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Abstract
Evaluation of arterial baroreflex in cardiovascular control is an important topic in cardiology and
clinical medicine. In this paper, we present a point process approach to estimate the dynamic
baroreflex gain in a closed-loop model of the cardiovascular system. Specifically, the inverse
Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous
mean is modulated by a bivariate autoregressive model that contains the previous R-R intervals and
systolic blood pressure (SBP) measures. The instantaneous baroreflex gain is estimated in the
feedback loop with a point process filter, while the RR→SBP feedforward frequency response gain
can be estimated by a Kalman filter. The proposed estimation approach provides a quantitative
assessment of interacting heartbeat dynamics and hemodynamics. We validate our approach with
real physiological signals and evaluate the proposed model with established goodness-of-fit tests.

1. Introduction
Sudden changes in arterial blood pressure (ABP) induce a baroreceptor-cardiac reflex
(baroreflex) that evokes an inverse change in heart rate (HR). Hence, a measure of baroreflex
gain is essential in characterizing cardiovascular control and explaining both heartbeat
dynamics and hemodynamics [1,2]. Since the cardiovascular system has a closed-loop
interactions between many variables including R-R interval and ABP, research efforts have
been devoted to estimating the baroreflex gain with a closed-loop system identification
approach, which yields a more accurate assessment compared to open-loop approaches [3].

In our previous work [4-8], we have successfully applied probabilistic point process models
for estimating instantaneous measures of HR, HR variability (HRV), as well as respiratory
sinus arrhythmia (RSA). The point process framework enabled us to estimate these
physiological indices in a dynamic fashion with a fine timescale. This paper expands on the
point process approach to model the heartbeat interval, allowing for a dynamical assessment
of the baroreflex gain in the feedback loop. In the meanwhile, we also model the feedforward
cardiovascular loop and use a Kalman filter to track the parameters for estimating the RR→SBP
frequency response. We demonstrate our proposed method with some physiological recordings
and present some discussions in cardiovascular control.

2. Heartbeat interval point process model

Given a set of R-wave events  detected from the electrocardiogram (ECG), let RRj=uj−
uj−1 > 0 denote the jth R-R interval. By treating the R-waves as discrete events, we may develop
a probabilistic point process model in the continuous-time domain. Assuming history
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dependence, the waiting time t − ut (as a continuous random variable) until the next R-wave
event can be modeled by an inverse Gaussian model [4]:

where ut denotes the previous R-wave event occurred before time t, θ > 0 denotes the shape
parameter, and μt ≡ μRR (t) denotes the instantaneous R-R mean that can be modeled by a time-
varying linear predictive model:

(1)

where the first two terms represent a linear autoregressive (AR) model of the past R-R intervals,
and SBPt−j denotes the previous jth SBP value prior to time t.

2.1. Instantaneous indices of HR and HRV
Heart rate is defined as the reciprocal of the R-R intervals. For RR measured in seconds, r = c
(t−ut)−1 (where c = 60 s/min) is a physiological measurement in beats per minute (bpm). By

the change-of-variables formula, the HR probability  is given by

, and the mean and the standard deviation of heart rate r can be derived [4,5]

(2)

where μ ̀= c−1 μRR and θ ͂ = c−1θ. Essentially, the instantaneous indices of HR and HRV are
characterized by the mean μHR and standard deviation σHR, respectively.

It is known from the point process theory that the conditional intensity function (CIF) λ(t) is
related to the inter-event probability p(t) by a one-to-one transformation [9]:

. The estimated CIF can be used to evaluate the goodness-of-fit of the
probabilistic model for the heartbeat dynamics. In addition, the quantity λ(t)Δ yields
approximately the probability of observing a beat during the [t,t+Δ] interval.

2.2. Adaptive point process filtering

Let  denote the vector that contains all unknown parameters in the
probabilistic model, we can recursively estimate them via adaptive point process filtering [5]:
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where P and W denote the parameter and noise covariance matrices, respectively; Δ =5 ms

denotes the time bin size;  and  denotes the first- and second-order partial
derivatives of the CIF w.r.t. ξ at time t = kΔ, respectively. The indicator variable nk = 1 if a
heart beat occurs in time ((k−1)Δ, kΔ] and 0 otherwise.

2.3. Closed-loop cardiovascular control
Baroreflex gain (SBP→RR loop)—First, we aim to model and assess the SBP→RR
feedback loop, which is directly related to heart rate baroreflex. Among many methods,
baroreflex gain has been estimated based on the coherence between heart rate and blood
pressure [10]; alternatively, it has been estimated by a closed-loop bivariate AR model [3].
However, all of these approaches are batch-based with the assumption that the signals are
stationary or locally stationary (within a moving window). Consequently, these approaches
cannot fully capture the dynamic (non-stationary) nature of the physiological signals due to
the drastic cardiovascular control compensatory changes. In contrast, our point process
approach offers a way to estimate the instantaneous barorefex gain and to assess the heartbeat
dynamics with a fine timescale.

Specifically, in light of (1) we can compute the frequency response for the baroreflex
(SBP→RR loop)

(3)

where f1 and f2 denote the rate for the R-R and SBP intervals, respectively; here we assume
f1 ≈ f2 ≡ f. With the estimated time-varying AR coefficients ai (k) and bj (k) at time t = kΔ, we
may evaluate the dynamic baroreflex gain (amplitude) and autospectrum in the frequency
domain at different ranges (VLF, 0.01-0.05 Hz; LF, 0.05-0.15 Hz; HF, 0.15-0.5 Hz). The
baroreflex gain, characterized by H12 (f), represents the effect of SBP on heart beat, mediated
by the neural autonomic reflex.

Modeling RR→SBP feedforward loop—Simultaneous to baroreflex assessment, we aim
to model the RR→SBP feedforward loop, which enables us to study quantitatively the
hemodynamics and to evaluate the impact of heartbeat on the arterial blood pressure. Similarly,
SBP is modeled by a bivariate AR model:
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where μRR (k−i) represents the estimated instantaneous R-R mean value at the time when SBP-
events occur. The coefficients  and  will be dynamically tracked by a Kalman filter
[11]. Unlike the point process filter, the update occurs only at the time of SBP-events. Similarly,
we can also estimate the frequency response of the RR→SBP cardiovascular loop:

(4)

where f denotes the sampling rate (beat/sample) for SBP-SBP intervals. Likewise, we can
estimate the dynamic gain and phase of H21 (f) at each single SBP-event.

2.2. Goodness-of-fit tests
The goodness-of-fit of the probabilistic model is based on the Kolmogorov-Smirnov (KS) test
[9]. Given a point process specified by J discrete events: 0 < u1 < ··· < uj < T, compute

. If the model is correct, then the variables vj = 1−exp(−zj) are independent,
uniformly distributed within the range [0, 1], and gj = Φ−1(vj) (where Φ(‵) denotes the
cumulative density function (cdf) of the standard Gaussian distribution) are independent
standard Gaussian random variables. To compute the KS test, the vj s are sorted from the
smallest to largest value, and plotted against the cdf of the uniform density defined as

. Ideally, the points should lie on the 45° line, and the 95% confidence interval lines are

. The KS distance, defined as the maximum distance between the KS plot and
the 45° line, is used to measure the lack-of-fit between the model and the data. We also compute

the autocorrelation function of gjs: . If the gjs are independent,

ACF (m) shall be small (around 0 and within the 95% confidence interval ) for all
values of m.

3. Experimental Results
The first heartbeat data set, which was retrieved from Phyisonet (http://www.physionet.org/)
[12], consists of multi-parameters including ECG traces, arterial pressure recorded from
patients in critical care units (from MGH/MF Waveform Database). Due to space limit, we
randomly selected segments of recordings from one subject who had artifact-free calibrated
R-R series and arterial pressure measurements. Figure 1 illustrates the signals as well as their
power spectra and coherence (magnitude and phase). As seen from the figure, the R-R and
SBP signals appear more coherent in the VLF and LF ranges.

The initial parameters are estimated from the first 2-min recordings of the R-R and SBP beat
series. Parameters , and  are estimated by a bivariate AR model
assuming a closed-loop system [3], whereas the shape parameter is estimated by θ = μ3/σ2 from
the R-R series. Order selection of the bivariate AR was selected based on the Akaike
information criterion (AIC). Order p=8 was used in the current experiment.

For the selected subject, we estimate the instantaneous HR and HRV statistics (Fig. 2), the
dynamic baroreflex gain and phase, as well as the mean gains of the frequency responses in
both feedback and feedforward loops (Fig. 3). To evaluate the model fit, we examine the
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resultant KS plot and autocorrelation plot (Fig. 4). The fact that the curves fall almost within
the 95% confidence bounds indicates a good fit of the model to the heartbeat events. As a
comparison, we also conducted an experiment that does not consider SBP in the point process
model and repeated the KS test. The KS distance was found to be 0.092. Therefore, the inclusion
of SBP as covariate helps improve the model fit for the data. This result is not surprising
considering that in the closed-loop cardiovasular system, heartbeat and blood pressure/volume
are directly (or indirectly through other factors) influenced by each other. In addition, the
correlation coefficients between the mean baroreflex gain (LF) and μRR (t) and μHR (t) are 0.837
and -0.843, respectively, suggesting that in this case fast dynamic changes of the baroreflex
gain reflect reverse changes in HR.

Next, we analyzed a previously studied heartbeat data set (details of the “tilt-table” protocol
were given in [4]). For demonstration purpose, in Fig. 5 we plot eight epochs of R-R and SBP
recordings when a subject underwent a few cycles of “rest” and “tilt” posture conditions. The
instantaneous HR, HRV, and baroreflex gain indices are estimated from the complete time
courses (Fig. 5) and then divided into two groups (rest vs. tilt) for statistical comparison.
Furthermore, a rank-sum test was applied to evaluate the null hypothesis that the medians of
the rest and tilt conditions are equal. The null hypothesis is tested with 95% confidence
(P<0.05). As a comparison, the open-loop baroreflex gain (denoted as ) was also
computed for each epoch with a standard batch spectral estimation method [10]. As seen in
Table 1, the open-loop method tends to overestimate the baroreflex gain (in both LF and HF).
Similar results were also found in other subjects (not shown here).

4. Conclusion
We propose a point process framework to capture the transient dynamics of HR and HRV, and
to model the dynamic nature of the baroreflex frequency response in a non-stationary
environment.

Our results confirm that the closed-loop identification approach is a more appropriate
framework for modeling cardiovascular control dynamics, and that the open-loop approach
leads to overestimation of the baroreflex gain. In addition, the instantaneous estimation of
baroreflex frequency response produces a dynamic assessment at a fine timescale. Currently,
our model is restricted in using only the SBP events. A possible inclusion of the diastolic events,
or even the continuous ABP traces, will be the subject of our future investigation. Consideration
of continuous-time ABP as covariate could reveal a more accurate description of the complex
dependency between heartbeat dynamics and hemodynamics.

To conclude, statistical modeling of the feedforward and feedback loops in cardiovascular
control could shed important insights into a large majority of cardiovascular diseases and
disorders (e.g., hypertension and congestive heart failure) related to systemic hemodynamic
dysfunction. Furthermore, the instantaneous point process indices of HR, HRV, and baroreflex
gain can provide a potential real-time noninvasive assessment for ambulatory monitoring in
clinical practice.
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Figure 1.
1st column: A snapshot of ECG and ABP signals (systolic and diastolic pressures are measured
at the time of ventricular contraction and relaxation, respectively). 2nd column: 20-min
recordings of R-R and SBP time series. 3rd column: Parametric AR(8) autospectra. 4th column:
Coherence magnitude and phase
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Figure 2.
From top to bottom: instantaneous estimates of μRR (superimposed by red trace of R-R time
series), σRR, μHR and σHR statistics (MGH/MF database subject 007)
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Figure 3.
Top two panels: Image visualization of dynamic baroreflex gain and phase (within 0.01-0.5
Hz). Bottom two panels: tracking the mean baroreflex gain (red) and the mean gain of
RR→SBP frequency response (blue)

Chen et al. Page 9

Comput Cardiol. Author manuscript; available in PMC 2009 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
KS plot (KS dist. 0.052) and autocorrelation plot (dashed lines indicate the 95% confidence
bounds)
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Figure 5.
Dynamic tracking of the baroreflex gain in a rest-tilt study
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