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Abstract

Using Cox regression, this paper shows a weak association between having tuberculosis and dying
from influenza among Union Army veterans in late nineteenth-century America. It has been
suggested elsewhere [Noymer, A. and M. Garenne (2000). The 1918 influenza epidemic’s effects
on sex differentials in mortality in the United States. Population and Development Review 26(3),
565-581.] that the 1918 influenza pandemic accelerated the decline of tuberculosis, by killing many
people with tuberculosis. The question remains whether individuals with tuberculosis were at greater
risk of influenza death, or if the 1918/post-1918 phenomenon arose from the sheer number of deaths
in the influenza pandemic. The present findings, from microdata, cautiously point toward an
explanation of Noymer and Garenne’s selection effect in terms of age-overlap of the 1918 pandemic
mortality and tuberculosis morbidity, a phenomenon | term “passive selection”. Another way to think
of this is selection at the cohort, as opposed to individual, level.

Keywords

USA,; Influenza; Tuberculosis; Selection; Mortality; Historical demography; Historical
epidemiology; Union Army veterans

Introduction

This paper uses data on Union Army veterans from the US Civil War to test whether, in the
late nineteenth century and early twentieth century, having tuberculosis was a risk factor for
death due to influenza. The question of influenza—tuberculosis selective mortality has been
raised in the context of the 1918 influenza pandemic (Noymer & Garenne, 2000). This paper
examines data from the period before the pandemic. However, the question of selective
mortality for these two diseases need not have applied only during the pandemic. The present
findings point to selective mortality in 1918 having been either a cohort (vs. individual)
phenomenon, or alternately that the selection was peculiar to 1918.
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Background

The concepts of early life influences on mortality and selective mortality intertwine. Early life
influences include any exposure to, or influence on, an individual that affects later mortality
outcomes. These exposures and influences may be biological or social or both. Early influences
work also when the unit of analysis is the cohort, not the individual. It makes no sense to talk
about the long-term impact of fatal outcomes at the level of the individual. However, a cohort
experiencing an adverse mortality environment or event early in its lifetime may, through
selective mortality, be more robust (less frail) after the event than before, with salutary effects
on mortality. This is termed “cohort inversion” (Hobcraft, Menken, & Preston, 1982). The
pioneers of the mathematical demography approach to selective mortality were Keyfitz and
Littman (1979) and, especially, Vaupel, Manton, and Stallard (1979). The broader early
influences literature is much older, with well-developed versions going back to Derrick
(1927) and Kermack, McKendrick, and Mckinlay (1934) if not before.

Cohort vs. individual perspectives can have countervailing directions. Non-fatal adverse
impacts on the individual generally are supposed to have adverse delayed effects on longevity,
whereas cohort inversion implies positive delayed effects for cohorts. By pure aggregation, the
direction of the effect of early life influences may also run in the same way for cohorts as for
individuals (adverse leading to adverse, as long as we are dealing with non-fatal outcomes).
Excepted from this is hormesis—viz., where mild infections impart lifelong immunity from
reinfection (e.g. chickenpox, measles). However, post-infection lifelong immunity, as with
measles, does not mean that the infection in question does not also have lasting adverse effects.
For example, blindness can be a sequela of measles, especially in vitamin A deficient children.

Selective mortality in the 1918 influenza pandemic

In 2000, Noymer and Garenne proposed that there was selective mortality in the 1918 influenza
pandemic (Noymer & Garenne, 2000). This hypothesis — that the 1918 influenza pandemic
played a role in the decline of tuberculosis (TB) — is potentially relevant to mortality studies
generally, due to the importance of TB as a cause of death, and due to the magnitude of the
1918 pandemic.

In the context of early life influences on later mortality, those findings implied that exposure
to one disease, in this case tuberculosis, can enhance mortality risks to another disease, in this
case influenza. Being a chronic disease, tuberculosis precedes influenza (an acute condition),
by years in most cases, and is therefore an earlier life influence. This is the aggregation aspect:
an adverse early impact (contracting TB) makes for adverse later effects (dying in the influenza
pandemic). The cohort inversion aspect is that tuberculosis deaths plummeted in later years,
because the normal “slow burn” of TB deaths was consumed all-at-once during the explosive
influenza pandemic, and from the subsequent reduction in tuberculosis transmission.

The 1918 influenza pandemic

The 1918 influenza pandemic was the most deadly disease outbreak in the twentieth century,
killing an estimated 40-100 million (Johnson & Mueller, 2002). The age—mortality profile of
influenza deaths is typically U-shaped. Children and the elderly are the most susceptible to
influenza mortality. Adults, at the base of the U, have the lowest mortality. Atypically, in 1918
the age-mortality profile was W-shaped. The typical U (1917) and atypical W (1918) age—
mortality profiles for influenza and pneumonia (combined) are shown in Fig. 1.

Males had higher influenza and pneumonia death rates in 1918, particularly at the middle mode
of the W. The male excess mortality remains a mystery, but does not appear to be an artifact
of mobilization for the First World War, as it occurred in nonbelligerent countries. The
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influenza—tuberculosis selection effect could play a role in the maleness of the influenza
mortality, as TB was more a male disease at the ages in question. The leading explanation for
the W itself is that flu victims experienced an unchecked immune response that flooded their
lungs with fluid. This is consistent with clinical histories from 1918, where doctors and nurses
reported standing by helplessly while victims became cyanotic and died from lack of oxygen
(Lichty, 1919). Adults, not the young or the elderly, have the strongest immune systems, and
would have experienced this pulmonary complication most severely. This adult peak
superimposed on the usual U-shape putatively accounts for the W. The 1918 virus itself was
very unusual (see e.g. Kash et al., 2004; Kobasa et al., 2004; Stevens et al., 2006; Taubenberger
et al., 2005; Tumpey et al., 2004, 2005).

The selection hypothesis

Selection theories lend themselves to formalization (see e.g. Hougaard, 1984; Manton &
Stallard, 1984; Vaupel & Yashin, 1985; Vaupel et al., 1979). However, the tuberculosis/
influenza selective mortality theory (hereinafter “the selection hypothesis”) may be neatly
summarized as: who died, who survived, and did this change the ante- vs. post-epidemic
population composition? The influenza—tuberculosis selection hypothesis for 1918 holds that
those who died in the middle of the W in 1918 influenza were unhealthy to begin with. Not
necessarily all of them, of course, but enough so that the remaining population, in 1919 and
beyond, was healthier, on average, compared to the pre-pandemic state. “Unhealthy” is vague,
and disproportionally tuberculous is more precise. According to the selection hypothesis, many
1918 influenza deaths were among people with tuberculosis, and the post-epidemic population
was therefore healthier. Using data from Chicago, 1850-1925, Ferrie and Troesken (2008, p.
12) make a similar observation: “influenza and scarlet fever appear to have been killing off the
weakest and most vulnerable parts of the population so that high death rates from these diseases
actually reduced death rates from other causes”.

The hypothesis is supported by a variety of data, including age-specific changes tuberculosis
death rates in 1919 and thereafter, as shown in Fig. 2. Of course, tuberculosis death rates were
falling throughout the early twentieth century — but they fell most steeply after 1918. A
thumbnail sketch of the age-specific aspects of the problem is that tuberculosis was, in this
time period, typically a disease of adults rather than of children or the elderly, just like the 1918
influenza pandemic mortality, but unlike the usual seasonal influenza. And the lungs are the
shared site of pathology of both diseases. Noymer and Garenne (2000) provide the particulars.

It is worth noting that the selection hypothesis does not posit that the unusual virulence of the
1918 pandemic is due to the confluence of tuberculosis and influenza. After all, both high
tuberculosis prevalence and winter flu epidemics were in effect throughout the early twentieth
century (and before), and only the 1918 pandemic had the unusual W-shaped age—mortality
profile. Tuberculosis was not a cause of the unusual virulence of the 1918 influenza. Rather,
according to the selection hypothesis, changes in tuberculosis epidemiology were a
consequence of the influenza pandemic.

Relevance to early life influences

Selection is relevant to the cohort approach to mortality, longevity and long-term health.
According to frailty models, mortality selection of the frail increases within-cohort robustness
over time. Theoretically, older (less frail) cohorts do better than would be expected were the
early selection of the frail not taken into account. There is a black-box aspect to this state of
affairs, because while death rates are observed, there are two free parameters in the theory —
the baseline mortality rate and the frailty distribution, or the distribution of individual
deviations from the baseline. These two free parameters combine to produce one observed
phenomenon: death rates. The observed death rates identify a unique frailty distribution
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assuming a baseline mortality rate, or the observed death rates identify a unique baseline
mortality rate assuming a frailty distribution, but one cannot simultaneously identify both the
frailty distribution and the baseline mortality from observational data. Put another way, the
observed death rates determine the baseline mortality against a counterfactual frailty
distribution, or vice versa.

Recognizing this, research has moved in the direction of trying to open the black-box, through
genetics (as in Weiss, 1990, or Yashin & lachine, 1997), kinship analysis (e.g. Kerber, O’Brien,
Smith, & Cawthon, 2001; Mineau, Smith, & Bean, 2002; Smith, Mineau, & Bean, 2002),
analysis of biological (viz., laboratory) populations (cf. for example, Carey, 2003), and the
study of early life influences (such as: Almond & Mazumder, 2005; Bengtsson & Lindstrém,
2000; Costa, 2000). By bringing in more information a priori, the challenge of understanding
two phenomena (baseline mortality and frailty) from one (observed death rates) becomes
easier.

The selection hypothesis (Noymer & Garenne, 2000) used the 1918 influenza pandemic as a
natural experiment to show how exposure to a disease at a certain point in time can affect
mortality from another cause at a later point in time. This is another way to open the black-
box, and is, in effect, a way of looking at early life conditions, albeit loosening the restriction
that the early conditions take place in utero or during development. The selection hypothesis
takes a rather cohort-oriented level of analysis, as opposed to individual-oriented, though the
selection phenomenon ostensibly operates down to the level of the individual.

Elaboration with microdata

Aggregate vs. microdata

The data used to establish and substantiate the selection hypothesis were mostly death rates
for age groups, by sex (Noymer and Garenne, 2000). The changes in the aggregate mortality
patterns are large, and the sex- and age-specific contours of the data are congruent with
predictions of the selection hypothesis. Ultimately, however, it is desirable to analyze
individual-level data.

Individual-level historical data sets rich in detail on mortality as well as pre-death illnesses are
difficult to come by. However, one example is the Union Army data set, collected by the Center
for Population Economics at the University of Chicago. Although most of the Union Army
veterans died before 1918, these data provide a unique opportunity to investigate connections
between tuberculosis and influenza in historical context. If the selection hypothesis in its
strongest interpretation (cf. section “Active” and “passive” selection below) is correct, it should
apply even in years other than 1918.

This paper tests and elaborates upon the selection hypothesis in two ways. First, microdata are
analyzed whereas the original work dealt predominantly with ecological data. Second, the
period analyzed encompasses all of the late nineteenth and early twentieth century morbidity
and mortality experiences of the Union Army cohorts, illuminating whether or not the selection
hypothesis held in pre-pandemic years.

“Active” and “passive” selection

The 1918 pandemic, due to its unusual severity, has certain advantages for use as a natural
experiment. Nonetheless, looking at tuberculosis illness and influenza mortality in years before
the pandemic can help define the selective effect more precisely. Two versions of the selection
hypothesis can account for the observations of Noymer and Garenne (2000). The stronger form
is individual-level enhancement of influenza mortality among the tuberculous (compared to
the non-tuberculous). Call this “active selection”. If active selection is operating, having
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tuberculosis should predispose one to death from influenza in years other than the pandemic,
unless active selection required specifically the 1918 influenza virus strain.

The weaker version of the selection effect is that the changes in tuberculosis mortality seen
after 1918 are a result of what might be called “age—maortality overlap” between the influenza
pandemic and the tuberculous sub-population. That is to say, the unusual 1918 influenza killed
at non-elderly adult ages (i.e. in the W-shape, section Background), and tuberculosis was
prevalent at those same ages, and simply by this fact, many of the tuberculous died. Call this
“passive selection”. Another way to describe passive selection is that tuberculosis is a neutral
factor with respect to death from influenza. Under this scenario, the effects seen in Noymer
and Garenne (2000) stem from the sheer numbers of dead from influenza in 1918, not from
any enhanced mortality at the individual level. Due to the age profile of the 1918 mortality, a
large number of the tuberculous must have been among the dead. This occurs despite the fact
that — assuming passive selection — tuberculosis is not a risk factor for influenza death. It is
also natural to think of this as a cohort- vs. individual-level phenomenon (passive and active
selection, respectively).

Microdata analysis can help adjudicate between active and passive selection. Passive selection
predicts no effect in mircodata; active selection predicts tuberculosis as a risk factor for death
to influenza, including in non-pandemic years. Suppose hypothetically that active selection
(not specific to the 1918 viral strain) is the correct explanation for the effects seen in Noymer
and Garenne (2000). Why then was the connection between tuberculosis morbidity and
influenza mortality in the nineteenth and early twentieth centuries overlooked by contemporary
observers? The 1918 pandemic was so quantitatively huge, with over half a million deaths in
the United States (Johnson and Mueller, 2002). If tuberculosis has an enhancing effect on
influenza mortality, the 1918 pandemic is clearly the most propitious place to look; the signal-
to-noise ratio may be small in other years. Bozzoli, Deaton, and Quintana-Domeque (2007)
examine scarring vs. selection and make the related point that these two countervailing forces
may behave differently in different mortality environments. They write: “at very high levels
of mortality, selection may dominate scarring, at which point further increases in mortality will
result in increased adult heights in the surviving population.” Their outcome of interest is
stature, but the point translates very well to the topics of this paper. In the 1918 flu pandemic
— a very high mortality level, indeed — selection predominates, and we see a healthier (not
taller) population afterward. In other periods, we may not see the selection, as scarring
predominates.

The data set is the “Union Army” data, collected at the University of Chicago’s Center for
Population Economics under the direction of Robert W. Fogel. The data are described in detail
on the Internet (Chicago Center for Population Economics, n.d.) and by Fogel and Wimmer
(1992) and Fogel (1993, 2004a). The sample “consists of 35,747 white males mustered into
the Union Army during the Civil War, for whom military, socioeconomic, and medical
information from several sources throughout their lifetimes has been collected” (Chicago
Center for Population Economics, n.d.). The sample frame is a cluster sample of 304
companies, about 100 men per company, plus replacements for deaths and discharges. The
data are representative of the military age white male population of the Union states in the early
1860s. Representativeness was assessed by comparisons with, and record linkages to, the 1860
census (Costa, 1998; Fogel, 1993). Within each sampled company, every enlisted man (i.e.
non-officer) is included; enlisted men promoted to brevet officer or officer are included, but
men who began their military service as commissioned officers are not.
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The Union Army data set includes records on health conditions of soldiers during the war and,
through pension files, after the war. A number of scholars have exploited this aspect of the data
to study the health of the Union Army veterans; Lee (1997, 2003, chap. 3) gives overviews.
Lee (2005) looks at how wartime health affected later economic outcomes. Costa (1993,
2003) exploits the longitudinal nature of the data set to compare individual-level characteristics
at enlistment with later-life mortality outcomes; she finds that early life infections had an
adverse impact on later-life outcomes. Wilson (2003, chap. 6) examines respiratory disease in
particular, and in addition to providing a thick quantitative description of the prevalence of
respiratory conditions in the Union Army cohort, he finds a strong correlation between wartime
respiratory illness and later-life respiratory illness. Like the present study, Birchenall (2006)
uses Union Army data to look at tuberculosis, though his interest is illness during the war itself.
Birchenall finds, inter alia, that stature predicts the risk of tuberculosis infection in the expected
direction (i.e. taller individuals had less infection), with childhood nutrition being the putative
causal link.

The Union Army data set provides an unequaled opportunity for historical demographic
research. To investigate the selection hypothesis, using data from the late nineteenth century
is second-best only to microdata from 1918, which, as noted, are unavailable. In the nineteenth
century, tuberculosis prevalence and mortality were both high — 1 in 5 deaths in the United
States in the nineteenth century were due to tuberculosis (Preston, Keyfitz, & Schoen, 1972).
And influenza was ever-present. Additionally, as noted above, using pre-1918 data will allow
us to test whether the selection hypothesis only works in the sui generis context of the 1918
influenza pandemic.

Data description

Wartime survivors are followed through the nineteenth and early twentieth century, until death
in most cases. Pension information, visits to the doctor’s office (for those awarded medical
pensions), and eventual cause of death are recorded for most records (Fogel, 1993). This study
used 17,679 of the 35,570 records. Wartime deaths (N = 4980) were excluded due to the special
circumstances of war being unusual. Moreover, to be included in the study, veterans had to
have a known or imputable date of birth, and a known date of death. Date of birth, when missing
per se, was imputed from stated age at pension application, the dates of which were recorded.
Despite the record loss due to missing biographical dates, the usable data contain thousands of
nineteenth-century records — and therefore well over 100,000 person-years of exposure —
and is a unique resource in American demographic data.

Some descriptive statistics are presented in Table 1. These descriptive statistics are for the
sample used in the regressions. The median body mass index (BMI) was 23.06 kg/m?2. It is not
surprising, given the nineteenth-century setting, that even the 75th percentile of BMI was below
today’s overweight threshold (25 kg/m?). The median number of tuberculosis cases per
company was 1; 35% of companies had no recorded tuberculosis cases, while 37% of
companies recorded two or more cases and 20% had three or more. One company from Ohio
recorded 8 cases. Note that these are cases of active tuberculosis. The concept of latent
tuberculosis did not even exist during the US Civil War, as the tuberculin skin test for latent
infection came into use in the 1890s (Starr, 1982, p. 191). The key veterans in the regression
sample who died of flu, but had tuberculosis morbidity, died on average at age 53.6, were 1.74
meters tall on average, had an average BMI of 20.4 and all of them possessed a pension record.
The younger than average age of death, and lower than average BMI are not surprising, and
nothing else about their descriptive statistics is especially notable.

Records lacking birth date, or pension information that permits inference of birth date, were
dropped. There is a small (0.67 cm) difference in height between records in the regression
sample and those omitted, with those in the regression sample being slightly taller. The
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magnitude of the average difference in height, two-thirds of a centimeter, is not very large,
however. The mean age of death of the regression sample (71.22) does show that, conditional
on surviving to military age, and then surviving the war, and having the necessary information
to be included in the data set, the veterans could live quite long by contemporary standards.
Those not in the regression sample, of course, have no age of death with which to compare.
Some sample selectivity cannot be ruled out, however, given the long average lifetime of those
in the sample.

The Arrears Act of 1879 expanded pension benefits, and the Disability Pension Act of 1890
codified pension benefits for all veterans with disabilities, not just those with medical problems
that originated in the war (Kanjanapipatkul, 2003, chap. 9; Song, 2000). The longer a veteran
lived, the more likely that he would have usable information. For example, by putting
occupation on a pension application, a veteran would generate information on social status,
but those who lived longer (ostensibly, with higher social status) are also more likely to have
seen the liberalization of the pension law. Thus, there is a potential bias between social status
and possessing usable information. There is, even more likely, a correlation between early
mortality (whether correlated with socioeconomic status or not) and having usable information.
These biases go toward the null hypothesis and thus do not tilt the data in favor of finding an
effect. Early deaths are less likely to be on the pension rolls and hence in the data set. But it is
just these deaths, when they are due to TB (an adult, non-elderly disease) causing risk for
influenza, that would help reject the null.

Occupational information was known for 11,186 records in the regression sample (63%); for
those records that contained occupational information, it was recoded into a simple three-tiered
system. The top tier included the (original) occupational codes “farmer/agriculturalist” and
“professionals and proprietors I/11”. The middle tier included “artisans” and “service, semi-
skilled, and operative”. The low tier included “manual labor”, “unproductive”, and “farm/
agricultural labor”. Highest-attained occupation was used; in the data set, 3584 (29%) were
able to climb this three-tiered occupational category during the life course (of which 1309 men
climbed one place in the ladder, and 2275 climbed two places). In the regression sample, 3954
men were in the top tier, or 35% of those with known occupation; 2202 (20%) were in the
middle tier; and 5030 (45%) were in the low tier. These percentages are similar to the sample
where birth date is not known: 34%, 24%, 42%, respectively. This, on the other hand, is not
suggestive that the regression sample is selected toward higher social status.

In the regression sample, 1119 men are flagged specifically as “illiterate”, or were otherwise
classified as not being able to read or write or both (or 7.6% of 14,774 veterans in the regression
sample for whom literacy information is known using all possible sources of this information,
such as record linkages to various censuses). In the data set as a whole, surprisingly, slightly
less (6.7%) are flagged as illiterate; one would expect that the whole sample (i.e. including
men with unknown birthdays) would have a higher illiteracy rate. This again indicates that the
effects of sample selection may not be too large. Note that this applies only to the veterans for
whom literacy information is known, one way or another — 37% of the 35,570 are missing
any information on literacy. It is probably a safe bet that a fair number of this 37% were
illiterate.

Tuberculosis and influenza classification

Tuberculosis morbidity is the key independent variable in the analysis, and it is worth
explaining in more detail how it was measured. Tuberculosis is a textbook example of a chronic
infectious disease, particularly in the pre-chemotherapeutic era. Symptomatic infection (viz.,
active pulmonary tuberculosis) could last years, until recovery or death, and even recovery
could (and frequently did) lead to recrudescence.
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The tuberculosis status of an individual is based on wartime military medical records and on
post-war pension records. Given the nineteenth-century setting, | assume that no veteran who
has tuberculosis is ever fully cured. Thus, the independent variable for tuberculosis in the
regressions is an indicator variable representing ever having had the disease. The veterans’
wartime and pension medical records were searched (using the AWK computer language, Aho,
Kernighan, & Weinberger, 1988) for any mention of tuberculosis disease.

Consider the types of possible misclassification. Of particular interest are veterans who had
tuberculosis but were not recorded as such. This could happen if a sick veteran did not seek
medical care, or if records were lost. It is certainly possible, indeed almost certain, that some
veterans suffered from tuberculosis but no records of this survived. Conditional on having
medical records, misdiagnosis is unlikely, because doctors in this time period were well
acquainted with the signs and symptoms of pulmonary tuberculosis (the most prevalent form
by far) and it is unlikely they would have recorded tuberculosis in the medical record of, e.g.,
an asthmatic but non-tuberculous veteran or failed to notice all but the most subtle cases.
Tuberculosis includes a host of non-pulmonary symptoms, including weight loss, that would
have assisted diagnosis. As already noted, active pulmonary tuberculosis is the relevant
measure here — latency was not part of contemporary medical knowledge.

In terms of quality of diagnosis, conditional on a veteran visiting a doctor, false positives would
likely have been rare. As noted, the signs and symptoms of tuberculosis were well known, and
positive diagnosis would not have been made in the absence of these. Moreover, the medical
records show that the Army and pension board physicians were on guard for malingerers. The
same cannot be said for false negatives, as tuberculosis carried enormous stigma in the
nineteenth century, and for this reason, it is plausible that, after the war, veterans would have
tried to avoid diagnosis, perhaps by staying away from the doctor altogether. During the war,
on the other hand, medical discharge for tuberculosis was possible.

Table 2 is an illustration of how tuberculosis was coded. As noted in the marginal total in the
lower right hand corner, Table 2 is based on the whole Union Army data set. The regression
sample is a subset of this table and is therefore similarly cross-classified. The columns of Table
2 represent what is observed in the data, and the rows represent how the data were coded. The
left three columns tally veterans who had observed tuberculosis morbidity; the marginal total
as noted in the bottom left is 923, or 2.6% of the whole sample. Of these 923, there was a
recorded cause of death for 506 (left second-to-bottom marginal total). Reading the left three
cells of the first row of the table: among the observed tuberculous for whom there is a cause
of death, 165, or 32%, died of tuberculosis; 341 died of something else; and 417 of the observed
tuberculous lack a recorded cause of death. Any record with observed tuberculosis was
classified as such, so the left three cells of the second row of the table are all structural zeros
(indicated as @).

Moving on to the right three columns of Table 2, these 34,647 records (marginal total, bottom
line, right) have no observed tuberculosis morbidity based on medical records. Ostensibly,
then, these are non-tuberculous. However, in these six cells, it is necessary to classify with
care, as it is possible to determine the tuberculous status of some. Of the 34,647 veterans with
no observed tuberculosis morbidity, 19,289 are also missing cause of death (lower right cell).
Cells marked with an asterisk (*) are designated as “lacking any reason to classify as
tuberculous”, and are classified as not tuberculous. The 19,289 in the lower right cell are a
good example of the use of the asterisk: presumably some of these men had tuberculosis, but
it does not appear in their medical records (or they had no medical records whatsoever), and
they are also missing cause of death, so there is not a lot to go by.
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For 14,446 men (lower row, second cell from the right), there is a cause of death, but it is not
tuberculosis (both proximate and contributory causes were checked); again, no evidence of
tuberculous. However, 912 men died of tuberculosis who had no medical record of the disease
while they were alive. All these men were classified as tuberculous because they must have
had the disease if they died of it. The cell below 912 is thus a structural zero. The remaining
two cells are structural zeros by default (@, *).

As Riley, (1999, p. 103) notes, “sickness creates fewer records than does death”. Overall, 912
tuberculous veterans are coded as such based on their death record alone; this is nearly half the
total classified as tuberculous. Of these 912, some 27% (246) had known birth dates, while in
the overall sample 36% have known birth dates. As one would expect, this indicates that when
the only tuberculosis information is the death certificate information, the sample is skewed
somewhat toward those with little information in general.

These 912 men had tuberculosis while they were alive and for whatever reason no record of it
survived except the cause recorded on the death certificate. There is no doubt that if the
proportion of such cases were smaller, it would instill greater confidence in the data.
Specifically, if one only had information from the left three columns of Table 2, one would
like to assume that the hypothetical total in that case (923) was a good estimate of the prevalence
of tuberculosis. In fact it would be too low by half. However, not all the missed diagnoses
should be attributed to poor data quality, per se. The pension program was not a mandatory
medical-inspection program. Some veterans were not examined by a doctor or went to a private
doctor outside the pension program. Given that their death certificate lists tuberculosis, it seems
wasteful not to use this information.

Death due to influenza — the dependent variable — was coded using a similar procedure, in
terms of searching the records, except only causes of death were searched. “Influenza” or
“pneumonia” were the search terms.

The analysis is a continuous time event history analysis, assessing tuberculosis morbidity as a
risk factor for death due to influenza, restricted to adult (age 65 and under) deaths. The elderly
are excluded. As noted previously, the reason for this is that, in the original setting of the 1918
pandemic, the influenza—tuberculosis selection hypothesis operated at the level of adult
mortality. Thus there are no deaths from 1918; the US Civil War ended in 1865, making the
Union Army veterans too old, by 1918, to be below age 65. Nonetheless, | wish to look at what
happens at pre-elderly ages, as in the pandemic.

In the models, tuberculosis is not a time-varying covariate. | know if a veteran ever had
tuberculosis, or if, as far as | can tell, he never had it. In reality, tuberculosis infection is time-
varying — people are not born with pulmonary tuberculosis. But tuberculosis status was not
treated as time-varying covariate because, foremost among other reasons, the date of recorded
diagnosis is not a reliable estimate of date of infection.

The Cox models being estimated take the following form:

h(1|x)="ho(1) exp (B'X). (1)

In Eq. (1), h(t) represents the hazard at time t; hg(:) is a baseline hazard; g is a vector of
coefficients to be estimated; and x is a vector of covariates. Kalbfleisch and Prentice (2002)
discuss the details of Cox regression. Models were estimated using STATA software, version
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10.1 (StataCorp LP, College Station, Texas). The regression results are in Tables 4 and 5,
presented as hazard ratios (exponentiated coefficients).

First, before the regression results, Table 3 presents a simple 2 x 2 layout. This shows that
1.21% of the tuberculous died of flu, while a roughly equal proportion (1.36%) the non-
tuberculous died of flu. Running a logistic regression gives the same odds ratio as stated in the
table, with |z| = 0.43, p = 0.67; not near significant. These tabular findings can be elaborated
upon by a simple Cox regression of the effect of having tuberculosis on the hazard of influenza
death (Table 4, column 1). The hazard ratio is higher than the analogous odds ratio from Table
3 because the Cox regression is a person-years of exposure framework, whereas Table 3 only
looks at dichotomous outcomes and exposures. The data underlying both the tabulation of
Table 3 and the estimation of Table 4, column 1 are exactly the same; only the mode of analysis
is different. Here, in model 1 of Table 4, the result is in the expected direction of active selection
(tuberculosis being a risk factor for influenza death, or a hazard ratio greater than one), although
as with Table 3, it is not statistically significant. All the Cox models cluster on companies.

In historical populations, ceteris paribus, height proxies for childhood nutrition and thus for
social status. There is a genetic component of height, but over time and between groups,
nutrition is key. There is a large literature on this subject — cf. Floud, Wachter, and Gregory
(1990), Steckel (1994, chap. 9, 1995), and Floud (1998), among others. Fogel (2004b) offers
a comprehensive account of the increases in both nutrition and height over time; some have
argued that he gives short shrift to the metabolic advantages of decreased infectious disease
burden (see e.g. Deaton, 2006). It remains uncontroversial, however, that better-fed populations
—all things equal — are taller. Height is a useful control variable to include in the regressions.

For the Union Army data in particular, Haines (1998) and Wilson and Pope (2003, chap. 5)
discuss height in great detail. The height of the veterans was measured at enlistment, and thus
is unaffected by loss of stature at older ages. However, in the nineteenth-century peak adult
height was often not reached until after age 18. Younger recruits tended to be about one inch
(2.5 cm) shorter than older recruits, which is not a negligible difference. Height is therefore
included as quintile of height-for-age in order to avoid any spurious correlation of height and
age at enlistment. Table 4, column 2 shows that the hazard ratio of tuberculosis morbidity on
influenza mortality is unaffected by inclusion of this control. Potential nonlinearities are
captured by dummy variables for shortness (five feet six inches and below) and tallness (five
feet 11 inches and above). Note that tallness is a priori expected to decrease the risk of being
tuberculous, but not necessarily the risk of death due to influenza, conditional on being
tuberculous. Tallness also ostensibly proxies for a veteran having more complete medical
records, again working through socioeconomic status. The coefficient on height changes sign
upon inclusion of the short and tall dummies, and it becomes protective (i.e. taller means less
risk). This is more in-line with theoretical expectations, indicating that the dummies for short
and tall are probably a useful addition to the model.

One way to try to capture non-recorded cases is to look at the number of cases of tuberculosis
at the company level, as a proxy for unmeasured tuberculosis. There were on average 1.4 cases
of tuberculosis per company during the war (about 100 men per company). Because
tuberculosis is contagious, the more cases of tuberculosis in a company, the greater chance that
an individual soldier would have contracted it. In this sense, tuberculosis in company is not a
control variable, but an alternate measure of exposure to tuberculosis. Including the TB in
company variable in the model (Table 4, column 4) does not affect the main hazard ratio of
interest. However, the TB in company variable is, itself, a risk-enhancer. The magnitude of the
effect is not especially large, but it is statistically significant (at least at the 10% threshold) in
every model in which it is included.
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Model 5 (Table 4, column 5) includes a dummy variable for illiteracy, a salient measure of
educational attainment. Inclusion of the literacy dummy variable nudges the hazard ratio of
interest (tuberculosis) away from the expected direction (under active selection), though as
noted it was not significant to begin with. When BMI is included in the model, the hazard ratio
of interest, tuberculosis, becomes larger in the direction of active selection, albeit still short of
statistical significance (model 6: Table 4, column 6).

As with literacy and BMI, including occupational information diminishes sample size (model
7: Table 4, column 7). The coefficient of interest in this model again is nudged to the other
side of the predicted effect (assuming active selection), and is not significant. All the models
have relatively small numbers of influenza deaths, making statistical significance hard to attain,
but this model, with only 90 deaths, is especially difficult to interpret.

Model 8 (Table 4, column 8) contains company fixed effects. Companies were organized by
individual states (i.e. recruits from Massachusetts and Connecticut would not have served in
the same company). So model 8 conditions on both shared wartime experiences of individual
companies and on state of origin. The hazard ratio of interest in model 8 is slightly lower than
that in model 6, but it still points toward active selection, though like all these models the
sample size is too low to permit statistical significance.

Fig. 3 shows the hazard function, taken from model 6 (Table 4, column 6), for the tuberculous
(solid) and non-tuberculous(dashed). This is a smoothed empirical hazard, not a parametric
functional form. It is interesting that the hazard peaks below age 65. During this time period
it is well understood that tuberculosis was a disease of adulthood, not old age. The hazard in
Fig. 3 is for death due to influenza, however, which is usually regarded as a disease for which
hazard rates increase monotonically above about age 45.

Table 5 contains control regressions. Here “control” is not used in the sense of having variables
in the right hand side of the regression equation. It is meant to test the idea that the tuberculous
veterans may be, simply, sickly people who have increased hazards of dying from all
diseases. Therefore, Table 5 shows the results of model 1, model 6, and model 8 from Table
4 but with death by heart disease as the outcome variable. The hazard ratios in Table 5 are
smaller than their analogues in Table 4. The “simply sick veterans” alternate explanation of
the results in Table 4 does not have much traction in light of the results in Table 5. If the
tuberculous were simply sick and dropping like flies, one would expect them to die also of
heart disease.

The results in Table 5 also help rule out the potential of a more specific inclusion bias of sick
veterans. Most of the eligible veterans were on the pension rolls by about 1890. Prior to this
time, those on the pension rolls were disproportionally ill. As touched upon above, the present
interest is in adult mortality (below age 65) and so the time frame of interest includes some
deaths before 1890. The potential inclusion bias here is that, due to the pension law, to be
included in the sample in the period after the war but before about 1890 means that a veteran
was disproportionally likely to be sick of some cause. Table 5 points away from this inclusion
bias as a major problem.

Two other points are worth mentioning. The first is whether the models are affected by
changing sample composition from model-to-model, as covariates are added. At the bottom of
the regression tables, the row labeled fail time gives the mean age of death or censoring for all
the veterans in the regression sample of each column. That is to say, it averages not just the
times to influenza death, but also time to any other death. The biggest change is when
occupation dummies are introduced (not surprisingly, the direction is toward longer life), but
all things considered the mean time to failure is quite robust. For example, from model (5) to
model (6), the change in average fail time is 0.03 year overall.
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The second point is statistical power. Given the sample size, are these models likely to find a
statistically significant effect, even if one exists? This is important because there are many non-
significant coefficients, which would not be at all surprising if the sample size is too low. The
power of models (1)—(8) is good by the standards of historical epidemiology, in the 85% range.
This is assuming detection of a hazard ratio > 2.0, with an alpha threshold of 10% in a one-

sided test. For example, for model (6), the power is 86%; for a two-sided test it would be 76%.

Bryder (1996) argues that, historically, many tuberculosis deaths were classified on death
certificates as pneumonia, due to the social stigma of tuberculosis. According to Bryder,
pressure, implicit or otherwise, could be put on physicians not to list tuberculosis on the death
certificate. A family history of tuberculosis was an impediment to obtaining life insurance (cf.
Bryder, 1996, p. 261, as well as Beckett, 1923). If correct, the phenomenon Bryder describes
would spuriously affect the results in the same direction as active selection, but only for cases
where there was some evidence of tuberculosis morbidity apart from the cause of death.

Conclusion

In section “Active” and “passive” selection, | drew the distinction between active and passive
selection, where both forms could potentially account for the effects seen in Noymer and
Garenne (2000). Active selection would mean that the tuberculous in 1918 were at greater risk
of influenza death. Passive selection would mean that the unusual (for influenza) age-mortality
profile in 1918 accounts for so many tuberculous being caught in the net of fatal influenza,
without any enhancement at the individual level.

In the present results, no statistically significant enhancement of influenza mortality was seen
among Union Army veterans with tuberculosis morbidity. For an alternate measure of
tuberculosis exposure — cases of tuberculosis in the same Army company — a statistically
significant, though relatively small, positive effect of TB on influenza death was seen. Inclusion
of controls such as body mass index (BMI) and company fixed effects did not produce
overwhelming changes in the regression coefficients. The effects observed when the outcome
is influenza death are greater than when the outcome is heart disease mortality. These results
recall Jay Winter’s observation that “regression analysis is not the most subtle of tools in
historical demography” (Winter, 2003, p. 139). The present results tentatively point toward
passive selection being behind the effects seen in Noymer and Garenne (2000). Active
selection, but specific to the 1918 flu strain, cannot be ruled out. The changes in tuberculosis
mortality in the close wake of the 1918 influenza pandemic may not have been due to any
specific enhancement of risk of influenza death among the tuberculous — but simply due to
the tuberculous population being “in the wrong age group at the wrong time”.

An alternate way to test the tuberculosis—influenza selection hypothesis with microdata would
be to collect data from developing countries today, where tuberculosis prevalence remains high
(Dye, Scheele, Dolin, Pathania, & Raviglione, 1999) and where influenza is also a major
problem (Viboud, Alonso, & Simonsen, 2006). Even so, the longitudinal nature of the Union
Army data set makes it more appealing than any data that could be collected easily in a short
time span. It is also worth bearing in mind that HIV complicates matters considerably today
because, in addition to being a major cause of death, HIV is a risk-enhancer for many diseases.
And modern clinical records from high-income nations (i.e. where microdata may be readily
available) are not a good guide to the epidemiology of tuberculosis in the pre-chemotherapeutic
era.

Whether active or passive selection is behind the results of Noymer and Garenne (2000), when
demographers look at early life influences on later mortality, they should also think about which
diseases a cohort has experienced, because prior exposure to an illness may affect outcomes
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to seemingly-unrelated illnesses years later, and this is more general than intrauterine or
childhood deprivation effects that have been extensively studied in the early influences
literature. The presence of one disease can affect the demography and epidemiology of another.
Competing risks are sometimes dependent.
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Fig. 1.
Age mortality profile, influenza and pneumonia, 1917 and 1918, United States death
registration area. Data from U.S. Department of Health, Education, and Welfare (1956).
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Fig. 2.

Age-standardized death rate, tuberculosis, 1900-1940, United States death registration area.

Source: U.S. Department of Health, Education, and Welfare (1956).
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Fig. 3.
Smoothed hazard graph from model 6 (Table 4). The solid curve represents the hazard of

influenza death among the tuberculous, and the dashed curve among the non-tuberculous. See
text for discussion.
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Table 2
Tuberculosis morbidity and mortality classification. See text for discussion.

OBSERVED TUBERCULOSIS MORBIDITY
YES NO
Observed TB mortality | Observed TB mortality
Yes | No — Yes No —
CLASSIFIED Yes | 165 | 341 417 912 @ O* } 1,835
TB Morbidity { No | @ @ (%) @ | 14,446 * | 19,289 = | } 33,735
N—— SN——
506 15,358
923 34,647 } 35,570

—: Missing cause of death.
@: Structural zero.
x: Lacking any reason to classify as tuberculous.
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Table 3
2 x 2 Table of tuberculosis morbidity vs. influenza mortality

Page 21

Had tuberculosis

Died of flu

No Yes
No 16,299 1141
Yes 225 14
Percentage 1.36 121

Odds ratio = (16, 299 x14) + (1, 141 x 225) = 0.88.
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Cox regression results, continued. Heart disease regressions (see text).

Table 5

Page 24

hazard ratio of heart disease death

(1a) (6a) (8a)
TB morbidity 0.708 0.789 0.801
(0.17) (0.19) (0.20)
[0.15] [0.33] [0.38]
Height quintile 0.999 1.011
(0.058) (0.062)
[0.99] [0.86]
Short 0.952 0.931
(0.16) 0.17)
[0.78] [0.69]
Tall 1.128 1.183
(0.17) (0.18)
[0.42] [0.28]
BMI 1.051 1.050
(0.013) (0.013)
[0.000044] [0.00012]
TB in company 1.018
(0.029)
[0.54]
Company dummies No No Yes
Occupation dummies No No No
LL —5931 -5090 —4898
N 17,679 15,745 15,745
N fail 618 536 536
fail time 62.22 62.96 62.96

Robust standard errors in parentheses.

p-Values in square brackets.
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