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Abstract In this study, the authors explored the

effect of human mesenchymal stem cell (MSC)

implantation on the restoration of degenerative inter-

vertebral discs (IVDs) in the rat. A unique rat

coccygeal model was used to investigate the effects

of transplanting human MSCs and to examine MSC

survival in degenerative discs. MSC implantations into

rat coccygeal IVDs were performed at 2 weeks post-

injury. Radiologic and histologic evaluations were

performed at 2, 4, 6, and 8 weeks post-injury. MSC-

injected segments (TS) retained disc height and signal

intensity, but injured non-injected segment (IS) pro-

gressively lost disc height. Pathological results

revealed that the TS group showed relative restoration

of the inner annulus structure; however, the IS group

showed destruction of the inner annulus structure.

Immunohistochemical staining using Anti-Human

Nucleic Antibody (#MAB1281 Chemicon) revealed

positive staining in the TS group at 2 weeks post-

transplantation (4 weeks post-injury). This study

shows that human MSCs survive for 2 weeks after

transplantation into the IVDs of rats, and that MSCs

increased the heights and signal intensities of inter-

vertebral disc.

Keywords Mesenchymal stem cell �
Animal model � Intervertebral Disc �
Degeneration

Introduction

Histologically, intervertebral discs (IVDs) are com-

posed of a chondrocytic end plate, a nucleus pulposus

containing notochord cell and chondrocyte-analogous

cells, and an annulus fibrosus composed of fibroblasts

(Cheung et al. 2005; Martin et al. 2002). Furthermore,

the annulus fibrosus and nucleus pulposus contain

extracellular collagen and proteoglycan matrices. The

changes that occur in degenerative IVDs include

decreases in chondrocytes, extracellular matrix com-

ponents, proteoglycan, and Type II collagen, and

increases in inflammatory substances and enzymes,

such as, the metalloproteinases. Therefore, IVD

degeneration is presumed to commence with a

decline in the extracellular matrix of the nucleus
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pulposus, and to culminate in reduced matrix and

water content in this tissue, which results in cracks or

microfractures in the annulus fibrosus (Leung et al.

2006). Consequently, dynamic imbalance reduces

shock-absorbing capacity, which is required to atten-

uate the effects of external impacts or loads. The

detailed pathophysiology of IVD degeneration has

not been elucidated, but both mechanical overloading

of IVDs and disruption of the mechanical balance

afforded by adjacent structures (e.g., facets, liga-

ments, and muscles) have been suggested to contrib-

ute substantially to the degenerative condition

(Martin et al. 2002).

Eventually IVD degeneration causes clinical dis-

ease. Sometimes, disc degeneration is the direct cause

of discogenic back pain, regardless of uncertainties

concerning the details of the pathologic mechanism

involved. Furthermore, IVD degeneration can

develop into serious conditions, such as, IVD

prolapse, spondylolisthesis, spinal canal stenosis, or

facet joint syndrome (Martin et al. 2002; Antoniou

et al. 1996).

Treatments for degenerative IVD disease involve

medication to alleviate back pain, physical treatment,

and the surgical removal of herniated disc material

and spinal fusion. However, these approaches cannot

be viewed as fundamental treatments for IVD

degeneration because they do not address its cause.

Recently, the molecular biological characteristics of

IVD degeneration were identified, and treatment

strategies are being sought that regenerate IVDs by

restoring extracellular matrix or cellular components

in animal models (Crevensten et al. 2004; Le Visage

et al. 2006; Sakai et al. 2006, 2005, 2003).

In this context, the merits of gene therapy and the

transfusion of growth factors, such as, cytokines, are

being investigated (Steck et al. 2005; Rousseau et al.

2007). It has been reported that collagen and

proteoglycan levels improve after gene therapy with

transfected adenovirus strains expressing SOX9,

TGF-b1, TIMP1, and BMP2 (Wallach et al. 2003;

Paul et al. 2003; Nishida et al. 1999), and that

proteoglycan levels increase after injecting OP-1

(BMP-7), GDF-5, and LMP-1 directly into an IVD

(An et al. 2005; Kawakami et al. 2005; Li et al. 2002;

Takegami et al. 2005; Yoon et al. 2004). However,

this approach is unreliable because it does not

directly increase the numbers of IVDs cells, and

thus, is problematic as a potential therapy for

degenerative IVD conditions (Leung et al. 2006).

When cell therapy was hailed as the next generation

treatment, another approach to regenerative therapy,

autologous nucleus pulposus cell transplantation, also

became a major research topic in the context of the

regeneration of IVDs (Okuma et al. 2000; Ganey et al.

2003; Gruber et al. 2002; Nishimura and Mochida

1998; Nomura et al. 2001). However, because the

supply of autologous IVD cells is problematic (Okano

2002), the notion of using stem cells in this context has

increased in importance, and trials are currently in

progress (Crevensten et al. 2004; Leung et al. 2006;

Sakai et al. 2006, 2005, 2003).

Recently, transplantation therapy for IVD degener-

ation using mesenchymal stem cells (MSCs) has been

attempted. MSCs can be extracted from several organs,

such as fetal liver, umbilical cord blood, bone marrow,

placenta, adipose tissue, muscle, and dermis (Kraemer

1995), and can be induced to differentiate into cells of

the articular cartilage (Deans and Moseley 2000;

Liechty et al. 2000; Toma et al. 2002) or chondrocyte

lineages (Im et al. 2001; Quintavalla et al. 2002;

Wakitani et al. 1994). Furthermore, as IVD cells have

phenotypes similar to those of chondrocytes, it would

appear that IVD cells are differentiated from MSCs

(Risbud et al. 2004).

Hence, we sought to examine the regenerative

effects of transplanted human MSCs in a rat degen-

erative IVD model by using a magnetic resonance

imaging and a histologic approach.

Materials and methods

Experimental animals

We used eight female Sprague-Dawley rats in total.

The animals were free of infection and weighed 270–

300 g. Experiments were performed using coccygeal

IVDs; first segments (Co2–3) were used as normal

control segments (CS), second segments (Co3–4), the

MSC-transplantation segments (TS) were injected

with MSCs 2 weeks after blade injury, and third

segments (Co4–5), the injured segments (IS) were

injected with saline 2 weeks after blade injury.

Radiological and histological evaluations were per-

formed at 2, 4, 6, and 8 weeks post-injury.
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Bone marrow aspiration, isolation of

mesenchymal stem cells, and cell culture

Bone marrow (10 mL) was aspirated, under local

anesthesia, from the posterior iliac crests of one human

donor (28 years old), and bone marrow mononuclear

cells were isolated by Ficoll (Sigma) density gradient

centrifugation. Mononuclear cells (1 9 106/mL) were

placed in a 175 cm2 flask (Nunc, Invitrogen) and

cultivated in low-glucose Dulbecco’s modified Eagle’s

medium (Gibco, Invitrogen) containing 10% fetal

bovine serum (Gibco, Invitrogen) and 1% penicillin/

streptomycin (Gibco, Invitrogen) in a humidified

incubator at 37 �C for 5 days under 5% CO2. Non-

adherent cells were then removed by replacing the

medium (colonies formed within 5–7 days). During

monolayer expansion, cells were plated at a density of

1–3 9 104 cells/cm2, and medium was replaced every

3 days. Cells were harvested using 0.25% trypsin when

these primary cultures of MSCs reached 80% conflu-

ence. We used GMP (Good Manufacturing Practice)

conditions (FCB-Pharmicell Co Ltd, Sungnam, South

Korea) and clinical grade reagents to prepare the cells

(Bang et al. 2005; Li et al. 2008).

Cell preparation for injection

On the day of injection, cells were harvested using

trypsin and washed in 10 mL phosphate-buffered

saline. Cell viability was determined by trypan blue

staining after harvesting and before infusion. Freshly

harvested MSCs were placed into a capped 10 mL

syringe prior to injection.

IVD degeneration and the transplantation

of human mesenchymal stem cells

We used the degenerative IVD model devised by

Rousseau et al. (2007). Under 5% isoflurane inhala-

tion anesthesia, we located the IVDs at Co2–3, Co3–

4, and Co4–5 by fluoroscopy, and placed a 1-inch

longitudinal hemisection using a No. 10 blade along

the tail to expose the lateral portions of tail discs.

Human MSCs (three passages, 1 9 106 cells/15 lL/

segment) (Sakai et al. 2006, 2005, 2003) were then

placed into TS using a stereotactic microinjector

(Harvard Apparatus; Holliston, MA, USA) and a 26

G needle at 2 weeks post injury. The same amount of

saline was injected into IS. CS were not injected.

Methods of evaluation

Radiological method

Radiological evaluations were performed at 2, 4, 6, and

8 weeks post injury, by magnetic resonance imaging

and by using a computerized imaging analyzer.

Disc heights: Disc heights were measured using

the method devised by Lu et al. (1997), according to

which disc height is defined as the distance between

the vertebral bodies of upper and lower segments in

the center of the disc space. Disk heights were

calculated using Paravision software (Paravision

version 3.0.2; Bruker Biospin AG, Karlsruhe, Ger-

many). The results shown are the averages of two

measurements.

Magnetic resonance imaging of IVDs: Magnetic

resonance images were obtained using a 4.7 T Bruker

Biospin imager. Rats were positioned prone on a

quadrature surface coil and sagittal images were

obtained through the lumbar spine (spin echo;

repetition time 500–4,000 s; echo time 65–123 s;

number of excitations 8; field of view 4 cm; slice

thickness 1.0–1.5 mm; no phase wrap). Imaging was

performed at 2, 4, 6, and 8 weeks post injury and T2-

weighted midsagittal and axial images of each

segment were obtained (Fig. 1). Paravision software

was used to measure signal intensities. CS served as

controls and intensities are quoted as percent ratios

versus CS signal intensities.

Histological evaluations

Rats were anesthetized and transcardinally perfused

with 125 mL of normal saline (containing 10 U of

heparin sodium per 1 mL), followed by 250 mL of

ice-cold 4% paraformaldehyde. After excising coc-

cygeal vertebrae there were fixed in 10% formalin

solution for 48 h. They were then decalcified in 5%

nitric acid for 3 days (the acid solution was changed

every 24 h). Finally, they were washed in ammonia

solution for 30 min to neutralize residual acid.

The vertebrae samples so obtained were then

embedded in paraffin wax, and paraffin blocks were

sectioned longitudinally using a microtome into

20 lm sections. Sections were stained with hema-

toxylin and eosin (H–E), and degenerative disc

changes were histologically graded using the criteria

of Nishimura and Mochida (1998) (Table 1).
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Immunohistochemical staining with Anti-human

Nucleic Antibody (ANA Ab)

For immunofluorescence experiments, the paraffin

blocks were sectioned using a microtome into 4 lm

sections. These sections were then rehydrated using

an ethanol series and xylene for 40 min, and boiled in

100 mM sodium citrate buffer (pH 6.0) for 1 h.

Sections were then incubated in 0.2% Triton X-100

for 40 min at room temperature, in blocking solution

[5% rabbit serum in 19 PBS (pH 7.2)] for 30 min at

room temperature, and finally with primary antibody

against human nuclei (mouse anti-human nuclei

monoclonal antibody 1:100, # MAB1281, Chemicon,

Temecula, USA) for 24 h at 4 �C. Alexa 488-

conjugated secondary antibody (1:100, Invitrogen)

and alexa 546-conjugated secondary antibody (1:100,

Invitrogen) were then added to sections for 1 h at

room temperature. The sections were washed with

PBS, mounted in Vectashield with DAPI (Vector

laboratories, Burlingame, CA, USA). We only eval-

uated existence of positive findings in Anti-human

nucleic antibody (ANA Ab) staining.

Statistics

Statistical analysis was performed on disc height and

signal intensity data using analysis of variance

(ANOVA) and Bonferroni post hoc-tests for multiple

comparisons. The chi-square test was used to test for

histological scores differences between the three

groups. All results are presented as means ± SE. A

level of significance of p \ 0.05 was used and error bars

represent standard errors of means (SEM). Analysis was

performed using the SPSS for Windows release 13.0 and

the Prism (version 4.0) software packages.

Results

Radiological evaluation

Disc heights

In the CS group, disc height was 2.2 ± 0.1 mm at

2 weeks post-injury, 2.2 ± 0.1 mm at 4 weeks,

2.2 ± 0.1 mm at 6 weeks, and 2.1 ± 0.1 mm at

8 weeks. In the TS group, disc height was

1.9 ± 0.1 mm at 2 weeks, 1.9 ± 0.1 mm at 4 weeks,

Fig. 1 MRI images of a normal control segment (CS), a MSC

transplantation segment (TS), and an only injured segment (IS)

taken every 2 weeks after disc injury. MCSs were transplanted

at 2 weeks post-injury. TS showed much higher T2-weighted

signal intensities than IS

Table 1 Nishimura-Mochida histological grading system of

disc degeneration

Grade 0: normal structure

Grade 1: mildly serpentine appearance of the annulus fibrosus

(AF) with rupture

Grade 2: moderately serpentine appearance of the AF with

rupture

Grade 3: severely serpentine appearance of the AF with mildly

reversed contour

Grade 4: severely reversed contour

Grade 5: indistinct
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1.9 ± 0.1 mm at 6 weeks, and 1.9 ± 0.1 mm at

8 weeks. In the IS, disc height was 1.9 ± 0.2 mm

at 2 weeks, 1.7 ± 0.1 mm at 4 weeks, 1.6 ± 0.1 mm

at 6 weeks, and 1.7 ± 0.2 mm at 8 weeks. While

conducting experiments, disc heights in the TS and IS

groups were less than in the CS group, and these

differences were statistically significant (p \ 0.001).

Compared to changes in disc height in the CS group,

progressive reductions in height post injury were

found in the IS group, whereas no reductions were

found in the TS group (p \ 0.05) (Fig. 2).

Magnetic resonance imaging of IVDs

MRI signal intensities were measured in T2 axial

images with respect to the CS group as standard

control. In the TS group, mean signal intensities

reduced to 40.6 ± 6.8% at 2 weeks post-injury,

44.4 ± 18.7% at 4 weeks, 33.6 ± 13.6% at 6 weeks,

and 31.2 ± 8.3% at 8 weeks. In the IS group, mean

signal intensities reduced to 37.3 ± 10.5% at

2 weeks, 33.4 ± 8.6% at 4 weeks, 25.9 ± 8.5% at

6 weeks, and 24.9 ± 6.2% at 8 weeks (Fig. 3). The

signal intensities of the TS and IS groups were less

than in the CS group and these differences were

statistically significant (p \ 0.01). Furthermore, sig-

nal intensities in the TS group were higher than in the

IS group (p \ 0.05). However, no significant recov-

ery of signal intensity to CS level was observed in the

TS or IS groups (p = 0.99).

Histological examinations

H–E staining

In the CS group, no degeneration or disruption of the

internal structure of the annulus fibrosus was

observed by H–E staining, and its oval shape was

well maintained (Fig. 4A). However, in the IS group

severe disruption and excavation of internal annulus

fibrosus structures were observed (Fig. 4B) from

8 weeks post-injury. Milder degeneration and a

smaller degree of internal structure fibrosis were

observed in the TS group than in the IS group

(Fig. 4C). When we explored changes in cells

comprising the internal structure of the annulus

fibrosus, it was found that these cells consisted of

large oval or spindle-shaped cells with abundant

cytoplasm in both the CS and TS groups, whereas

numbers of cells were greatly reduced in the IS

group. According to the Nishimura-Mochida grading

system, the CS group scored 0 in all cases, IS 4 or 5,

and the TS group 1 or 2, and this difference was

statistically significant (p \ 0.001) (Table 2).

Immunohistochemistry

At 2 weeks post-transplantation (4 weeks post-

injury) the TS group stained positively for primary

antibody against human nuclei (mouse anti-human

nuclei monoclonal antibody 1:100, # MAB1281,

Fig. 2 Graphical

representation of disc height

changes. Only injured

segment (IS) showed

progressive decreases in

disc height, whereas MSC

transplantation segment

(TS) did not
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Fig. 3 Signal intensities of

discs in T2 weighted

images: the signal

intensities of MSC

transplantation segment

(TS) were greater than those

of only injured segment (IS)

Fig. 4 A-1, 2 Control

segments (CS) showed an

oval nucleus with no

collapse of the inner annular

structure (409, 2009). B-1,

2 Only injured segments

(IS) showed collapse of the

inner annulus morphology

at 8 weeks post-injury

(409, 2009). C-1, 2 MSC

transplantation segments

(TS) showed relatively

good preservation of the

inner annulus structure with

minimal fibrosis in the

nuclear region (409, 2009)
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Chemicon, Temecula, USA) whereas staining in the

IS group was only slight, but at 4 and 6 weeks post-

transplantation no positive results were observed in

either of these two groups (Fig. 5a–c).

Discussion

MSCs (1) are easily harvested; (2) are free of ethical

issues; (3) are not immunoreactive; (4) can be used

for allogenic and xenogeneic transplantation (because

of the lack of immune reaction with HLA class II

antigen) (Barry 2003; Cizkova et al. 2006; Rousseau

et al. 2007); (5) are not tumorigenic (because they are

not immortal, unlike embryonic stem cells); (6) have

advantages for clinical applications (because they can

be segregated and incubated relatively easily) (Chopp

and Li 2002; Preston et al. 2003; Prockop 1997; Sakai

et al. 2005); and (7) have been proven to be a

valuable treatment option for full-thickness articular

cartilage defects, osteogenesis imperfecta, and myo-

cardial infarction (Wakitani et al. 1994; Horwitz et al.

1999). Therefore, research on MSCs has recently

intensified (Jiang et al. 2002). However, few studies

on MSC-based treatments for IVD degeneration have

been undertaken (Leung et al. 2006; Preston et al.

2003; Prockop 1997). In the present study, we

explored the effects of human MSC implantation on

the restoration of degenerative intervertebral discs

(IVDs) in the rat. It was found that human MSCs

survived for 2 weeks after transplantation into the

IVDs of rats, and that MSC treatment increased

heights and signal intensities of intervertebral disc.

In previous studies, animals have been allocated to

experimental and control groups for analysis. How-

ever, in this study, we adopted an experimental

model, in which control and experimental segments

were present in the same animals, to avoid confusions

arising from individual differences, such as, weight,

activity level, infection status, and immune

Table 2 Nishimura-Mochida histological grading amongst

three disc levels

Grade CS IS TS

0 6 0 0

1 2 0 5

2 0 0 2

3 0 2 1

4 0 5 0

5 0 1 0

Total 8 8 8

CS control segment, TS transplantation segment, IS injured

segment

Fig. 5 a Staining with

DAPI (40,6-diamidino-2-

phenylindole), b
immunohistochemical

staining with Anti-human

Nucleic Antibody (ANA

Ab), c a merge of (a) and

(b) in the discs of MSC

transplantation segments

(TS) at 4 weeks post injury

(2 weeks post

transplantation) revealed

positive staining (arrow),

which confirmed MSC

survival (dotted arrow)

(2009)
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competency. Furthermore, our study model was in the

same status in human, and thus, our findings can be

applied to human studies.

Previously, to evaluate the effects of MSC trans-

plantation, histological changes, which are clearest

parameter, have been quantified. Furthermore, tissue

collection harms animals and findings cannot be

applied to clinical research on humans. In addition,

IVD height reductions and signal intensity changes

could be considered aspects of normal aging processes

(Kraemer 1995; Antoniou et al. 1996) but are critical

diagnostic parameters of spinal diseases related to IVD

degeneration (Sakai et al. 2003). Therefore, IVD disc

height and MRI signal intensity restorations (the latter

of which imply increases of, for e.g., proteoglycan or

water, in the cellular and stromal compartments), and

changes in IVD height and signal intensity on T2 axial

images are reliable, useful parameters. Our study

shows that mean IVD height reductions in the TS group

were slight, whereas progressive reductions were

observed in the IS group (p \ 0.05). Contrary to that

found in previous studies (Sakai et al. 2006, 2005,

2003), no recovery of height to the CS group level was

observed in the TS or IS group. Furthermore, signal

intensities in the TS and IS group were less than in the

CS group (p \ 0.01), though signal intensity in the TS

group was greater than in the IS group. However, no

recovery of signal intensity to the CS level was

observed in the TS and IS group (p = 0.99), which

contradicts the results of previous studies (Sakai et al.

2006). Nevertheless, our findings do show that IVD

degeneration can be restrained by MSC injection.

The functions of transplanted MSCs remain

uncertain. A previous study reported that these cells

penetrate damaged tissues and directly secrete or

indirectly cause normal cells to generate (via a

paracrine mechanism) cytokines, such as, nerve

growth factor, neurotrophic factor, and vascular

endothelial cell growth factor (Bjorklund and Lindv-

all 2000; Chen et al. 2002; Chopp and Li 2002;

Jendelova et al. 2004; Mahmood et al. 2004), which

promote tissue regeneration. Furthermore, MSCs

stimulate tissue-associated stem cells to differentiate

to target tissues (Li et al. 2002). Le Visage et al.

(2006) found that proteoglycan synthesis increased

when MSCs were co-cultured with annulus fibrosus

cells, and Sakai et al. (2006) reported increased

proteoglycan and extracellular annulus fibrosus

matrix synthesis, and the restoration of water disc

height after transplanting MSCs into IVDs in an

rabbit model, which was similar to that found by

Sakai et al. (2006).

We evaluated degrees of degeneration of inner

annular structures after H–E staining (Sakai et al.

2006) by using the grading system of Nishimura-

Mochida (1998) at 8 weeks post-injury. The TS

group achieved grades 1–2, whereas IS group only

achieved grades 4–5. The CS group maintained grade

0 throughout the study (p \ 0.001) (Table 1).

Several studies have shown that stem cells

differentiate directly into nucleus pulposus cells.

Crevensten et al. (2004) reported that the majority

of transplanted stem cells disappeared, but that

transplantation increased the level of extracellular

matrix and supported the differentiation and regen-

eration of intrinsic nucleus pulposus-like stem cells.

Sakai et al. (2006) in a histologic examination of

IVDs transplanted with stem cells reported that the

phenotype of differentiated cells was nucleus pul-

posus-like and found no evidence of osteogenesis.

Furthermore, a preliminary study, Gimble and

Guilak (2003) found that transplanted MSCs could

differentiate into chondrocyte-like cells, namely,

nucleus pulposus cells, which expressed collagen

II, keratan sulfate, and chondroitin-4-sulfate, and

that these cells were capable of further differentia-

tion. However, our immunohistochemical findings

differ from those reported by Gimble and Guilak

(2003), because we found, by immunostaining with

human ANA Ab, that transplanted MSCs survived at

2 weeks post-transplantation (4 weeks pos-injury),

but not at 4 and 6 weeks post-transplantation. This

observed reduction may have been due to; the

fading of the fluorescent membrane stain, the death

and/or degradation of MSCs in degenerated discs, or

the expulsion of cells through the injection tract.

Nevertheless, remaining stem cells or in situ acti-

vated stem cells had proliferated, matrix synthesis

had increased, and IVD degeneration had been

prevented.

Conclusion

Our findings suggest that human MSCs injected into

intervertebral discs in the rat survive for 2 weeks and

that mesenchymal stem cells increase extracellular

matrix levels and disc heights and signal intensities.
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