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Abstract
This article reviews evidence for the presence of a compensatory, alternative, neural system and its
possible link to associated processing strategies in children and adults with attention deficit
hyperactivity disorder (ADHD). The article presents findings on a region by region basis that suggests
ADHD should be characterized not only by neural hypo-activity, as it is commonly thought but neural
hyperactivity as well, in regions of the brain that may relate to compensatory brain and behavioral
functioning. In this context studies from the functional neuroimaging literature are reviewed. We
hypothesize that impaired prefrontal (PFC) and anterior cingulate (ACC) cortex function in ADHD
reduces the ability to optimally recruit subsidiary brain regions and strategies to perform cognitive
tasks. The authors conclude that healthy individuals can recruit brain regions using visual, spatial or
verbal rehearsal for tasks as needed. In contrast, individuals with ADHD may be less able to engage
higher order executive systems to flexibly recruit brain regions to match given task demands. This
may result in greater reliance on neuroanatomy that is associated with visual, spatial, and motoric
processing rather than verbal strategies. The authors speculate that this impaired flexibility in
recruiting brain regions and associated strategies limits adaptation to new cognitive demands as they
present and may require more effortful processing.
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1. Introduction
Functional neuroimaging provides a unique method for linking how brain activity in living,
intact (i.e., non-brain damaged) individuals relates to behavior, symptoms, and cognitive
strategies manifested by clinical populations. Through the use of various functional imaging
techniques in conjunction with behavioral data and lesion studies we are now able to learn not
only about the function of a brain region, but about the use of covert behavioral and cognitive
strategies. This article will review evidence from previous functional neuroimaging research
in ADHD that suggests children and adults with the disorder engage alternative, compensatory
brain regions and concomitant cognitive/behavioral strategies due to a selectively weakened
neural system. Specifically, we hypothesize that impaired prefrontal (PFC) and anterior
cingulate (ACC) functioning in ADHD individuals reduces their ability to recruit subsidiary
brain regions and strategies to optimally perform cognitive tasks. Normal functioning gives
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flexibility in recruiting subsidiary regions. Thus, healthy individuals can recruit brain regions
using either visual–spatial or verbal rehearsal strategies depending on task demands. Impaired
flexibility limits adaptation to new cognitive demands as they occur and can result in a rigid,
sometimes inappropriate response strategy. This article will present the findings on a region
by region basis that suggest ADHD is characterized not only by hypo-activity, but also
hyperactivity in regions of the brain, the latter possibly reflecting compensatory mechanisms.

This aim of this manuscript is to review the neuroimaging literature in ADHD, mainly in
functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single
photon emission tomography (SPECT), but also electrophysiological studies (e.g. event-
related potential (ERP)) where they are deemed to be particularly relevant, in a region-by-
region basis. These results will then be discussed with respect to the theory of neural and
behavioral compensation in individuals with ADHD.

2. Methodological considerations
There are a number of methodological factors that should be considered in any review of the
ADHD functional neuroimaging literature. Because there are still relatively few functional
imaging studies in ADHD, methodological differences between studies have the potential for
substantial impact and may be responsible for some of the contradictory findings among ADHD
studies. Variations in task conditions are among the most influential of factors and may include
whether subjects are tested under resting state or task conditions, the type of activation
paradigm used, behavioral performance levels achieved within the paradigm and the presence
or absence of significant task differences between ADHD and control subjects. A number of
subject variables can also influence results, including the degree of heterogeneity of group
membership. Studies combining ADHD subtypes (e.g., inattentive and combined types)
(Vaidya et al., 1998) can potentially reduce the interpretability of the findings (see Table 1 for
details regarding fMRI and PET studies addressed in this review).

Studies also vary in the rigor used to characterize and diagnose the clinical subjects, including
whether comorbidity (e.g., learning disabilities, conduct disorder, oppositional defiant
disorder) is assessed and/or represents an exclusion criteria. Equally, the extent of evaluation
used to determine inclusion suitability for healthy controls (e.g., interviews, parent and teacher
ratings) is also of importance. The presence and extent of pharmacological treatment and age
of the subjects are additional factors that tend to vary between studies. The effects of these
variables on functional brain imaging data are just beginning to emerge at this time but most
likely affect the interpretability and generalizability of the findings. We suggest that future
research systematically test the impact of these factors on tests of brain function.

3. Prefrontal cortex
The prefrontal cortex (PFC) has been implicated in higher level cognitive functioning,
including attentional processes, working memory, inhibition and planning. The PFC has also
been shown to be anatomically and reciprocally connected to practically all sensory and motor
systems as well as a wide variety of subcortical structures (Miller, 2000). This makes it an ideal
site for learning and adaptation of behavior and goals as well as being able to exert a top-down
influence on other brain structures in the facilitation of appropriate behaviors and allocation
of attentional resources.

Anatomical and functional variations in PFC as well as deficits in constructs attributed to PFC,
such as inhibition and attention, have been implicated in ADHD in a number of behavioral and
imaging studies. However, controversy exists as to the degree of each type of deficit in both
children and adults. Although a number of studies have suggested an inhibitory deficit in
ADHD in ERP (Broyd et al., 2005), imaging (Casey, Castellanos et al., 1997; Casey, Durston,
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& Fossella, 2001) and behavioral paradigms (Iaboni, Douglas, & Baker, 1995; Konrad,
Gauggel, Manz, & Scholl, 2000; Oosterlaan & Sergeant, 1998; Schachar, Mota, Logan,
Tannock, & Klim, 2000) some, including some of the aforementioned, authors have pointed
out that these differences may be due to other factors than simply an inhibitory deficit alone
per se.

Oosterlaan and Sergeant (1998), for example, suggested that a broader deficit underlies ADHD,
perhaps a motivational problem or one related to more generally defined executive functions.
They suggest that this may be attributable to frontal lobe dysfunction. In a further study, these
authors (Kuntsi, Oosterlaan, & Stevenson, 2001) found marginal differences in inhibitory
processes between ADHD and control children. The authors support the theory that an
inhibitory deficit is not the core deficit in ADHD, rather one of slower information processing
and delay-aversion (Sonuga-Barke, Taylor, Sembi, & Smith, 1992). Others again, suggest that
adults may display greater deficits in inhibition whereas in children the core problem may be
largely attributable to attentional difficulties (Nigg, Butler, Huang-Pollock, & Henderson,
2002). In fact, a very recent review of the STOP inhibitory paradigm supports this view. The
authors suggested that from the review it appeared that adults with ADHD experience
inhibitory deficits, whereas inhibitory problems experienced by ADHD children are largely
accounted for by additional attentional problems (Lijffijt, Kenemans, Verbaten, & van
Engeland, 2005).

In a behavioral study by Rubia and coworkers (Rubia, Oosterlaan, Sergeant, Brandeis, &
Leeuwen, 1998), the authors found a significant inhibitory deficit and more variable reaction
times (RT) in ADHD participants in two different versions of a STOP paradigm and concluded
that this may be due to problems either at the level of motor output or at a higher executive
level due to inadequate attention and/or motivation. RT differences have also been found
between participants with ADHD and normal controls in a number of tasks (Fallgatter et al.,
2004; Leth-Steensen, King Elbaz, & Douglas, 2000). Findings of RT differences have been
mixed however; some authors suggesting no overall difference but more erratic or variable RT
in individuals with ADHD (Berwid et al., 2005; Rucklidge & Tannock, 2002). Others report
overall slowing of RT (Fallgatter et al., 2004; van Mourik, Oosterlaan, & Sergeant, 2005)
suggesting general difficulties or increased interference in such tasks in ADHD participants,
whereas others again suggest slower and more variable reaction times in children at risk for
ADHD (Berwid et al., 2005).

Although behavioral tasks have been informative to a certain degree about ADHD, they can
only provide limited information about the underlying neural anatomy associated with the
behavioral function. For example, many different clinical groups may experience the same
patterns of behavioral performance, hence different brain deficits can lead to the same patterns
of performance, making them difficult or impossible to distinguish from one another.
Occasionally different or hypo-active underlying brain circuitry may be accompanied by
normal performance or alternatively performance differences may be too small too detect.
Hence potential discrepancies in functioning may not be detected unless behavioral and brain
imaging techniques are combined (Eldreth, Matochik, Cadet, & Bolla, 2004; Rubia et al.,
2000). Imaging studies can also be a useful tool in increasing our understanding of brain
differences in clinical groups. As Rubia et al. (2000) point out, causality is not certain; abnormal
brain function or structure may not be the root cause of abnormal behavior. In other words,
brain differences may not be causing the deficit but may be caused by years of behaving
differently from the norm. Although imaging techniques cannot determine the direction of an
effect per se, they may prove useful in addressing the difficult question of causality between
brain function and behavior.
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In a PET study of adults with ADHD, global glucose metabolism was significantly decreased
in participants with ADHD in comparison to controls (Zametkin et al., 1990). This decrease
was particularly evident in superior PFC and premotor regions. Imaging studies have also
suggested differences in brain volume between ADHD participants and normal controls. With
regard to PFC differences, a number of studies have found smaller volumes of PFC in children
with ADHD (Castellanos et al., 1996; Durston, Hulshoff Pol et al., 2004; Kates et al., 2002;
Mostofsky, Cooper, Kates, Denckla, & Kaufmann, 2002). In fact, Mostofsky et al. (2002) found
that reduction in the volume of the PFC in ADHD children accounted for nearly half of the
reduction of total cerebral volume. However due to the small sample size in this study (12
ADHD and 12 control subjects) these results should, perhaps, be interpreted with caution. In
a study by Filipek et al. (1997), the volume of superior frontal regions was significantly smaller
in ADHD subjects, particularly in the right hemisphere. Bilateral inferior frontal regions were
smaller in ADHD subjects. This region included caudate head and anterior basal ganglia.
Finally, in a more recent study, Sowell et al. (2003) found a decreased bilateral PFC volume
(particularly in inferior parts of dorsal prefrontal cortex) in children and adolescents with
ADHD when compared to normal controls. This study included a relatively large sample of
ADHD and control children (27 children/adolescents with ADHD and 46 controls).

Casey, Castellanos et al. (1997) also used behavioral performance on three tasks, a sensory
selection, response selection and response inhibition task in addition to brain volume
measurements in order to investigate differences in participants with ADHD and normal
controls. Correlations between performance and brain volume in PFC among other areas were
seen for both groups in these tasks (patterns of correlations differing between groups). Notably,
right PFC volume correlated with performance on the inhibitory task for ADHD subjects. Yeo
et al. (2003) also found smaller right DLPFC volumes in ADHD children than control children.
In the ADHD group this also correlated with neurometabolite concentrations (creatine and
choline-containing compounds and N-acetylaspartate). Interestingly, in this study greater
volume in right dorsolateral PFC correlated with poorer performance on the continuous
performance task. Hill et al. (2003) also found a decreased superior prefrontal cortex,
particularly in right hemisphere, in ADHD participants. In a similar vein to the Yeo et al.
(2003) study just discussed, greater volume in this region in ADHD subjects correlated with
poorer performance on a task of sustained attention (Conners’ Continuous Performance Test).

ADHD has been associated with a right hemisphere deficit in behavioral (Rubia et al., 1998),
functional magnetic resonance imaging (fMRI) (Rubia et al., 1999; Vaidya et al., 1998) and
electrophysiological studies (Pliszka, Liotti, & Woldorff, 2000; Steger, Imhof, Steinhausen,
& Brandeis, 2000). Executive functions such as sustained attention (Manly et al., 2003),
working memory (D’Esposito, Ballard, Aguirre, & Zarahn, 1998) and inhibition (Garavan,
Ross, & Stein, 1999; Konishi, Nakajima, Uchida, Sekihara, & Miyashita, 1998) have also been
attributed to the right hemisphere, particularly right PFC. It has been suggested that one of the
principal deficits experienced in ADHD concerns problems with inhibition (Barkley, 1997).
In fact, hypo-activity in ADHD subjects has been observed in right PFC during a classic
inhibitory paradigm, the STOP paradigm (Rubia et al., 1999), Hyperactivity has been observed
in PFC in adolescents (Schulz et al., 2004) and children (Vaidya et al., 1998) with ADHD
during similar GO/NOGO tasks. In both studies functional differences were associated with
inhibitory difficulties, as measured by a significant increase in errors of commission, in
participants with ADHD.

There were, however, some discrepancies between these studies. For example, as mentioned,
some studies have reported hypo-activity in PFC in ADHD when compared to controls (Zang
et al., 2005) whereas others report hyperactivity (Vaidya et al., 1998). Whereas Rubia et al.
(1999) found reduced activity in right prefrontal regions in the STOP task, Vaidya et al.
(1998) noted an increase in activity in bilateral frontal regions, which was interpreted as an
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extra inhibitory effort in ADHD children. However, the GO/NOGO task employed by Vaidya
et al. (1998) used 50:50 GO to NOGO ratio, which may not fully tax the inhibitory systems
of, at least, the control group.

Varying the ratio of GO to NOGO stimuli has previously been found to alter “inhibitory”
activation patterns (de Zubicaray, Andrew, Zelaya, Williams, & Dumanoir, 2000). When the
ratio of NOGO to GO stimuli is low, a prepotent tendency to respond is established, making
the stopping process more difficult upon presentation of the NOGO event. However, parametric
manipulations of the number of GOs preceding a NOGO stimulus has previously been shown
to have no significant effect on children with ADHD (Durston et al., 2003), one preceding GO
stimulus being enough to cause inhibitory difficulty on the following trial. Additionally, since
inhibitory capabilities have been shown to develop throughout childhood (Rubia et al., 2000),
this task may have already been sufficiently demanding on inhibition in this group of age 8 to
13 years. The issue of the potential effect of the prepotency of the GO response should, however
be kept in mind. A limitation of the study was that only selected regions were imaged and
therefore information on functioning in other regions is not available.

Both hypo- and hyperactivity can be interpreted as being suggestive of inefficiency in
underlying brain structures. When comparing a clinical group to normal controls hypo-activity
in a certain brain region may suggest an incapability of that particular brain structure to function
to the extent required by that particular task. In other words it may be considered to be
“underpowered”. Hyperactivity in a region may be suggestive of a very similar problem. In
this case it may be that the brain region needs to exert extra energy in order to perform a task
to the same degree as the control group. Therefore these regions can be thought of as
“inefficient” in that they use more energy than should be necessary to perform a given task.
However, extra activity in the clinical group in a region that is not significantly active for the
control group may be viewed as compensatory activity or brain regions that the clinical group
are enrolling in order to compensate for under-activity in the “appropriate” network of brain
areas. This will be discussed in more detail later.

More recently, exploratory analyses (with a very small sample of children) have also suggested
increased bilateral prefrontal activity during NOGOs in adolescents with ADHD over normal
controls in a GO/NOGO task (Schulz, Newcorn, Fan, Tang, & Halperin, 2005). Furthermore
ADHD adolescents were divided into those that displayed a remission of their symptoms in
adolescence and those that did not (see Table 1 for details). Adolescents that did not show
remission displayed greater activity in ventrolateral PFC then those who did show remission,
who in turn showed increased activity in these regions compared to normal control children.
This increase in activity was also accompanied by an increase in commission errors in this task
across the three groups. However a one-way ANOVA revealed that this trend failed to reach
significance, probably due to the very small sample size (5 subjects in each group). As
mentioned above, in a previous study by this group, using a similar GO/NOGO paradigm in
adolescents, significant differences in performance were found between groups (Schulz et al.,
2004). These results may be interpreted as the recruitment of additional compensatory
prefrontal regions in the ADHD group in order to perform the task, as normal control activation
in this ventrolateral area was more prominent in response to actual GOs than NOGO stimuli.

In an electrophysiological study utilizing the STOP paradigm, differences in wave forms were
found between ADHD and control children in right PFC (Pliszka et al., 2000). This wave form
was interpreted as reflecting inhibitory processes, although it has also been linked with response
conflict monitoring (Nieuwenhuis, Yeung, van den Wildenberg, & Ridderinkhof, 2003).
Correlations were also found between behavioral performance and amplitude of the wave form
in right PFC, particularly for the children with ADHD (Pliszka et al., 2000). In a recent study,
Fallgatter and colleagues (2004) noted that the normal pattern of NOGO-anteriorization (NGA)
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(a significant increase in P3 amplitude at frontal and central electrodes for the NOGO over the
GO trial) was not observed in children with ADHD. NGA has previously been pinpointed as
an index of prefrontal response control, such as action and conflict monitoring (Fallgatter &
Strik, 1999). These authors argue that this suggests a problem with response control in children
with ADHD, although this was not reflected by an increase in commission errors in this group
(Fallgatter et al., 2004).

Using fMRI, Rubia and coworkers suggested that the functional differences found between
ADHD children and normal controls in their imaging study of response inhibition may have
been due to an immaturity in the frontal lobes of children with ADHD (Rubia et al., 1999). In
order to investigate this further, these authors carried out an additional study which compared
the activation patterns of normal adolescents and adults to those of adolescents with ADHD
on an inhibitory paradigm and a delay task (2000). In this experiment, the behavioral results
and activation patterns of normal adolescents and adults were quite similar, although the
activation of adolescents was slightly reduced in prefrontal areas in comparison to adults.
However, whereas adults tended to activate bilateral frontal areas, activation in the adolescents
was concentrated mainly in right prefrontal cortex. The authors suggested that there is a
maturation of the frontal cortex “from a functionally adequate but immature prototype system
to a more definitive adult network” (page 18).

The activation patterns of adolescents with ADHD in the study by Rubia et al. were quite
different. They tended to activate right pre- and post-central gyrii, right inferior parietal lobe
and right caudate. For the delayed response task the ADHD subjects, unlike the comparison
groups, did not activate frontal areas, except for a small focus of activation in the supplementary
motor area (SMA) (Rubia et al., 2000). The authors suggest that differences in the activation
patterns of ADHD subjects and normal controls in the absence of significant behavioral
difference may reflect differences in strategies for task performance. It may be that there is
some compensatory mechanism at play, in which participants with ADHD, who have an
immature prefrontal cortex (Rubia et al., 1999), may compensate with the recruitment of
additional cortical areas in order to perform at the same level as that of control participants.
For example, Rubia and colleagues argue that lack of activation in “appropriate” task regions
(i.e. PFC) may have been compensated for in the ADHD by the enrollment of more posterior
prefrontal regions in their study (1999).

Other studies have supported the argument that individuals with ADHD use compensatory,
alternative strategies and brain regions due to impaired functioning of the PFC (Schweitzer,
Faber et al., 2000; Schweitzer et al., 2004). In two PET (positron emission tomography) studies
of adults with ADHD, participants with ADHD activated a distinctly different network of brain
regions during a working memory (WM) task. Both studies utilized a WM paradigm called the
Paced Auditory Serial Addition Task (PASAT) (Gronwall, 1977), which also requires
participants to inhibit distracting information. Hence it can be seen as a task which taxes
executive functioning. These male ADHD subjects did not significantly activate the same right
PFC regions that were activated by controls. Instead they tended to activate a more diffuse
network of regions that included the parietal, precuneus, and occipital lobe. This was
interpreted as a use of more visual strategies in this aurally presented task in the individuals
with ADHD (Schweitzer, Faber et al., 2000). This hypothesis was supported by the men’s
subsequent verbal testimony, which suggested that they had, in fact, used a visual strategy (see
Fig. 1); subjects reported visualizing the task stimuli that were aurally presented via
headphones.

Visual or more “basic” strategies may be stronger in these subjects, due to a weakened ability
to use verbal rehearsal strategies or possibly due to inefficiency of networks underlying WM.
DLPFC has been linked to WM and manipulation of information held in WM in a number of
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studies (D’Esposito et al., 1998; D’Esposito & Postle, 2002; D’Esposito, Postle, Jonides, &
Smith, 1999; Postle & D’Esposito, 1999b). A number of authors have also suggested that WM
may involve a similar process to that used in sustaining attention (Awh & Jonides, 1998; Coull,
Frackowiak, & Frith, 1998; Coull, Frith, Frackowiak, & Grasby, 1996) a system that is also
believed to be impaired in ADHD (Carter, Krener, Chaderjian, Northcutt, & Wolfe, 1995). If
PFC is, indeed, compromised in ADHD, it may be that subjects are unable to adequately recruit
more “efficient” regions and may be forced to rely on alternative, more automatic strategies
in order to perform certain paradigms. That is, subjects with ADHD may need to recruit
alternative brain regions to boost a weakened neural circuitry.

In a follow-up PET study, the authors (Schweitzer et al., 2004) found that the most common
treatment for ADHD, methylphenidate (MPH), led to decreases in activity in the PFC in adults
with ADHD. In this study the dose of the medication was individually, clinically determined
for each subject. The MPH was interpreted as having “honed” the prefrontal system so that it
was able to more efficiently inhibit distracters and boost performance of the task (Schweitzer
et al., 2004). In fact, in a previous study by this group on the effects of MPH on the activation
patterns of participants with ADHD during rest, it was shown that subjects showed wider and
more diffuse patterns of activity during the off-medication period than during the on-
medication period (Schweitzer, Lee et al., 2003). Activity during the rest period was primarily
associated with cortical motor regions.

As an extension to the WM studies in adults, Schweitzer et al. used fMRI and a visual variant
of the PASAT to test WM in children (mean age of 10 years) with ADHD (Schweitzer, Cortes,
Gullapalli, Dunning, & Tagamets, 2003). In this preliminary study, control subjects tended to
activate the left hemisphere regions significantly more than ADHD children. In contrast, in the
ADHD children there were wider spread activations, particularly in the right hemisphere
throughout the cortices. Similar to the adult ADHD subjects, the pediatric ADHD subjects
activated regions associated with visual processes (e.g., occipital gyrus, cuneus) to a greater
extent than the control subjects, once again, suggesting use of a system more reliant on visual
strategies and response to visual stimuli.

From the studies just examined it is apparent that PFC may have a central role to play in the
deficits associated with ADHD. As mentioned, areas such as DLPFC have been associated
with a number of different executive functions such as the maintenance of task set (Frith &
Dolan, 1996; MacDonald, Cohen, Stenger, & Carter, 2000; Garavan, Ross, Murphy, Roche,
& Stein, 2002; Ruchsow, Grothe, Spitzer, & Kiefer, 2002), inhibition of a prepotent response
tendency (Aron, Fletcher, Bullmore, Sahakian, & Robbins, 2003; Braver, Barch, Gray,
Molfese, & Snyder, 2001; de Zubicaray et al., 2000; Garavan et al., 1999, 2002; Kawashima
et al., 1996; Konishi et al., 1998), sustaining attention (Coull et al., 1996, 1998; Manly et al.,
2003; Sturm et al., 1999; Wilkins, Shallice, & McCarthy, 1987) and WM (D’Esposito et al.,
1998). In fact, a substantial number of structural brain imaging studies have reported smaller
DLPFC volumes in participants with ADHD (Castellanos et al., 1996, 2002; Durston, Hulshoff
Pol et al., 2004; Filipek et al., 1997; Hill et al., 2003; Kates et al., 2002; Mostofsky et al.,
2002). Thus, dysfunction in areas of the PFC, such as DLPFC, may account for a large number
of the symptoms experienced by individuals with ADHD, such as, trouble inhibiting,
maintaining task set and sustaining attention on a task.

It has also been suggested that functional impairment of the PFC in ADHD may be due to
catecholamine (e.g., dopamine, noradrenaline) signal transduction defects in this region
(Arnsten, 2001; Ernst, Zametkin, Matochik, Jons, & Cohen, 1998; Mehta, Calloway, &
Sahakian, 2000). This is, however, beyond the scope of this review. Given that, as mentioned
earlier, PFC has interconnections with a vast array of other cortical and subcortical regions, it
is unlikely that prefrontal regions work in isolation. This may be particularly important with
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reference to striatal regions which are thought to play a very important role in ADHD as will
be discussed further. Impairment in the PFC is likely to influence the integrity of detection of
demands for a given task or situation. An altered PFC has the potential to limit how well it can
recruit other brain regions with which it has interconnections to meet task demands.

4. Anterior cingulate cortex
The anterior cingulate cortex (ACC) is another structure implicated in higher-level cognitive
functioning, but also to basic, primary stimuli such as reward (Knutson, Fong, Bennett, Adams,
& Hommer, 2003; Rogers et al., 2004). A number of authors have implicated ACC in top-down
attentional control and inhibition of competing responses to various stimuli (Pardo, Pardo,
Janer, & Raichle, 1990; Posner & DiGirolamo, 1998). Casey, Trainor et al. (1997) also found
that the size of right ACC in children correlated with performance on an attentional paradigm.
There is considerable structural and proposed functional heterogeneity within the ACC. ACC
is believed to have two major components: a rostral section that is concerned with emotional
or affective processes and a more caudal and dorsal region that is thought to be concerned with
cognitive processes (Bush, Luu, & Posner, 2000). Response conflict has been associated with
dorsal, caudal areas of ACC (Fassbender et al., 2004; Hester, Fassbender, & Garavan, 2004;
Ullsperger & von Cramon, 2001) whereas emotional, pain and mood disorders (Bush et al.,
2000; Whalen et al., 1998) and performance monitoring (Garavan, Ross, Kaufman, & Stein,
2003) have often been associated with more rostral and ventral areas. ACC is an area that has
been implicated in a wide variety of cognitive tasks such as Stroop tasks (Leung, Skudlarski,
Gatenby, Peterson, & Gore, 2000), verb generation tasks (Peterson et al., 1998, 1999) and
flanker tasks (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Ullsperger & von Cramon,
2001). It has been included in a network of regions that subserve alertness or arousal (Posner
& Petersen, 1990; Sturm et al., 1999) as well as target detection (Posner & Petersen, 1990). It
is often seen to be active in conjunction with DLPFC (Duncan & Owen, 2000; Paus, 2001;
Posner & DiGirolamo, 1998), another region that has been implicated in cognitive control
(Banich et al., 2000; Miller, 2000; Miller & Cohen, 2001). For this reason, it has often been
implicated in cognitive control at some level, either as being the direct source of that control
(Posner & DiGirolamo, 1998) or as being an indirect source by either detecting errors (Kiehl,
Liddle, & Hopfinger, 2000) or potential conflict and signalling to PFC, which then exercises
that control (Botvinick et al., 2001). The ACC has also been implicated in motivation and
anticipation (Larisch et al., 1999), self-monitoring of motor actions (Luu, Flaisch, & Tucker,
2000), reward-related decision making (Bush et al., 2002) and more recently for being
principally involved in autonomic control (Critchley et al., 2003).

Anterior cingulate hypo-activity has been linked to a number of clinical conditions (Alain,
McNeely, He, Christensen, & West, 2002; Holcomb, 2004) and has also been observed in
cocaine, (Kaufman, Ross, Stein, & Garavan, 2003; Kilts et al., 2001), opiate (Forman et al.,
2004) and marijuana users (Eldreth et al., 2004). Not surprisingly, ACC dysfunction has also
been associated with ADHD. In a structural imaging study by Filipek et al. (1997), the authors
found right anterior-superior frontal differences between ADHD and normal subjects and the
cerebral divisions that these analyses were based upon included ACC.

Reduced activity in anterior and posterior cingulate cortex was found for ADHD compared to
control subjects in a delay paradigm which required subjects to synchronize their finger
movements with stimuli separated by a 5 s delay (Rubia et al., 1999). In the same study, reduced
activation was also found in medial PFC for ADHD subjects in a STOP paradigm (Rubia et
al., 1999). Reduced activation was also seen in ACC in ADHD adults during performance of
a counting Stroop task (Bush et al., 1999).
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However, the aforementioned studies utilized block fMRI designs, which can often include
task-related confounds such as contamination from error-related processes, vigilance and
motivation. As mentioned, these processes have been linked with ACC functioning.
Performance differences between groups have previously been shown to significantly affect
the number of false positives and negatives and also decrease the number of true positives in
activation maps (Murphy & Garavan, 2004). Therefore, it is important to control for
performance differences between groups, particularly in clinical groups where performance
differences are often expected. In an event-related fMRI study of inhibitory control in ADHD
and normal control boys, Tamm, Menon, Ringel, and Reiss (2004) found significantly
decreased activation in ACC extending into pre-SMA and SMA, after controlling for the
oddball effect of infrequent NOGO events. Although there were performance differences
between the groups in this study (ADHD participants making more errors both of commission
and omission), event-related analysis allows the experimenter to examine correct events only,
therefore excluding error-related processes form activation maps.

Hypo-activity was also noted in children with ADHD in event-related fMRI studies utilizing
a GO/NOGO paradigm (Schulz et al., 2004). In the Schultz study, increased activity in ACC
was associated with difficulty inhibiting the prepotent response in both ADHD subjects and
normal controls. The authors suggested that the increased activity experienced by subjects with
ADHD could either be related to difficulties inhibiting the dominant GO response processes
or compensatory activation due to inactivity in task-appropriate brain structures (Schulz et al.,
2004). Fallgatter et al. (2004) have also found a “significant decrease in electrical activity in
the anterior cingulate” (page 979) for ADHD children in the NOGO condition of a continuous
performance task in their ERP examination of ADHD; the central NOGO P3 amplitude of
ADHD children was significantly diminished in comparison to controls. This finding was
supported by a t-test between groups, corrected for multiple comparisons which resulted in
significantly diminished NOGO activity in ACC for the ADHD group (Fallgatter et al.,
2004).

In a PET study of decision making in adults with ADHD, Ernst et al. (2003) found no significant
activation of ACC in the ADHD group in comparison to control subjects. Furthermore, activity
in the left ACC was negatively correlated with ADHD severity indexed by the Conner’s
Abbreviated Teacher’s Rating Scale. The authors did find one area in right ACC that was
activated more for ADHD subjects than controls. Ernst et al. suggested that this area may have
been recruited in order to compensate for hypo-activity in left ACC. This suggestion was
supported by the observation that there was a negative correlation between activation in this
region and performance in normal controls suggesting that in the normal brain activity in this
region may be detrimental to performance and may need to be suppressed. In fact, in a previous
study of preparatory activation in a GO/NOGO task, suppression of a number of areas including
medial PFC was associated with successful inhibition of a prepotent response tendency in
healthy controls (Hester et al., 2004).

In a recent fMRI study conducted by this group (Schweitzer, Cortes et al., 2003) we also found
ACC hypo-activity in children with ADHD during a WM task. This was previously seen in a
PET study of adults with ADHD, irrespective of whether they were medicated or not
(Schweitzer et al., 2004). Additionally, in a previous PET examination of activation for a WM
paradigm (PASAT), when progressive time-on-task activation was examined, control men
showed a significant increase in activation in medial frontal areas over time, whereas men with
ADHD showed increases in right lenticulate, left parahippocampal gyrus and in the cerebellum
(Schweitzer, Faber et al., 2000). We have suggested that an alternative network, perhaps relying
more on motor regions (which were shown to be more active in the ADHD group) was
compensating for a lack of activity in ACC and that this alternative network may have been
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inhibiting responses and monitoring for conflict in place of the ACC (Schweitzer et al.,
2004).

In a similar vein to the studies mentioned previously (Rubia et al., 1999; Schweitzer, Anderson,
& Ernst, 2000; Schweitzer et al., 2004), we suggest that subjects may be experiencing
difficulties in employing PFC to recruit relevant brain networks that are needed to perform
paradigms efficiently. It is important to reiterate here, that patterns of activation in ADHD
subjects may not always be hypo-activity in areas normally employed by healthy subjects, but
may also include hypo-activity in these areas or alternate activations in other, sometimes
completely novel, regions of the brain. Harking back to the study of Schweitzer, Faber et al.
(2000), we hypothesized that adult subjects were using a visual strategy in this task. Strategies
and/or cortical networks employed by ADHD groups may vary due to the population, age and
also task requirements. We suggest that due to inefficiency of PFC, subjects with ADHD are
required to utilize phylogenetically older, more basic or automatic processes in the performance
of particular tasks that require less coordination by PFC. This may be why response inhibition
is often seen to be impaired within this group because once a pattern of automatic responding
has been established it may be particularly difficult for these participants to override the strong
prepotency to respond and employ executive control in order to stop this pattern of responding.

From the studies reviewed it is apparent that there may be structural as well as functional
differences between individuals with ADHD and normal controls in ACC. These functional
differences are also seen in a variety of different cognitive paradigms and using different
imaging techniques. Most studies appear to find hypo-activity in this region in both child and
adult participants (Bush et al., 1999; Rubia et al., 1999; Schulz et al., 2004; Schweitzer, Faber
et al., 2000; Tamm et al., 2004). A number of these studies suggest the notion of compensatory
brain regions or cognitive strategies in individuals with ADHD (Schweitzer, Faber et al.,
2000; Schulz et al., 2004; Ernst et al., 2003). ACC is a controversial and complex structure,
whose full role in cognitive control has not, as yet, been fully established. Some authors
describe it as a structure enforcing top-down control (Pardo et al., 1990; Posner & DiGirolamo,
1998; Tzourio et al., 1997) whereas others believe that it is more indirectly involved in
attentional control, detecting errors (Dehaene, Posner, & Tucker, 1994; Falkenstein,
Hoormann, Christ, & Hohnsbein, 2000), or the likelihood that an error may occur (Botvinick,
Nystrom, Fissell, Carter, & Cohen, 1999; Carter et al., 1998) and subsequently feeding back
this information to other areas in PFC more directly involved in imposing top-down control
(Botvinick et al., 2001; Cohen, Botvinick, & Carter, 2000; MacDonald et al., 2000). Thus,
dysfunction in the ACC may explain a number of the cognitive deficits experienced by
individuals with ADHD. However, deficits in both brain activation patterns and performance
may be due to abnormalities in the system either “upstream”, or “downstream” from the ACC.

As mentioned, ADHD is believed to involve a deficit in PFC in general and that PFC is widely
considered to be involved in the delegation of brain resources to various aspects of tasks. Part
of the PFC’s presumed role is the dynamic adjustment of these resources as task demands
change (Miller, 2000; Miller & Cohen, 2001). This may be precisely the problem in ADHD;
subjects may be forced to use limited, rigid and inflexible strategies and/or cerebral networks
during task performance. Proposed PFC decrements may hamper the ability to enforce top-
down control and gate activity appropriately to subserve efficient performance. In fact this may
explain a diverse number of ADHD symptoms including difficulties sustaining attention,
delaying gratification and inhibiting inappropriate behavior and cognitive sets.

5. Additional cortical regions
In addition to PFC and ACC, it is likely that other areas are involved in the symptomatology
of ADHD. Overall reductions in cerebral glucose metabolism (Ernst et al., 1994) and total brain
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volume have been noted in a number of imaging studies, which has implications for the integrity
of the whole brain in this disorder. Evidence for wider spread alterations in brain functioning
is also reflected in electrophysiological studies demonstrating differences at various stages of
the ERP between participants with ADHD and normal controls, suggesting difficulties at
different stages of processing ranging from orienting (Brandeis et al., 1998) or perceptual and
cognitive processing to motor preparation and output (Pliszka et al., 2000).

Posterior regions of the brain are relevant, as these regions, including the parietal lobes are
implicated in orienting of (Corbetta & Shulman, 2002; Coull, Frith, Buchel, & Nobre, 2000;
Coull & Nobre, 1998; Kincade, Abrams, Astafiev, Shulman, & Corbetta, 2005; Le, Pardo, &
Hu, 1998) and sustaining (Manly et al., 2001; Pardo, Fox, & Raichle, 1991; Sturm et al.,
1999; Sturm & Willmes, 2001) attention. The effect of ADHD on the parietal lobes is unclear
at this point, as one study (Filipek et al., 1997) suggests smaller brain volumes in parietal
regions and yet another (Sowell et al., 2003) found a 15–30% increase in grey matter in the
bilateral inferior parietal lobes of children with ADHD. Although the functional significance
of these anatomical findings is not clear, at least two studies found the inferior parietal lobe
more active in ADHD subjects during WM (Schweitzer, Faber et al., 2000) and GO/NO-GO
paradigms (Durston et al., 2003). Enhanced activity in these regions may reflect compensatory
use of these regions, perhaps related to processes subserved by the parietal lobes such as
attention and visual spatial processing. Alternatively, hypo-activity in certain brain regions
may be linked to a lack of efficiency, leading to over-activation and excessive effort within
that region (Vaidya et al., 1998). Conversely, there appear to be relative decrements in
activation in regions associated with language or verbal rehearsal, such as the left temporal
cortex (Shafritz, Marchione, Gore, Shaywitz, & Shaywitz, 2004).

Additional evidence for enhanced use of posterior regions associated with visual strategies is
consistent with activity in the occipital lobe. A preliminary study in children with ADHD
suggested (Schweitzer, Faber et al., 2000), that ADHD subjects showed greater activation than
controls in the right inferior occipital gyrus and left cuneus in a WM task. Rubia et al.
(1999) also found increased activity in adolescents with ADHD in the right extrastriate cortex
during an inhibitory task in comparison to normal controls.

Similarly, Durston et al. (2003) found that children with ADHD showed increased activation
in precuneus and occipital cortex over normal controls during inhibition in a GO/NOGO task,
while displaying decreased activation in prefrontal and ACC. However, this study involved
imaging data from a small sample of children (7 with ADHD and 7 controls), which included
both inattentive and combined subtypes; therefore some caution is needed in the interpretation
of these results. These authors also interpreted the activation of alternate strategies and brain
networks in participants with ADHD as a reliance on a more diffuse network of neural systems
in the performance of tasks that tax executive control functions. They suggest that the reliance
on parietal and posterior networks may reflect a taxing of vigilance or sustained attention
systems. Contrary to these findings, a recent study found decreased activity in occipital regions
of ADHD subjects relative to normal controls in a GO/NOGO paradigm (Schulz et al., 2005).
These authors also found increased activity in parietal regions for participants with ADHD.
However, the number of subjects in this study was very small (see Table 1 for details) therefore
caution must be exercised in interpreting the results.

6. Basal ganglia
A number of sources of evidence suggest that the basal ganglia are important structures relevant
to ADHD research. Firstly, increasing evidence exists of altered performance in the five
functionally interconnected subcortical structures of the basal ganglia: the caudate nucleus,
putamen, globus pallidus, subthalamic nucleus, and ventral mesencephalon in ADHD. These
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regions are part of five parallel basal ganglia–thalamocortical circuits (Alexander, Crutcher,
& DeLong, 1990; Alexander, DeLong, & Strick, 1986) thought to convey output through
specific thalamic zones to the frontal cortex. These circuits contribute to a number of functions
thought to be affected in ADHD including motor, somatosensory, oculomotor, executive,
emotion, and motivational functions. Second, a mechanism of action of the most common and
effective treatment for ADHD, stimulant medication, works within the basal ganglia
substructures, via increasing extracellular dopamine in the striatum by inhibiting reuptake by
dopamine transporters (Volkow et al., 2001). Third, there is a strong body of findings showing
decreased volume and in some instances altered asymmetries in basal ganglia structures in
ADHD children in comparison to controls (Castellanos et al., 2002). Reversed caudate
asymmetry has been associated with poor executive control as measured by the Stroop task
and the Wisconsin Card Sort Task (Semrud-Clikeman et al., 2000). In the same study smaller
volume of the head of the left caudate nucleus, associated more with participants with ADHD,
was linked to higher scores on the externalizing scale of the Child Behavior Checklist.

Findings within the basal ganglia are arguably the most contradictory of the regions tested in
the ADHD functional imaging literature. A number of SPECT studies by Lou and colleagues
found decreases in basal ganglia activity in subjects with ADHD relative to controls (Lou,
Henriksen, & Bruhn, 1984; Lou, Henriksen, & Bruhn, 1990; Lou, Henriksen, Bruhn, Borner,
& Nielsen, 1989). However, there were a number of potential confounds in these studies.
Children with comorbidities were included and the three studies utilized a largely overlapping
sample of subjects. More recently, two pediatric fMRI studies, one using a GO/NOGO task
(Durston et al., 2003) and the other a divided attention paradigm (Shafritz et al., 2004), have
found decreases in basal ganglia activation in ADHD participants relative to controls. An fMRI
study by Vaidya and co-investigators, however, suggests that task conditions can have a strong
influence on the degree of basal ganglia activation in ADHD (Vaidya et al., 1998). In a
condition controlling for rate of stimulus presentation, subjects with ADHD showed reduced
caudate activation relative to controls. In another condition controlling for rate of responses,
subjects with ADHD showed a trend (p=0.08) toward increased caudate activation compared
to controls. This study suggests that caudate activation may vary with the type and degree of
cognitive demands placed on the subjects.

In contrast to the findings in the pediatric literature, studies in adults with ADHD show
increased task-related caudate and putamen activity relative to controls (Bush et al., 1999;
Flowers, Wood, Price, & Absher, 1997; Schweitzer, Faber et al., 2000; Schweitzer et al.,
2004). Schweitzer, Faber et al. (2000) found tasks requiring complex cognitive functions, such
as WM paradigms engage the lenticulate nucleus in adults with ADHD (see Fig. 2). This
laboratory also found increased right caudate activity (r=0.63, p<0.03) in relation to better task
performance on a WM task in adults with ADHD. Activations in this study tended to be on the
right side of the basal ganglia, whereas greater caudate activity reported in other studies for
healthy pediatric controls appeared to be on the left side (Durston et al., 2003; Shafritz et al.,
2004). We speculate that lateralization of basal ganglia activation may be related to differences
in how ADHD individuals use this region to perform tasks. Greater basal ganglia activation in
ADHD individuals may reflect response preparation and preferential use of visual/spatial
strategies in WM tasks (Postle & D’Esposito, 1999, 2003). In addition to task variables, age
may also influence basal ganglia activation. Differences between compensatory basal ganglia
activity in children and adults may be related to differences in the developmental trajectory of
the caudate nucleus, as individuals with ADHD appear to have a smaller caudate nucleus in
childhood in comparison to normal controls that normalizes by mid adolescence (Castellanos
et al., 2002). Perhaps individuals with ADHD learn to use this structure more flexibly and with
increased frequency than normal controls due to the role of the caudate in response preparation,
attempts to control motor movement, subtle use of strategies involving motor functioning, and
spatial processing (Postle & D’Esposito, 1999).
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The effect of stimulants on basal ganglia activation is also somewhat contradictory. An early
PET study in ADHD adults suggested possible MPH-induced decreases in the putamen
(Matochik et al., 1994). Studies in ADHD children (Kim, Lee, Cho, & Lee, 2001; Lou et al.,
1989; Shafritz et al., 2004; Teicher et al., 2000; Vaidya et al., 1998), however, found MPH
increased activity in the basal ganglia. Of note, in the pediatric studies, brain activity was
significantly lower in the basal ganglia in ADHD participants than healthy controls during
placebo conditions.

7. Cerebellum
Until recently the cerebellum was traditionally thought to be principally involved in motor
control. Over the past decade, however, evidence for involvement of this structure in cognitive
and emotional functioning has led to the recognition that the cerebellum is involved in more
than simply posture and motor control as was previously thought (Daum & Ackermann,
1995; Desmond, Gabrieli, & Glover, 1998; Leroi et al., 2002; Levisohn, Cronin-Golomb, &
Schmahmann, 2000; Najib, Lorberbaum, Kose, Bohning, & George, 2004; Schmahmann,
1998; Van Mier & Petersen, 2002). Middleton and Strick (2001) also demonstrated cerebellar–
PFC connections, linking portions of the cerebellum to areas such as DLPFC, which is
generally associated with a number of cognitive operations.

The cerebellum has also been implicated in a number of developmental disorders, including
autism (Acosta & Pearl, 2004; Allen, Muller, & Courchesne, 2004), schizophrenia (Andreasen,
Paradiso, & O’Leary, 1998; Ho, Mola, & Andreasen, 2004), and ADHD (see Castellanos et
al., 2002 article for further discussion). The exact relationship between this structure and
developmental disorders is as yet unknown. However, evidence that the cerebellum is one of
the last structures of the brain to fully develop, with development continuing into the 20s
(Giedd, personal communication), has implications for how maturation in this structure may
relate to the onset of symptoms across disorders and changes in phenotypic markers with
development. The cerebellum is also the least genetically determined structure (Giedd, personal
communication) and as such is the most sensitive structure to environmental variables.

The cerebellum is of particular interest to ADHD researchers because of the number of
functions associated with it that appear impaired in ADHD. Execution of timed movements
within a sequence (Van Mier & Petersen, 2002), planning and WM (Middleton & Strick,
2001), verbal rehearsal (Chen & Desmond, 2005) are just a few behaviors linked to cerebellar
function that may be implicated in the disorder. Links between the basal ganglia, cerebellum,
and the PFC (Middleton & Strick, 1994) suggest that abnormalities found in the cerebellum,
basal ganglia, and prefrontal cortex in ADHD may reflect a circuit-wide dysfunction in
prefrontal–basal ganglia–cerebellar loops. Similarly, Berquin et al. (1998) proposed that
cerebello–thalamo–prefrontal dysfunction may underlie the deficits in motor, inhibition, and
executive function typically found in ADHD.

The cerebellum appears to be altered in volume (e.g. Berquin et al., 1998; Castellanos et al.,
2002; Mostofsky, Reiss, Lockhart, & Denckla, 1998) and perhaps function (Schweitzer et al.,
2004; Valera, Faraone, Biederman, Poldrack, & Seidman, 2005) in ADHD. The vermis of the
cerebellum in adults with ADHD shows relatively increased activity in comparison to healthy
controls during WM paradigms (Schweitzer et al., 2004). Perhaps increased cerebellar vermis
activity in ADHD is in response to suboptimal PFC functioning. It is unclear at this point
whether or not increased cerebellar activity is a tonic or phasic response to task demands as
these data were acquired using imaging methods with relatively limited temporal resolution
(i.e., PET with [15O]H2O). Current studies on the most commonly used pharmacological
treatment of ADHD, MPH, suggest however, a tonic response. Consistent evidence indicates
MPH increases cerebellar vermis activity, but only in a non-task related fashion (Anderson,
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Polcari, Lowen, Renshaw, & Teicher, 2002; Mehta et al., 2000; Schweitzer, Lee et al., 2003;
Schweitzer et al., 2004; Volkow et al., 2001). Changes in vermal activity also correlate with
rates of hyperactivity and predict treatment response (Anderson et al., 2002; Schweitzer, Lee
et al., 2003).

The effect of MPH most likely reflects enhanced extracellular concentrations of norepinephrine
(Kuczenski & Segal, 2001) as the cerebellum receives rich noradrenergic input (Powers,
O’Connor, & Price, 1989), although we cannot rule out MPH effects on dopaminergic
(Melchitzsky & Lewis, 2000), or serotonergic systems. These data are consistent with the
hypothesis that ADHD may be due to dysregulation of the noradrenergic system or to
interactions between the dopaminergic and noradrenergic system (Arnsten, 2000; Biederman
& Spencer, 1999). Perhaps the increased cerebellar vermal activation reflects a compensatory
attempt of the noradrenergic system to tonically increase response to environmental stimuli
due to an overburdened, poorly functioning PFC and ACC.

The over active cerebellar vermis may also be linked to impairments in the noradrenergic
system emanating from locus coeruleus (LC) noradrenergic neurons. LC activity is recognized
as playing an important role in balancing responses between exploratory behavior and
maintenance of task-related attention (Usher, Cohen, Servan-Schreiber, Rajkowski, & Aston-
Jones, 1999). Mefford and Potter (1989) hypothesized that ADHD symptoms are consistent
with an imbalance in alpha-2 adrenergic receptor number which leads to poor control of
inhibition of LC neurons or inhibition of excitatory afferents to the LC. The result is increased
exploratory behavior in response to novel environmental stimuli in individuals with ADHD
and difficulty maintaining on-task behavior due to high tonic LC activity.

8. Developmental hypotheses and compensatory strategies in ADHD
ADHD is historically labeled as a disorder of developmental delay in regard to behavioral and
emotional functioning. Neuroimaging findings support the extension of this label to neural
functioning as well. For example, a recent study examining patterns of functional brain activity
associated with development in children found brain activation becomes less diffuse and more
focal with maturation (Durston, Davidson et al., 2004). Similarly, individuals with ADHD tend
to activate a more diffuse, wider system of brain regions to perform a task (Bush et al., 1999;
Durston et al., 2003; Schweitzer, Faber et al., 2000, 2004; Tamm et al., 2004). This diffuse
pattern may be secondary to an impaired prefrontal and ACC functioning that is less capable
of coordinating the recruitment of subsidiary brain regions to match current situational
demands.

Developmental factors may also be reflective of an apparent preference for the activation of
brain regions associated with visual–spatial and mental imagery versus verbally mediated
strategies in individuals with ADHD. Evidence from the developmental literature suggests that
eidetic imagery skills decline with maturation (Giray, Altkin, Vaught, & Roodin, 1976; Giray
& Barclay, 1977). This decline is hypothesized to be due to the development of verbal abilities
interfering with the use of visual/spatial skills (Kosslyn, Margolis, Barrett, Goldknopf, & Daly,
1990). Children with ADHD appear to have a disrupted, immature ability to use internalized
speech (Berk & Potts, 1991; Diaz & Berk, 1992). Their immature verbal rehearsal skills may
interfere less with visual imagery than the more mature verbal skills of their non-affected peers.
A weakened ability to activate brain regions associated with verbal strategies (e.g., temporal
cortex) (Schweitzer, Faber et al., 2000; Schweitzer, Lee et al., 2004; Shafritz et al., 2004) may
be more consistent with what would be expected from a younger child. Developmental theories
are also supported by neuroanatomical evidence suggesting that brain regions impaired in the
disorder are phylogenetically late in maturation and some of the last to develop in an individual
(e.g., PFC and cerebellum) (Reiss, Abrams, Singer, Ross, & Denckla, 1996). Maturation of
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fibers that innervate language and association cortices (Thompson et al., 2000) are also fairly
late in development. As another reflection of delayed developmental processing, compensation
in ADHD may be associated with processes and brain regions that are more proximal to the
stimulus input (e.g., visual versus a verbal stimulus) and required response. Thus, there may
be less involvement of the higher order processing and associated brain regions (e.g., PFC) to
coordinate responding between brain regions. Lack of coordination by these higher order
regions may result in more effortful and in some cases, less accurate responding and processing
of stimuli. ADHD may not be the only developmental disorder distinguished by compensatory
anatomy relying on more rudimentary brain regions and strategies. For instance, there is
documentation of similarly increased engagement of posterior (e.g., inferior temporal and
occipital) and right-sided regions, in autism (Koshino et al., 2005).

9. Conclusion and clinical implications of a compensatory neuroanatomy in
ADHD

Initial functional imaging studies in ADHD (Bush et al., 1999; Rubia et al., 1999; Zametkin
et al., 1990) focused on the absence of activity in the frontal cortex, with much less
consideration given to concomitant findings regarding over-activity in other regions. As the
imaging field evolved, the use of whole-brain techniques became more standard and resulted
in the identification of regions with relative over-activity as well. These regions of increased
activity may be associated with the use of performance strategies that are more strongly
supported by those regions. Indeed, it is possible that there may be relatively enhanced and
preferential use of strategies linked to brain regions that are more active in ADHD versus
normal controls. This review found evidence to suggest that tasks requiring higher cognitive
functioning are associated with greater activation in regions associated with motor and visual,
spatial processing in individuals with ADHD (Durston et al., 2003; Kim, Lee, Shin, Cho, &
Lee, 2002; Rubia et al., 1999; Schweitzer, Faber et al., 2000; Schweitzer et al., 2004). In
contrast, healthy subjects are more likely to engage regions associated with cognitive
organization (e.g., PFC, ACC) and phonological strategies.

This review suggests there is a greater need for understanding how the functional imaging
“signal” of ADHD relates to behavior, symptoms, and cognitive strategies. Several of the
studies reviewed provide clues to guide novel behavioral studies to assess learning styles in
ADHD. It is unknown at this point, whether children with ADHD exhibit relative strengths
using strategies involving visual, spatial, or motoric processes; however findings from imaging
studies support the investigation of compensatory strategies using these mechanisms. We
suggest that researchers begin to observe and test whether the behavioral strategies ADHD
individuals apply to task performance can be characterized by the use of specific compensatory
strategies. Future studies could also explore the relationship between the development and
implementation of alternative strategies with level of functioning in academic, social, and
career contexts. As we improve our understanding of how the biological substrates of the
disorder relate to its clinical presentation, so too will our ability to reliably identify ADHD and
develop psychological, educational, and pharmacological treatments that can be tailored to an
individual’s “psycho-neuro profile”.
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Fig. 1.
Brain regions activated during a working memory task (i.e., PASAT) compared to random
number generate control task. Images are displayed in radiological space with the right
hemisphere displayed on the left side. The top row displays averaged t-maps from healthy
control subjects at three horizontal levels with significant (p < 0.005) task-related increases in
regional cerebral blood flow (rCBF) of the greatest extent in the right inferior frontal cortex
and left superior temporal gyrus. The bottom row displays task-related increases from subjects
with ADHD. Task-related increases in rCBF of the greatest extent are in the right precuneus
and left inferior parietal lobe.
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Fig. 2.
Brain regions activated related to time effects during performance during a working memory
task (i.e., PASAT). The right hemisphere is displayed on the left side. The image on the right
displays averaged t-maps from subjects with ADHD with significant (p < 0.005) task-related
activation in rCBF increasing in the right lenticular nucleus and left insula. The image on the
left displays averaged t-maps from healthy control subjects. Note no significant activation in
the basal ganglia for the healthy subjects.
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