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Plants are autotrophic and photosynthetic organisms that both 
produce and consume sugars. Soluble sugars are highly sensitive 
to environmental stresses, which act on the supply of carbo-
hydrates from source organs to sink ones. Sucrose and hexoses 
both play dual functions in gene regulation as exemplified by 
the upregulation of growth-related genes and downregulation of 
stress-related genes. Although coordinately regulated by sugars, 
these growth- and stress-related genes are upregulated or down-
regulated through HXK-dependent and/or HXK-independent 
pathways. Sucrose-non-fermenting-1- (SNF1-) related protein 
pathway, analogue to the protein kinase (SNF-) yeast-signalling 
pathway, seems also involved in sugar sensing and transduction 
in plants. However, even if plants share with yeast some elements 
involved in sugar sensing, several aspects of sugar perception 
are likely to be peculiar to higher plants. In this paper, we have 
reviewed recent evidences how plants sense and respond to envi-
ronmental factors through sugar-sensing mechanisms. However, 
we think that forward and reverse genetic analysis in combina-
tion with expression profiling must be continued to uncover 
many signalling components, and a full biochemical character-
ization of the signalling complexes will be required to determine 
specificity and cross-talk in abiotic stress signalling pathways.

Introduction

Environmental factors affect the distribution of plants and exer-
cise a selective effect toward those that have a better adaptation.1,2 
Maximum selectivity corresponds to reproduction capacity; that 

is to say, plants that are unable to reproduce will not be able to 
prosper into a community. Among environmental factors that 
have evolved with plants, drought, salinity and extreme tempera-
tures are the most important; however, others such as ultraviolet-B 
radiation (UVBR), heavy metals, flooding and atmospheric pollut-
ants acquired a relevant interest in last years.3-6 To survive in the 
nature, plants developed a broad range of adaptative strategies to 
avoid environmental stresses. Responses to a specific stress can 
vary with the genotype, but some general reactions occur in all 
genotypes. Abiotic stresses affect different cellular processes such 
as growth, photosynthesis, carbon partitioning, carbohydrate and 
lipid metabolism, osmotic homeostasis, protein synthesis and 
gene expression.7-9 However, plant metabolism can be affected 
of both general and specific manner. For example, drought 
limits plant growth due to photosynthesis decrease, constraint 
of metabolic processes and interference with nutrient avail-
ability.10,11 Salinity interferes with plant growth as result of both 
physiological drought and ion toxicity.12,13 Chilling (temperatures 
below optimal but above freezing) and freezing temperatures affect 
metabolic activities and can cause osmotic stress.14-16 UVBR 
produces DNA damage, photosynthesis decrease and secondary 
metabolites (phenolic compounds) synthesis.17,18 Heavy metals 
induce oxidative damage and alteration in mitochondrial respira-
tion.19,20 However, oxidative stress and reactive oxygen species 
(ROS) production appear as the more common consequences of 
exposure to abiotic stresses.21,22

Although, stress conditions individually have been subjected to 
intense researches.2,4,10 In the field, however, plants are routinely 
subjected to a combination of different abiotic stresses,6,23 so 
responses of plants to combined stresses are unique and the 
responses to each stress cannot be applied individually. In addi-
tion, stresses can be synergistically or antagonistically modified.24 
Therefore, responses of plants to stresses are very complex 
phenomena, for example, drought responses can occur at leaf level, 
while the stimuli can be perceived in the leaf itself or in another 
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part of plant such as roots.12 Plant strategies to cope with stresses 
normally involve a mixture of stress avoidance and tolerance mech-
anisms. For example, during drought avoidance plants develop a 
deep-rooted system, while drought-tolerance involves metabolic 
adjustments, mediated by alteration in gene expression, to help 
improve the plant functionality. However, not all plants exhibit 
the same responses to different stress combinations and there are 
significant variations between genotypes.25 Although, tolerance to 
combinations of different abiotic stresses e.g., drought and salinity 
is a well-known breeding target in some crops,26 the molecular 
and metabolic mechanisms underlying the responses of plants to 
combinations of different stresses are scarcely known.

Perception of environmental stress signal relays a specific signal-
ling cascade and evolves adaptive responses; therefore, differences 
in stress tolerance between genotypes or different developmental 
stages of a single genotype may arise from differences in signal 
perception and transduction mechanisms.27-29 In plant stress 
responses the regulation of gene expression also involves both 
universal and unique changes at transcription level for certain 
genes,30,31 so it is logical to expect that plants with multiple stress 
perception and signalling pathways, can have crossing at various 
steps in signal transduction pathways. Thus, different signalling 
pathways might share one or more components or have some 
common outputs (cross-talk).32 When different abiotic stresses 
affect plant functionality, alterations in photosynthesis and carbon 
partitioning are common features that take place at organ level as 
well as in whole plant.33-35 Soluble sugars do not only function as 
metabolic resources and structural constituents of cells, they also 
act as signals regulating various processes associated with plant 
growth and development.36-38 Sugar signalling pathways interact 
with stress pathways into a complex network to modulate meta-
bolic plant responses.31,39 Soluble sugars may either act directly as 
negative signals or as modulators of plant sensitivity and thus, they 
can also play important roles in cell responses to stress-induced 
remote signals. In the context of this review, we analyse diverse 
sugar responses to abiotic stresses and summarize biochemical and 
genetic evidences for different sugar-sensing mechanisms.

Soluble Sugar Metabolism under Stress

Plants are autotrophic and photosynthetic organisms that both 
produce and consume sugar; however, they can act as carbon 
heterotrophs during some part of their life cycle or in some of their 
non-green organs like roots, stems and flowers that are not involved 
in photosynthesis.40 Furthermore, sugar depletion normally occurs 
during ontogeny of plants. For instance, variations in environ-
mental factors, such as light, water or temperature and attacks by 
pathogens or herbivores may lead to a significant decrease in the 
efficiency of photosynthesis in source tissues and thus, reduce the 
supply of soluble sugars to sink tissues. Under conditions of sugar 
deprivation, substantial physiological and biochemical changes 
occur to sustain respiration and other metabolic processes.41,42 In 
the life cycle of plants, seed germination and early seedling growth 
are depending upon storage substances mainly carbohydrates, 
which are mobilized in the form of soluble sugars (sucrose, glucose 
and fructose) from storage seed tissues to various organs like stem 

and radicle, where they are required for growth and maintenance 
of the osmotic homeostasis of cells.43,44 Thus, germinated seeds 
and growing seedlings appear as the most vulnerable stages to 
soluble sugar fluctuations, and constitute an excellent material to 
study the effect of different environmental stresses.

There are, however, few studies on sugar status in germinated 
seeds and seedlings growing under stress conditions, therefore, 
changes in sugar content during early development stages of 
seedlings are poorly understood and thus, the information on 
physiological events involved in seedling growth under abiotic 
stresses is scarce. For fifteen years, our laboratory is working on the 
effect of abiotic stresses on growth and carbohydrate metabolism 
of germinated seeds and growing seedlings of different glycophytic 
and halophytic species.9,15,17,18,43,45-49 Our data and others 
available in the literature, demonstrated that sugar concentra-
tions and source-sink partitioning are not affected according 
to unique pattern in different organs as well as under different 
stresses.9,33,43,49 Drought, salinity, low temperature and flooding, 
in general, increased soluble sugar concentrations, whereas high 
light irradiance (PAR, UVBR), heavy metals, nutrient shortage 
and ozone decreased sugar concentrations.50-52 Nevertheless, sugar 
changes do not follow a static model and vary with the genotype 
and the stress factor.53,54 In addition, have also been reported 
that not all soluble sugars play similar roles in events associated to 
metabolism of stressed plant.52,55 Sucrose and glucose either act 
as substrates for cellular respiration or as osmolytes to maintain 
cell homeostasis,28 while fructose is not related to osmoprotection 
and seems related to secondary metabolites synthesis, like it was 
demonstrated in our laboratory. Hilal et al.17 demonstrated that 
fructose might be related to synthesis of erythrose-4-P, which acts 
as substrate into lignin and  phenolic compounds synthesis. Hence, 
this picture shows that under stress conditions the metabolism 
of soluble sugars is a dynamic process simultaneously involving 
degrading and synthetic reactions. Soluble sugar fluctuations 
under abiotic stresses also involve changes in CO2 assimilation, 
in source-sink carbon partitioning and in activity of related 
enzymes as well as in the expression of specific genes.28,45,49,56,57 
According to stress factors these changes either can be related 
with disruption of chloroplast structure and blocking of chloro-
plast electronic transport as in high UVBR irradiance, ozone and 
heavy metals stresses;5,6,17,37 with posttranslational activation and 
increased expression of sucrose synthesis enzymes, and inhibition 
of enzymes of the Calvin cycle as in low temperature and salinity 
stresses;28,57-59 with inhibition and delayed activity of enzymes 
involved in sucrose-starch partitioning as in drought, salinity and 
low temperature stresses;49 with activation of antioxidant enzymes 
and lipid oxidation as in heavy metals and ozone stresses;21,22 or 
with oxidase alternative expression as in salinity, drought and heavy 
metals stresses,60-62 among others.

As much as 80% of the CO2 assimilated during photosynthesis 
is channelled into synthesis of sucrose.59 It is the major transport 
form of organic carbon exported from the photosynthetic source 
to sink organs, and thus this process is crucial for survival and 
productivity of plants.23,59,63 Therefore, changes in its function-
ality induced by environmental stresses are very important and 
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genes that encode defence proteins such as proteinase inhibitor II 
in potato.77 In contrast, many genes are negatively regulated by 
sugars; for example, sugars repress expression of α-amylase genes 
in suspension cells and germinating embryos of rice;78 endopep-
tidase, sucrose synthase and asparagine synthase genes in maize 
root tips;72,79,80 and malate synthase and isocitrate lyase genes in 
cucumber cotyledon and suspension cells.81 However, nothing 
is known about whether a common mechanism is responsible of 
the differential sugar regulation. Although mechanisms involved 
in sugar signal transduction and sugar gene regulation in higher 
plants are entirely no clarified yet, important progresses have been 
made to obtain their understanding, principally, about signals that 
trigger these processes and how the regulation of photosynthetic 
carbon metabolism interacts with other processes during stress 
conditions.27,28,38,39 Many studies about sugar activation and 
repression mechanisms have shown that regulation take place to 
transcription level.30,82 However, sugar repression of α-amylase 
gene expression involves controls at both transcription and mRNA 
stability levels.83 Sucrose and hexoses (mainly glucose and fruc-
tose) are recognized as main sensing-molecules and elicit sugar 
responses in both source and sink organs.31,36,38,59,67 Studies 
involving sucrose did not address the question if the sucrose itself 
or the readily produced hexoses were the true inducer, but Chiou 
and Bush63 showed that sucrose specifically reduces the steady 
state mRNA level corresponding to a proton-sucrose symporter 
involved in phloem loading. Sucrose-specific signalling pathways 
showed also to be responsible for repression of the Arabidopsis 
ATB2 bZIP transcription factor.84 In addition, studies on starch 
synthesis in slices of potato tubers and on seed development in 
transgenic Vicia narbonensis support previous suggestions that 
sucrose specifically induces differentiation and synthesis of storage 
product.85,86 Nevertheless, Loreti et al.38 communicated that 
both glucose and sucrose independently modulate expression of 
α-amylase gene in barley embryos. Fructose moiety appears to 
be an essential component in sensing disaccharides analogues to 
sucrose such as palatinose and turanose.38 However, trehalose a 
disaccharide not containing fructose is also able to induce gene 
expression.71 This fact probably signifies that distinct sensors sense 
trehalose and sucrose analogues.

Despite these findings, cells have independent sensors for sucrose 
and hexoses. They sense changes in the ratio between sucrose and 
hexoses induced by stresses and feed this information into mark-
edly different signal transduction pathways. Environmental stresses 
through sugar-sensing pathways also affect enzymes involved in 
both synthesis and cleavage of sucrose.72-74 Sucrose is degraded 
by either INV or SuSy making a difference in the number of 
phosphorylable hexoses produced. Invertase hydrolysis produces 
glucose and fructose (two phosphorylable hexoses) whereas SuSy 
cleavages produces uridine 5' diphosphate glucose (UDPG) and 
fructose (one phosphorylable hexose), thus INV action only 
amplifies the metabolic signal.87 According to these considerations 
plants should be able to sense changes in soluble sugar concen-
trations within cells to modulate their metabolic status through 
sugar-sensing pathways. In this context, high sugar concentrations 
suggest a good regulated metabolic status whereas low sugar levels 

afflict the farmers worldwide, because they cause extensive losses 
to agricultural production.4,10,26 The effects of abiotic stresses on 
CO2 assimilation and source-sink transitions have been extensively 
studied and a lot of papers have been published.23,28,37,40,52,56,58,

63 Descriptive ecological and agronomic studies have uncovered a 
strong correlation between soluble sugar concentrations and stress 
tolerance. However, because energy and resources are required 
for plants to cope with abiotic stress conditions, the source-sink 
partitioning between different organs is a key component within 
mechanisms of stress tolerance.40,64 Recent studies for increasing 
tolerance to environmental stresses, through metabolic engi-
neering of compatible solutes, have shown that increases in soluble 
sugars and/or other osmolytes provide optimism to increase plant 
tolerance to abiotic stresses such as drought, salinity and cold.65 
However, in some cases engineering increased levels of compatible 
solutes have unpredicted negative effects on growth and develop-
ment of plants.66 It is also interesting to notice that increasing 
the level of compatible solutes through genetic engineering does 
not provide a straightforward solution, probably as a reflection of 
highly integrated nature of sugar metabolic pathways. Therefore, 
we believe that source-sink relationships at the whole-plant level 
must be considered in attempts to enhance stresses tolerance 
through conventional breeding programmes, interspecific hybrid-
ization, in vitro selection, and/or transgenic manipulation.

Sugar Sensing and Gene Regulation

Soluble sugars principally function as metabolic resources and 
structural constituents of cells, so it is reasonable to ask which 
and how soluble sugars can be sensed to transduce specific signal-
ling pathways. Does sensing of soluble sugars depend upon their 
metabolism? It is not easy to answer these questions since soluble 
sugars are rapidly interconverted: sucrose is broken down into 
glucose and fructose, while these hexoses lead to sucrose synthesis.56 
Moreover, these interconvertions are strongly affected by environ-
mental stresses.9,48,49 Soluble sugars, like hormones, can act as 
primary messengers and regulate signals that control the expression 
of different genes involved in plant growth and metabolism.67,68 
They regulate the growth and metabolism by modulation of gene 
expression and enzymes activities in both sugar exporting (source) 
and importing (sink) tissues. This ensures optimal synthesis and 
use of carbon and energy resources.69,70 In general, a low sugar 
status enhances photosynthesis, reserve mobilization and export, 
whereas high sugar concentrations promote growth and carbohy-
drate storage.58,59,63,68 Accumulation of soluble sugars in source 
tissues downregulates photosynthesis thus maintaining homeo-
stasis. Differential source-sink effects on metabolism induced by 
unfavourable environmental factors lead to a differential expres-
sion of several proteins related to carbohydrate metabolism e.g., 
enzymes related to starch biosynthesis (AGPase, ADP-Glc pyro-
phosphorylase) and sucrose metabolism (SuSy, sucrose synthase; 
SPS, sucrose phosphate synthase; and INV, invertase).71-74

However, genes whose products are involved in another meta-
bolic pathways and cellular functions are also positively regulated by 
soluble sugars, examples include genes that encode storage proteins 
such as patatin in potato and sporamin in sweet potato,75,76 and 
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localized.96 On the other hand, in Arabidopsis HXK transgenic 
plants (AtHXK) have been suggested three distinct glucose signal 
transduction pathways. These are AtHXK1-dependent pathway in 
which gene expression was correlated with the AtHXK1-mediated 
signaling function. Second was a glycolysis-dependent pathway 
that was influenced by the catalytic activity of both AtHXK1 and 
the heterologous yeast HXK2. Third was an AtHXK1-independent 
pathway in which gene expression was independent of AtHXK1.88 
Hence, the role of HXK in sensing the sugar status is still under 
discussion.97

Plants also contain a sucrose-non-fermenting-1- (SNF1-) related 
protein, analogue of the protein kinase (SNF-) yeast-signalling 
pathway.38 The role of SNF1-related protein in sugar sensing has 
been tested by using potato plants expressing an antisense SNF1-
related protein kinase. Results indicated that SNF1-related protein 
plays a role in transducing the sugar signal, triggering the induc-
tion of sucrose synthase in potato leaves.98 However, even if plants 
share with yeast some elements involved in sugar sensing, several 
aspects of sugar perception are likely to be peculiar to higher 
plants. Furthermore, abiotic stresses may elicit the production of 
stress-related hormones such as ABA and ethylene, which appear 
to be involved in sugar-sensing mechanisms.99,100 The level of 
complexity depicted suggests that despite the successful descrip-
tion of some sugar-sensing mechanisms in recent years, additional 
efforts are needed to obtain a complete picture of sugar sensing 
in plants and thus, increase our knowledge of the mechanisms for 
plant abiotic stress tolerance and adaptation.

In conclusion, soluble sugars have dual role in plants. They are 
involved in various metabolic events and act as molecule signals 
regulating different genes, especially those involved in photosyn-
thesis, sucrose metabolism and osmolyte synthesis. However, at the 
present day the more overwhelming conclusion is that it is virtu-
ally impossible to generalize the results between all plants, because 
almost all data were obtained using only a few species, principally 
Arabidopsis, cereals (maize, wheat, rice and barley), soybean, 
potato, carrot, sugar beet, tobacco and some others.
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