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The human PrP gene (PRNP) has two major polymorphic 
codons: 129 for methionine (M) or valine (V) and 219 for gluta-
mate (E) or lysine (K). The PRNP heterozygotes appear to be 
protected from sporadic CJD compared to the PRNP homozy-
gotes. The molecular mechanism responsible for these protective 
effects of PRNP heterozygosity has remained elusive. In this 
review, we describe the inhibition of PrP conversion observed 
in a series of transmission studies using PRNP heterozygous 
animal models. In vCJD infection, the conversion incompetent 
human PrP 129V molecules showed an inhibitory effect on 
the conversion of human PrP 129M molecules in the 129M/V 
heterozygous mice. Furthermore, though the human PrP 219E 
and PrP 219K were both conversion competent in vCJD infec-
tion, these conversion competent PrP molecules showed an 
inhibitory effect in the 219E/K heterozygous animals. To explain 
this heterozygous inhibition, we propose a possible mechanism 
designated as the stone fence model.

Introduction

Creutzfeldt-Jakob disease (CJD), scrapie, and bovine spongi-
form encephalopathy are lethal transmissible neurodegenerative 
diseases caused by an abnormal isoform of prion protein (PrPSc) 
that is converted from the normal cellular isoform (PrPC).1 The 
human PrP gene (PRNP) has two major polymorphic codons: 
129 for methionine (M) or valine (V), and 219 for glutamate 
(E) or lysine (K).2,3 These PRNP polymorphisms affect the  
susceptibility to sporadic (sCJD), variant (vCJD), or iatrogenic 

CJD.4-8 In particular, the PRNP heterozygotes appear to be 
protected from sCJD compared to the PRNP homozygotes. The 
frequency of the PRNP 129M/V genotype in sCJD is significantly 
lower than that in the normal population.5 Moreover, the PRNP 
219E/K genotype is absent in sCJD patients.9 The molecular 
mechanism responsible for these protective effects of PRNP 
heterozygosity has remained elusive.

In this review, we describe the inhibition of PrP conversion 
observed in a series of transmission studies using PRNP heterozy-
gous animal models.10,11 To explain this heterozygous inhibition, 
we propose a possible mechanism designated as the stone fence 
model.

Two Modes of Heterozygous Inhibition

Inhibition by the conversion incompetent PrP molecules.  
vCJD prions (genotype: 129M/M and 219E/E) can be trans-
mitted to knock-in mice expressing human PrP with 129M/M 
(Ki-Hu129M/M) or with 129M/V (Ki-Hu129M/V), but not to 
those with 129V/V (Ki-Hu129V/V).10 In transmission experiments 
using vCJD prions, we found an inhibitory effect of the conversion 
incompetent PrP 129V molecules in the 129M/V heterozygous 
animals. The amount of PrPSc in the spleens of Ki-Hu129M/V 
mice intraperitoneally inoculated with vCJD prions was much 
lower than that in the spleens of Ki-Hu129M/M mice (Fig. 1).11 
Moreover, the amount of PrPSc in Ki-Hu129M/V mice was even 
lower than that in hemizygous knock-in mice expressing human 
PrP 129M from one allele (Ki-Hu129M/0), which express half the 
level of PrP 129M compared with Ki-Hu129M/M mice. Thus, we 
confirmed that the decreased PrPSc accumulation in Ki-Hu129M/V 
mice was not due only to the expression level of PrP 129M. These 
findings clearly showed that the conversion incompetent PrP 129V 
molecules exerted an inhibitory effect on the conversion of PrP 
129M molecules in the 129M/V heterozygous animals.

Previous studies have demonstrated that the conversion 
incompetent PrP molecules exhibit inhibitory effects on the 
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Ki-Hu219K/0 mice. Thus, though the human PrP 219E and PrP 
219K were both conversion competent in vCJD infection, these 
conversion competent PrP molecules showed an inhibitory effect 
in the 219E/K heterozygous animals.

The Stone Fence Model of Heterozygous Inhibition

The molecular mechanisms responsible for the inhibitory 
effect of the conversion incompetent PrP have been studied 
previously.14,23,24 Briefly, though the conversion incompetent PrP 
molecules are not converted into PrPSc, they bind to PrPSc and are 
incorporated into amyloid fibrils with the conversion competent 
PrP molecules. Based on these previous findings, we propose a 
possible mechanism to explain the inhibitory effect of the conver-
sion competent PrP as well as the conversion incompetent PrP. We 
designated the mechanism as the stone fence model (Fig. 2). 

PrPC is converted to PrPSc and then piled up into amyloid 
fibrils according to the nucleated polymerization hypothesis.25 

In homozygous (219E/E or 219K/K) or hemizygous (219E/0 or 
K/0) animals, the conversion results in a single PrPSc population 
(Fig. 2). This means that the same blocks (the same PrPSc) would 
be piled up into the amyloid fibrils without any delay. By contrast, 
in the heterozygous 219E/K animals, the conversion results in at 
least two distinct PrPSc populations (219E PrPSc or 219K PrPSc) 
with different structures. These two PrPSc blocks would be piled 
up into the same fibril just like a stone fence composed of heter-
ologous blocks. However, the fibril elongation would be delayed 
because the two types of PrPSc blocks interfere with each other due 
to their incompatible structures. Thus, the two PrPSc populations 
with different structures can act as decelerators of each other in the 
process of stacking.

The decelerator hypothesis based on the stone fence model is 
compatible with the possible mechanism for the inhibitory effect 

conversion of the co-existing conversion competent PrP. This 
type of inhibition has been referred to as a dominant nega-
tive effect. When the endogenous mouse PrP gene was ablated, 
transgenic mice expressing exogenous human PrP or hamster PrP 
became more susceptible to human prions or hamster prions, 
respectively.12,13 In a cell-free conversion system using mouse and 
hamster PrP, the conversion but not the binding to PrPSc was 
inhibited by the conversion incompetent PrP in a dose-
dependent manner.14 Furthermore, dominant negative 
mutations in mouse PrP have been studied intensively due 
to their potential for therapeutic applications.15-22 In accord 
with these reports, the conversion incompetent human PrP 
129V molecules in our study showed an inhibitory effect on 
the conversion of the human PrP 129M molecules.

Inhibition by the conversion competent PrP mole-
cules. When we performed intraperitoneal inoculation of 
vCJD prions into knock-in mice expressing human PrP 
with 129M/M and 219E/E (Ki-Hu219E/E, a synonym of 
Ki-Hu129M/M), 129M/M and 219K/K (Ki-Hu219K/K), 
or 129M/M and 219E/K (Ki-Hu219E/K), we made 
two important findings. (1) Ki-Hu219K/K mice showed 
high susceptibility to vCJD prions. (2) Nevertheless, 
the heterozygous Ki-Hu219E/K mice showed the lowest 
susceptibility among the knock-in mice with polymor-
phism at codon 219.11 The amount of PrPSc and the 
number of PrP-positive follicular dendritic cells in the 
spleens of Ki-Hu219K/K mice were higher than those 
of Ki-Hu219E/E mice (Fig. 1). By contrast, the amount 
of PrPSc accumulation in Ki-Hu219E/K mice was even 
lower than that in the hemizygous Ki-Hu219E/0 mice or 

Figure 1.  Heterozygous inhibition in vCJD infection. Western blot analysis 
of PrPSc in the spleens of knock-in mice intraperitoneally inoculated with 
vCJD prions. The amount of PrPSc in the 129M/V heterozygous mice was 
even lower than that in the 129M/0 hemizygous mice. Furthermore, the 
amount of PrPSc was the highest in the 219K/K mice, whereas the PrPSc 
accumulation in the 219E/K heterozygous mice was even lower than that 
in the 219E/0 hemizygous mice or 219K/0 hemizygous mice. Therefore, 
we found that both the conversion incompetent PrP and the conversion 
competent PrP showed inhibitory effects in the heterozygous animals.

Figure 2.  The stone fence model: a possible mechanism of the heterozygous 
inhibition in vCJD infection. PrPC is converted to PrPSc and then piled up into amy-
loid fibrils according to the nucleated polymerization hypothesis and the trimeric 
models.25-28 In the homozygous (219E/E or K/K) or the hemizygous (219E/0 or 
K/0) animals, the PrPSc blocks are piled up into the amyloid fibrils without delay 
because only a uniform PrPSc population exists. Though the initial seed is 219E 
PrPSc also in the 219K/K or 219K/0 animals, the resulting 219K PrPSc acts as 
a new seed in the subsequent steps and are efficiently piled up. Therefore, the 
inhibitory effect of the initial 219E PrPSc seed is negligible in these animals. By 
contrast, in the heterozygous (219E/K) animals, at least two PrPSc populations are 
generated. These two PrPSc blocks are piled up into the same fibril just like a stone 
fence composed of heterologous blocks. The two types of PrPSc blocks interfere 
with each other due to their incompatible structures and delay the fibril elonga-
tion. Thus, the distinct PrPSc populations act as decelerators of each other in the 
heterozygous animals.
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However, our study revealed that the human PrP 219K molecules 
are conversion competent in sCJD infection as well as vCJD infec-
tion. This discrepancy suggested that the mutations in mouse PrP 
exhibit different effects from those of the corresponding mutations 
in human PrP as regards the conversion competence. This could 
have great significance for transgenic models expressing mouse PrP 
with mutations corresponding to the human pathogenic muta-
tions. Otherwise, the distinct prion strains used in the experiments 
might underlie the discrepancy.19

To compare precisely the susceptibility of the experimental 
animals with different PrP genotypes, knock-in mice including 
heterozygous mice have an advantage over transgenic mice because 
they have identical genetic backgrounds, identical PrP expression 
levels, and equivalent expression from the heterozygous genes.10 
Furthermore, the hemizygous knock-in mice express exactly half 
the level of PrP compared to the homozygous mice.11 Since 
the expression level of PrP affects the length of the incubation 
period regardless of the PrP genotype, the heterozygous and the 
hemizygous knock-in mice are both indispensable to analyze the 
heterozygous inhibition.

Conclusion

The present study, together with evidence from other groups, 
suggests that heterozygous inhibition is a universal phenomenon 
that can be caused by both conversion incompetent PrP and 
conversion competent PrP, or by both PrPC-heterozygosity and 
PrPSc-heterozygosity. The decelerator hypothesis based on the 
stone fence model paves the way for the solution of this phenom-
enon. To determine whether the efficacy of heterozygous inhibition 
is affected by the infected prion strain or the host PrP genotype, 
other heterozygous models need to be examined.
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