX inhibitors can either decrease or increase subject risk for the development of coronary
artery disease (See Sidebar 2) [Spektor, G. and Fuster, V. 2005; McGettigan, P. and Henry, D.
2006; Capone, M.L. et al. 2007]. This observed difference in outcome is likely related to the
differential binding affinity of each NSAID for either of two separate, well-characterized COX
isoforms (COX1 and COX2).

In general, the clinical impact of genetic variability in AA metabolism can be modeled through
the application of spatial metabolic schema (as sown in Figs. (2)–(4). The idea that the
respective decision point enzymes vary genetically is not new. A promoter SNP in the COX-2
gene (G-765C) has previously been associated with the frequency of adverse cardiovascular
events in a study comparing 864 subjects with first myocardial infarction or ischemic stroke
to 864 hospitalized controls [Cipollone, F. et al. 2004]. In this study, heterozygosity (GC
genotype) was 2.41 times more frequent among controls than cases (43.3% vs 17.9%; P<.001),
and homozygosity for the minor allele (CC genotype) was 5.81 times more frequent in controls
than cases (6.4% vs 1.1%; P =.04) [Cipollone, F. et al. 2004].

The mechanism by which this gene variant attenuates development of cardiovascular disease
remains unclear. It may involve the COX2-dependent expression of key matrix-digesting
proteases by macrophages [Cipollone, F. et al. 2004; Wang, X.M. et al. 2006]. It is conceivable,
however, that the clinical importance of this SNP may be amplified in the context of drugs
known to modulate “decision point” enzymes involved in eicosanoid synthesis. Fig. (4) shows
one model whereby such a SNP could have an amplified (or a dampened) impact on clinical
phenotype, during the introduction of different NSAIDs. To effectively capture such
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relationships in large population-based studies, an analytical strategy must contain an
interpretation framework that simultaneously considers multiple layers of complexity. We
therefore propose the following pathway-based approach.

STEP-WISE APPROACH
Large-scale pharmacogenetic studies need analytical strategies that embrace, rather than
ignore, biological complexity. Computational methods are therefore being extended to address
both divergence and redundancy in signaling pathways. For example, Lou et al. [2007] recently
developed a parameterization of MDR that allows adjustment for discrete and continuous
covariates. Thornton-Wells, T.A. [2006] developed and evaluated a Bayesian clustering
algorithm that shows promise for clustering cases based on their genetic background prior to
association analysis using methods such as MDR. These and other analytical advances will
facilitate the development and application of a computational framework for pharmacogenetic
association studies that considers the complexity within known biological pathways. The
synthesis of eicosanoids, for example, represents a biosynthetic network which is large, robust,
and in some cases redundant. Fig. (5) illustrates the current knowledge regarding this network,
based upon data available in one of the larger publicly available pathway databases, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [Kanehisa, M. 1997; Ogata, H. et al.
1999;http://www.genome.jp/keg].

Pharmacogenetic association studies designed to characterize the impact of drugs that interact
with such pathways will require analytical strategies that incorporate network models, such as
those represented in Figs. (3) –(4) [Thornton-Wells, T.A. et al. 2004], into larger genome-wide
data-sets generated from subjects exposed to each respective drug. In this setting, a stepped
analytical approach would offer the most informative strategy for utilizing the resulting data.
We propose the three-step procedure illustrated in Fig. (6). This approach uses expert biological
and statistical knowledge to increase the value of a genome-wide study, by placing analytical
emphasis on candidate genes and pathways.

This figure illustrates the relationship between the amount of genetic data collected (blue), the
amount of information generated from an analysis of the data (green), and the amount of
knowledge such an analysis yields (yellow). These three parameters are shown in relative
proportion for large pharmacogenetic association studies, according to each potential type of
study design: gene-centric (left panel), pathway-based (middle panel) and genome-wide (right
panel). Note that the ratio of knowledge gained to information generated is highest for the gene-
centric (leftward) approach, where there is usually good experimental data available, and where
the maximum number of analytical methods can be used to ask many different questions about
genetic architecture. Note also that the ratio of knowledge gained to information generated is
lowest for the genome-wide (rightward) approach, where it is extremely difficult to generate
and interpret analytical results. The arrows demonstrate how these strategies could be
combined as a step-wise process. In this way, each step (gene, path and genome) could be used
to inform the next.

Based upon the relative study strengths illustrated in this schematic, we propose that the first
step of any large pharmacogenetic association study should be the selection of one or several
candidate genes that can be thoroughly characterized, analyzed and interpreted. We then
propose that knowledge gained from this gene-centric approach should be used to select and
limit relevant biological pathways. Using prior knowledge to guide pathway selection should
yield better results and in turn yield more knowledge about the genetic architecture of the
complex trait. The knowledge gained from pathway-based analysis can then be used along with
other expert knowledge in public databases to facilitate the interpretation of the genome-wide
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results. As shown at the bottom of Fig. (6), this will likely improve the value of a time-
consuming and costly approach to genetic analysis.

DISCUSSION
Historically, pharmacogenetic association studies have focused on one or more polymorphisms
in a single gene selected based upon its biological role in the trait of interest. It has now become
routine to measure most, if not all, of the relevant variations in a single candidate gene. This
‘gene-centric’ approach to association studies offers the opportunity to study a single gene in
great depth, and it facilitates an understanding of the candidate gene’s role in the genetic
architecture of a complex trait such as treatment outcome. Extending this idea to multiple genes
within a given pathway yields additional ‘pathway-based’ knowledge, and this knowledge is
likely to provide a clearer picture of the role of any one gene, and its interacting partners, in
the trait of interest. Both of these approaches (gene-centric and pathway-based approaches)
are of general interest because they are hypothesis driven, and because they often reflect the
current state of the literature regarding the biochemistry and physiology of the trait being
characterized.

The analysis of data from candidate gene studies typically requires the modeling of 10 to 100
polymorphisms, and the analysis of pathway-based data involves several hundred
polymorphisms. From a computational point of view these are tractable problems since it is
possible to enumerate all combinations of polymorphisms in an analysis of gene-gene
interaction. The paradigm changes, however, when the number of polymorphisms begins to
exceed several hundred. The largest available supercomputers are not fast enough to enumerate
and analyze all combinations of three, four and five polymorphisms from a total list of one
million. Further, if one could analyze all possible combinations, the interpretation of the results
would be overwhelming. Given these two limitations, how should one confront the complexity
we know exists in genome-wide association studies?

We propose that genome-wide association studies using analytical methods that address genetic
interactions (gene-gene, gene-environment) and phenotypic heterogeneity are most likely to
succeed if expert knowledge about the biology of a given trait is taken into consideration. First,
knowledge about gene function can be used to help guide an algorithm as it picks
polymorphisms to evaluate, using analytical methods such as MDR. Moore and White [2006
MDR. Moore and White [2007] and Greene et al. [2007] have shown that incorporating expert
knowledge into a stochastic search algorithm significantly improves the ability of MDR to
identify gene-gene interactions in the context of genome-wide association data. Second, expert
knowledge will also be critical for the interpretation of the large volume of statistical results
that will be generated from any analysis of gene-gene interaction.

Within such a context, our ability to separate the signal from the noise will depend critically
upon our ability to identify and use pre-existing knowledge about gene regulation, biochemical
pathways, protein-protein interactions, cellular biology and integrated physiological systems.
Beyond pathway-based information, these analytical strategies will also benefit from
knowledge of evolutionary selection, conservation across multiple species, and growing data
from studies of eQTL (expression quantitative trait loci) [Goring, H.H. et al. 2007].
Fortunately, there are a number of highly useful bioinformatics tools that are now available for
genetic and epidemiologic studies of complex clinical endpoints [Moore, J.H. 2007]. Consider
for example the Kyoto Encyclopedia of Genes and Genomes (KEGG) database that stores and
makes available knowledge on genes and their pathways [Kanehisa, M. 1997; Ogata, H. et
al. 1999; http://www.genome.jp/keg]. The Pathway component of KEGG currently stores
knowledge on more than 42,937 pathways generated from 307 reference pathways. Another
valuable resource is the Gene Ontology (GO) project that has created a controlled vocabulary
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to describe genes and gene products in any organism in terms of their biological processes,
cellular components and molecular functions [Ashburner, M. et al. 2000; Gene Ontology
Consortium 2006; http://www.geneontology.org]. GO descriptions and KEGG pathways are
both captured and summarized in the U.S. National Center for Biotechnology Information
(NCBI) databases [http://www.ncbi.nlm.nih.gov/].

Pathway-based information from KEGG, gene-function information from GO, and other
resources such as the Pharmacogenetics and Pharmacogenomics Knowledge Base
(PharmGKB) [Hewett, M. et al. 2002; Altman, R.B. 2007; http://www.pharmgkb.org] can be
used to inform the analysis of whole genome scans in several different ways. For example, a
subset of polymorphisms in a particular pathway may not individually show significance after
correction for multiple testing. However, it is possible that the number of genes significant at
an uncorrected level is greater than would be expected by chance given the size of pathway.
This kind of biologically meaningful pattern could only be revealed using prior knowledge
about the pathway. In practice this type of analysis can be carried out using freely available
bioinformatics tools such as the Exploratory Visual Analysis (EVA) database and software
that organizes statistical results by pathway, GO and chromosomal location, for example, so
that more subtle biological patterns can be quickly identified [Reif, D.M. et al. 2005; Reif,
D.M. and Moore, J.H. 2006]. One challenge in applying tools such as EVA to genome-wide
data is the assignment of intergenic or anonymous SNPs to specific genes so that they can then
be tied to a pathway or gene function. Linkage disequilibrium information from the haplotype
map and other related sources will be useful for this.

In the future, these tools will position investigators in the field of pharmacogenetics to better
characterize the clinical impact of functionally relevant genetic variability within any given
biosynthetic pathway. The resulting models should allow statistical geneticists to develop
analytical strategies that weight individual components of each pathway appropriately, as the
scientific community integrates candidate gene data with pathway-based knowledge to inform
the computational approaches to genome-wide datasets.

Sidebar 1. Statins and Cardiovascular Risk

There are six clinically available statins [Tobert, J.A. 2003]. Lovastatin, the first drug
approved for clinical use within this class, has been shown to lower the incident rate for
initial coronary events (RR = 0.63 versus placebo [95% CI 0.50–0.79], p <0.001) [Downs,
J.R. et al. 1998]. All statins inhibit the rate-limiting enzyme in the de novo production of
cholesterol (HMG CoA Reductase), and the degree of cardiovascular risk reduction appears
to be similar for each drug within the class. Like lovastatin, the relative risk for
atherosclerotic coronary artery disease can be reduced to approximately 70% through the
clinical administration of pravastatin [Shepherd, J. et al. 1995], fluvastatin [Herd, J.A. et
al. 1997], simvastatin [Pedersen, T.R. et al. 1998], atorvastatin [Sever, P.S. et al. 2003], or
rosuvastatin [Shepherd, J. et al. 2003].

Currently, the clinical community is moving toward more aggressive lipid lowering with
higher doses of statins. In the Treating to New Targets (TNT) trial, more than 10,000 patients
with coronary artery disease were randomized to low-dose atorvastatin (10 mg/day) or high-
dose atorvastatin (80 mg/day). At follow-up (median of 4.9 years), subjects in the low-dose
treatment group had mean LDL-cholesterol levels of 101mg/dl, whereas subjects in the low-
dose treatment group had mean LDL-cholesterol levels of 77mg/dl. For the composite end
point (death from coronary artery disease, nonfatal nonprocedure-related myocardial
infarction, resuscitation after cardiac arrest, and fatal or nonfatal stroke), there was a further
reduction in risk (hazard ratio, 0.78 [95% CI 0.69 to 0.89], p<0.001) in the high-dose group
when compared to the low-dose group [LaRosa, J.C. et al. 2005]. Since intensive LDL

Wilke et al. Page 8

Curr Pharmacogenomics Person Med. Author manuscript; available in PMC 2009 May 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.geneontology.org
http://www.ncbi.nlm.nih.gov/
http://www.pharmgkb.org


cholesterol lowering may be associated with a reduction in atheroma volume [Nissen, S.E.
et al. 2004; 2006], the use of these drugs is likely to increase.

Sidebar 2. NSAIDs and Cardiovascular Risk

Aspirin (ASA) is highly efficacious in the treatment of coronary artery disease. In a meta-
analysis of >100 randomized trials, ASA has been shown to reduce the frequency of non-
fatal cardiovascular events by approximately 30% in patients at risk [Antithrombotic
Trialists Collaboration 2002;Patrono 2004]. The role of ASA in reducing cardiovascular
mortality remains less clear [de Gaetano, G. 2001; Berger, J.S. et al. 2006]. The therapeutic
benefit of ASA is derived through its irreversible inhibition of cyclooxegenase (COX)
enzyme activity in a variety of tissues. While ASA interacts with COX1 and COX2, its
ability to inhibit COX1 is 50- to 100-fold more potent than its ability to inhibit COX2
[Patrono 2004]. ASA therefore reduces the COX1-dependent production of TXA2 by
platelets [Ouellet, M. et al. 2001]. Although ASA also reduces the COX2-dependent
production of PGI2 by the vascular endothelium [Patrono 2004], the net effect is a relative
shift toward a less thrombogenic microenvironment. The change is manifest as a reduction
in coronary risk.

This may not be the case for other cyclooxegenase inhibitors. Examples include ibuprofen
(an older non steroidal anti-inflammatory drug) and rofecoxib (a newer non steroidal anti-
inflammatory drug). Both subclasses attenuate the production of TXA2 much less
effectively than ASA [Ouellet, M. et al. 2001]. The cardiovascular impact of these non
steroidal anti-inflammatory drugs appears to be influenced largely by the relative affinity
of each for the COX2 enzyme [Capone, M.L. et al. 2007]. While ibuprofen appears to have
similar affinity for COX1 and COX2, other older non steroidal anti-inflammatory drugs
(such as meloxicam or diclofenac) are 10 to 30-fold more potent at the COX2 enzyme, and
the newer non steroidal anti-inflammatory drugs (such as rofecoxib and valdecoxib) are 100
to 300-fold more potent at the COX2 enzyme [Capone, M.L. et al. 2007]. Correspondingly,
these latter compounds have a greater ability to inhibit the COX2-dependent synthesis of
PGI2 by the vascular endothelium [Capone, M.L. et al. 2007]. The COX2-specific properties
of these drugs may therefore explain recent clinical observations that some newer non
steroidal anti-inflammatory drugs appear to increase the frequency of cardiovascular events
in subjects at risk (e.g., for rofecoxib, RR= 1.35, 95% CI, 1.15–1.59) [McGettigan, P. and
Henry, D. 2006].
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AA  

Arachidonic acid

ALOX-5  
5-lipoxygenase

ASA  
Aspirin

CAD  
Coronary artery disease
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CAP  
Cholesterol and pharmacogenetics trial

CI  
Confidence interval

COX  
Cyclooxygenase

CPM  
Combinatorial partitioning methods

eQTL  
Expression quantitative trait loci

EVA  
Exploratory visual analysis

GO  
Gene Ontology

HDL  
High density lipoprotein

HPETE  
Hydroperoxyeicosatetraenoic acid

INSIG2  
Insulin-induced gene 2

KEGG  
Kyoto encyclopedia of genes and genomes

LDL  
Low density lipoprotein

LTA4  
Leukotriene A4

MDR  
Multifactor dimensionality reduction

NCBI  
National center for biotechnology information

NSAIDs  
Non-steroidal anti-inflammatory drugs

PG  
Prostaglandin

PGI2  
Prostacyclin

PharmGKB  
Pharmacogenetics and pharmacogenomics knowledge base

PPAR-γ  
Peroxisome proliferator-activated receptor gamma
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RR  
Relative risk

SNP  
Single-nucleotide polymorphism

TNT  
Treating to new targets trial

TXA2  
Thromboxane
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Fig. (1).
Linear Pathway, functionally analogous to a serial circuit.
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Fig. (2).
Spatial Pathway, functionally analogous to a parallel circuit.
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Fig. (3).
Physiologic product distribution, for an enzymatic decision pointwhere substrate affinity for
isoform 1 > isoform 2 > isoform 3. Despite the presence of SNPs in key enzymes, the relative
product distribution is largely unchanged under physiologic conditions (i.e., relative
phenotypic homogeneity).
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Fig. (4).
Alteration in product distribution, for a drug that selectively inhibits isoform 1. Three possible
clinical outcomes are represented, corresponding to the presence of zero SNPs, one SNP, or
two SNPs. In the presence of a drug, SNPs that are otherwise clinically silent now become
relevant, leading to a drug-dependent change in phenotype (i.e., phenotypic heterogeneity).
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Fig. (5). Potential complexity of a robust signaling network
Current knowledge is summarized regarding the eicosanoid signaling network, based upon
data available in one of the larger publicly available pathway databases (the Kyoto
Encyclopedia of Genes and Genomes; KEGG). Several different classes of lipid-derived
signaling molecules are represented within this network. They include prostaglandins,
prostacyclin, thromboxane, hydroperoxyeicosatetraenoic acids, leukotrienes,
hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids. Prostaglandins are 20-carbon
unsaturated carboxylic acids containing a cyclopentane ring. Prostaglandin (PG) synthesis can
be summarized as follows. AA is converted to PGG by a cylcooxygenase, and then to PGH by
a peroxidase. Both endoperoxides (PGG and PGH) are chemically unstable. In most tissues,
they are subsequently converted to two hydroxyl ketones (PGD and PGE), interrelated by the
activity of tissue isomerases. In some tissues, a specific hydroxyl ketone, PGE2, can be further
converted to the PGFα prostaglandin series (1,3-diols) by a 9-keto reductase. PGA, PGB, PGC
are lab artifacts. Prostacyclin (PGI2) and thromboxane (TXA2) are also synthesized from an
endoperoxide, PGH2, via prostacyclin synthase and thromboxane synthase respectively. The
relative balance of each is highly tissue specific. While both PGI2 and TXA2 are biologically
active, both are rapidly inactivated to stable compounds (6-keto PGF 1α and TXB2).
Leukotrienes are synthesized through a different branch within this network. At the “decisions
point,” AA is oxidized to a series of hydroperoxyeicosatetraenoic acids or HPETEs (5-HPETE
and 12-HPETE). HPETEs are unstable (analogous to PGG and PGH), and further metabolized
by a variety of enzymes to form the leukotrienes [Hines and McCarver, 2006]. Through the
combined activity of 5-lipoxygenase (ALOX-5) and 5-lipoxygenase activating protein
(FLAP), AA is converted to an unstable intermediate called leukotriene A4 (LTA4). LTA4 is
subsequently converted to a series of cysteinyl leukotrienes by a glutathione S-transferase
(LTC4), a γ-glutamyl transpeptidase (LTD4), and a dipeptidase (LTE4). In general, these
cysteinyl leukotrienes induce relaxation of vascular smooth muscle and constriction of
bronchiolar smooth muscle. They have also been shown to alter endothelial function, immune
function and vascular permeability.
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Fig. (6). Step-wise approach to pharmacogenetic association studies
Illustrated are the relationships between the amount of genotype data collected (blue
rectangles), the amount of information generated from statistical and computational analysis
(green rectangles) and the amount of knowledge about genetic architecture that is generated
from interpreting data analysis results (yellow rectangles) for 1) a gene-centric approach that
focuses on one or several candidate genes selected on the basis of their biochemical properties,
2) a pathway-based approach that looks at candidate genes in a particular biochemical pathway
and 3) a genome-wide approach that considers a dense map of single-nucleotide
polymorphisms (SNPs) that capture most of the variability in the genome. (A) Here, genome-
wide association studies carried out independently of gene-centric and pathway-based results
are considered agnostic to prior biological and analytical knowledge. In this paradigm, the
amount of knowledge gained from a genome-wide association study is very small in proportion
to the amount of data and information that are generated. This is due to the high level of noise
inherent to data where the number of variables greatly outnumbers the sample size. (B) In this
paradigm, knowledge gained from gene-centric studies is used to help pick the pathways and
the genes that will be considered in a pathway-based approach. Further, the knowledge gained
from pathway-based studies is used to help interpret genome-wide data analysis results. Here,
the amount of knowledge gained from the genome-wide association study is improved over
that provided by the purely agnostic approach outlined in (A). (C) The genome-wide
association study is more expensive and more time consuming than either of the other two
approaches. This is especially true with respect to the greatly increased amount of time that it
takes to carry out the quality control, data management, data analysis and results interpretation.
Candidate gene studies therefore provide greater value, defined as knowledge gained by data
generated. We propose that that the analysis and interpretation of a genome-wide association
study will be most successful when carried out once the gene-centric and pathway-based
approaches have been fully explored. This will ultimately increase the value of the genome-
wide association study.
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