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Basal or standard metabolic rate (SMR) has been found to exhibit substantial intraspecific variation in a

range of taxa, but the consequences of this variation are little understood. Here we explore how SMR is

related to the energy cost of processing food, known as apparent specific dynamic action or the heat

increment of feeding. Using juvenile Atlantic salmon Salmo salar, we show that fishes with a higher SMR

had a higher peak and a greater total energy expenditure when digesting a given size of meal. However, the

duration over which their metabolism was elevated after consuming the meal was shorter. The greater

energy costs they incur for processing food may be related to their assimilation efficiency. These

relationships are likely to have implications for feeding strategies and growth rates, since individuals with a

higher SMR have higher routine costs of living but recover more quickly following feeding and so may have

a greater potential for processing food.
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1. INTRODUCTION
All animals have a ‘baseline’ level of metabolic rate (MR),

termed the basal MR (BMR) in homeotherms and

standard MR (SMR) in poikilotherms, and defined as

the level of energy consumption when inactive, not

assimilating a meal and not paying off any oxygen debt

associated with previous anaerobic activity (McNab 1988;

Hulbert & Else 2000; Frappell & Butler 2004). It is well

established that this MR (hereafter referred to as SMR)

varies substantially among species (Blaxter 1989), tending

to be the highest in those animals that have the most active

lifestyles (White & Seymour 2004). However, there

can also be a substantial (up to fivefold) variation in

SMR within species, even under controlled conditions

(Metcalfe et al. 1995; Steyermark et al. 2005). SMR

represents a large component of the energy budget, for

example, comprising up to 80 per cent in homeotherms

and 90 per cent in free-living teleost fishes (Diana 1983;

Speakman et al. 2003; Secor 2009). Therefore, it is

important to understand the functional relevance of the

wide intraspecific variation in this parameter.

Based on the variation among and within species, it has

been hypothesized that SMR may relate to the cost of

maintaining a scope for activity that is adapted to the

lifestyles of the species (Hammond & Diamond 1997;

Meerlo et al. 1997; Speakman et al. 2003). The scope for

activity is the difference between standard and maximum

MR (Fry 1947, 1971). A high-performance capacity could

be expected to require a large mass of aerobically active

tissues, such as the heart and lungs, which are relatively

expensive to maintain (Steyermark et al. 2005) and would
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lead to high basal costs. Such a relationship is observed

when comparing interspecific trends in lifestyles, such

as that illustrated in fishes by the relatively sessile pike

(Esox lucius Armstrong et al. 1992) and flatfish (Duthie

1982) compared with the more active salmonids (Brett

1965) and tunas (Dewar & Graham 1994; Clarke &

Seymour 2006; Blank et al. 2007).

The relationship between MR and lifestyle might also

be invoked to explain intraspecific variation in SMR.

Juvenile salmonid fishes have been a particularly useful

subject for exploring individual variation in metabolism,

because it has been possible to relate SMR to behavioural

traits and therefore lifestyle within a species (Metcalfe

et al. 1995; McCarthy 2000). SMR correlates with

dominance status, which is reflected in the ability of fish

to access high-value food patches (Metcalfe et al. 1989;

Gotceitas & Godin 1992). Dominant individuals with high

SMR tend to exhibit active aggressive behaviours, whereas

subordinate fish are more passive, more cryptic and feed in

more marginal areas (Höglund et al. 2000; Höjesjö et al.

2005). Therefore, a higher SMR in the more dominant

salmon is consistent with a link between SMR and the

scope for activity. However, in direct tests of this

possibility, Cutts et al. (2002) found that juvenile Atlantic

salmon (Salmo salar L.) with a higher SMR actually had

a lower scope for activity.

An alternative possibility is that SMR relates to

variations in capacity for processing food. Dominance,

and hence SMR, is linked to food intake and growth of

salmonids in habitats where spatial distributions of food

patch qualities are predictable and can be defended, such

as pools in rivers (Nakano 1995). The mechanical and

chemical processes that accompany ingestion, digestion

and assimilation of food result in an elevation in MR,
This journal is q 2009 The Royal Society



2104 K. J. Millidine et al. Linking SMR and digestive strategies in salmon
termed the heat increment of feeding or apparent specific

dynamic action (SDA; Beamish 1974). SDA increases

rapidly to a peak or plateau after the ingestion of food, and

then decreases more slowly as digestion of the meal

proceeds (Jobling 1981). The costs of protein synthesis

comprise a substantial component of SDA (Carter et al.

2001), and hence it relates directly to the rate of protein

accretion and somatic growth. The faster digestion of food

and accretion of tissues would result in a more rapid

pronounced peak in SDA. Moreover, a reduction in the

duration of SDA would enable a hastened capacity for

further processing of subsequent meals with more rapid

re-feeding and a greater throughput of food.

It is well established that the height and magnitude of

SDA relate directly to the meal size (Jobling & Davies

1980; Secor & Diamond 1997; Zaidan & Beaupre 2003;

Secor 2009), but there is no information on whether SDA

for a given meal varies within species as a function of

individual traits such as SMR. Here we explore this area,

in particular testing the hypothesis that SMR is directly

related to the speed and size of the SDA response. By

measuring changes in the rate of oxygen consumption by

Atlantic salmon of differing SMR, which consumed

standard meal sizes, we show for the first time that there

are strong links between SMR and the profile of energy

expenditure during SDA, indicating the existence of

intraspecific variation in food-processing strategies.
2. MATERIAL AND METHODS
The experiments were carried out on underyearling Atlantic

salmon parr derived from wild parents; these were reared at

the Fisheries Research Services Almondbank field station,

Perthshire, and transferred to University of Glasgow in early

August 2006 where they were held in a circular tank (1 m2) at

13.58C in aerated, recirculated, copper-free water under an

ambient seasonal photoperiod. They were fed to satiation on

defrosted bloodworms (Chironomid larvae) once a day. While

in the holding tank, the fish had access to shelters in the form

of large stones and lengths of semicircular cut piping (approx.

120 mm in diameter). They were allowed to settle in the

holding tank for one month before the first respirometry

experiments took place. At the start of each round of

experiments, four fish were selected at random, weighed

and measured. They were then placed without food in

individual respirometer chambers, maintained under sub-

dued light at the same temperature of 13.58C (G0.5)

throughout the whole experimental period, and allowed to

settle for 2 days before the commencement of the first

respirometry measurements (volume including pump,

chamber and tubes was asymptotically equal to 1.6 l). Each

of the separate respirometer chambers contained a clear

Perspex shelter, since fish have a higher resting rate of

metabolism when denied access to any shelter (Millidine

et al. 2006). The chambers were kept in dim light to further

reduce stress and activity levels; the water flow through

the chambers was insufficient to prompt swimming, and

therefore the fish remained resting on the substrate (water

flow rate was 0.28 l sK1). The apparatus was similar to that

described in Millidine et al. (2006), and allowed measure-

ments of oxygen consumption rates to be made using

intermittent flow respirometry. All measurements were

adjusted for temperature and barometric pressure using the

table taken from Lewis (2006).
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To measure SDA, it was first necessary to record the

resting level of metabolism of the fish in a post-absorptive and

quiescent state (which we define as their SMR, being the

lowest level of metabolism that the fish is likely to reach on a

regular basis). This was carried out between 08.00 and 09.00,

2 days after the fish had been placed in the respirometers.

Measurements of oxygen consumption rates by fish were

taken by closing the respirometer valves, thus preventing any

water exchange, for a period of 10 min. After this time,

the system was reopened to allow the water within the

respirometer to be completely flushed with air-saturated

water. Regular observations were made on the fish to ensure

that they were inactive. Flow rate through the chamber did

not significantly change during flushing and at no point did

oxygen concentrations drop below 90 per cent saturation.

Food, in the form of defrosted bloodworms, was then

given to the fish inside the respirometers. Two of the four fish

were each given a single meal of bloodworms weighing

0.15 per cent (wet weight) of their body mass while the other

two were each given a meal weighing 0.30 per cent of body

mass. These chosen meal sizes were relatively small in

comparison with their total daily intake, which is commonly

offered in a single meal in studies of SDA (Secor 2009).

However, they more closely simulate food intake in Atlantic

salmon parr experiencing competition for feeding patches

and irregular supply of food in natural conditions. The

bloodworms were individually introduced to the respirometer

chambers via the water inlet valve when the system was fully

open. They were usually eaten immediately, and as soon as all

the bloodworms had been consumed, the system was closed

for a period of 5 min and the rate of oxygen consumption was

measured. The system was then reopened, and when the

water within the respirometer was completely flushed with air-

saturated water (approx. 3 min), the system was again closed

for a further 5 min to obtain another reading. This process

was continued for approximately the first 2 hours until the

peak in oxygen consumption rate had passed. After this point,

oxygen consumption rates were recorded every half an hour,

extending to every hour over the last 2 hours of the SDA

response when the decline in oxygen consumption rate was

minimal (less than 10% change). Once the rate of oxygen

consumption of all fish had dropped to the initial rate (prior

to the introduction of food), they were removed and replaced

with another four fish of known weights. This procedure was

then repeated until all fish had been tested. Any fish that either

refused to eat or became active while within the respirometer

was removed and replaced. The oxygen consumption of the

fish was calculated from the rate of decline of oxygen in the

closed respirometer and expressed as mg O2 kgK1 hK1.

Over a five-week period, a total of 26 fish provided useable

data (i.e. they consumed the correct amount of bloodworm

introduced into the respirometer and were inactive through-

out the feeding day). There was no significant difference

between the mean weights of fish used in the two meal groups

(0.15% body weight meal: meanZ6.42 gG2.55 s.d., range

3.37–11.34 g, nZ12; 0.30% meal: meanZ7.36 gG1.78,

range 3.99–11.37 g, nZ14; independent samples t-test,

t24Z1.14, pZ0.27).

A range of parameters quantifying SDA was then

calculated from the response of each fish: peak SDA (defined

as the maximum postprandial MR—SMR); time taken to

reach peak SDA; duration of the SDA response (i.e. time

until the rate of oxygen consumption had returned to

the preprandial level); and the magnitude of SDA
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Figure 1. The general shape of the SDA response for fish
eating different meal sizes (circles, 0.15% of fish body mass;
squares, 0.30% of body mass). Symbols show the meanGs.d.
based on data from 12 and 14 fish consuming meals at 0.15
and 0.30% of body mass, respectively. The horizontal line
indicates the average SMR of the fish.
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(defined as the overall oxygen consumption due to digestion,

and equivalent to the area under the curve of SDA against

time, calculated using MATLAB v. 6 to plot each SDA

response). The corresponding data from all 26 fish were

then analysed using general linear models in which these

different measures of SDA were used as the dependent

variables in successive analyses, with SMR, body weight,

water temperature at the time of testing (which varied very

slightly between trials) and relative size of meal as candidate-

independent variables. Each fish consumed a single test meal

and thus contributed one data point to the analyses.
3. RESULTS
The rate of oxygen consumption increased to a peak

shortly after feeding and then gradually declined to the

pre-feeding level over a period of 2.5–9.5 hours. As

expected, the duration of this SDA response, the size of

the peak SDA, the time to reach that peak and the overall

magnitude of SDA were all significantly greater in fish

consuming the larger meal (table 1). Figure 1 illustrates

the general pattern of postprandial oxygen consumption

rates for the two meal sizes. These effects of meal size were

not confounded by SMR, since mean SMR did not differ

between fish in the two meal size treatments (table 1).

However, many of the dimensions of apparent SDA

were significantly related to inter-individual variation in

SMR (table 2). As SMR increased, both the peak SDA

and the overall magnitude of SDA increased for a given

meal size, whereas the duration of the SDA response

decreased (figure 2). By contrast, SMR did not influence

the time that elapsed from when a meal was ingested until

the peak SDA was reached (table 2; figure 2). The

magnitude of SDA was influenced by a significant

interaction between SMR and meal size (F5,25Z8.02,

pZ0.01), and therefore separate analyses were run to

establish the effect of the independent variables (SMR,

temperature and weight) for the two meal sizes. In both

cases, the magnitude of the SDA response increased with

SMR (at a faster rate at the larger meal size; figure 2d ),

while temperature and body weight had no effect (table 2).
4. DISCUSSION
The magnitude and among-individual range in SMR were

similar to those of individuals recorded from the same

stock of fish over long time periods (Millidine et al. 2008);



Table 2. Significance levels and coefficients of linear models relating the observed SDA responses from 26 juvenile salmon to
meal size and SMR. (Separate analyses were run using (a) peak SDA, (b) time to reach peak SDA after food consumption,
(c) duration of SDA effect, and (d ) magnitude of SDA as the dependent variable for (i) 0.15% of body weight and (ii) 0.30%
body weight; significant predictor variables are listed with their unstandardized regression coefficients (body weight and
temperature were not significant and were removed from the model in all cases).)

dependent variable significant independent variables coefficient significance, p

(a) peak SDA (mg O2 kgK1 hK1) meal size (% body weight) 196.31 0.002
SMR (mg O2 kgK1 hK1) 0.32 !0.001
constant 7.60 0.599

(b) time to reach peak SDA (mins) meal size (% body weight) 92.83 0.002
constant 21.43 0.005

(c) duration of SDA (mins) meal size (% body weight) 1525.74 !0.001
SMR (mg O2 kgK1 hK1) K0.61 0.009
constant 90.67 0.062

(d ) magnitude of SDA (mg O2 kgK1)
(i) 0.15% body weight SMR (mg O2 kgK1 hK1) 2.428 0.006

constant 443.78 0.007
(ii) 0.30% body weight SMR (mg O2 kgK1 hK1) 9.642 !0.001

constant 212.49 0.534
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Figure 2. The effect of variation in individual SMR on (a) peak SDA, (b) time taken to reach peak SDA after ingesting a meal,
(c) duration of SDA, and (d ) magnitude of SDA. Squares and diamonds represent fish fed a single large or small meal (0.30 or
0.15% of body mass), respectively. See table 2 for statistical analyses. Individual relationships are shown between each SDA
parameter and meal size where significant. Separate slopes are fitted in (d ) where SMR interacts significantly with meal size.
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previous work based on extensive observations has

confirmed that activity is negligible in the study species

given a suitable shelter in the respirometer (Millidine et al.

2006), hence justifying the description of SMR. The effect

of meal size on subsequent oxygen consumption rates of

salmon was similar to that often observed in other animals

(Secor 2009): larger meals produced a higher peak

elevation and magnitude of SDA; a longer time to reach

the peak oxygen consumption; and a longer duration of

SDA response. Such trends occur in various species of

fishes (Beamish 1974; Jobling & Davies 1980; Boyce &

Clarke 1997) and other poikilotherms including snakes
Proc. R. Soc. B (2009)
(Toledo et al. 2003; Zaidan & Beaupre 2003) and

salamanders (Secor & Boehm 2006). More interesting

were the differences in the relationship between SMR and

SDA among individual salmon. A fish’s SMR was related

directly to the peak and the overall magnitude of its SDA

response, and inversely to the recovery time. This finding

suggests that the variation in SMR among fishes is linked

to their food assimilation strategy.

What are the implications for variation in SDA patterns

among fishes? Growth rate has been shown to correlate

with the SDA peak in fishes (Jobling 1981) and SDA

magnitude in starfish (Vahl 1984). A substantial
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component of the SDA response in teleost fishes is due to

the increased protein synthesis and turnover after feeding

(Brown & Cameron 1991a,b; Lyndon et al. 1992; Carter &

Houlihan 2001; Secor 2009). It is therefore likely that

those individual salmon with a relatively high SDA and

associated high SMR could experience an increase in

growth potential, through extraction and assimilation of

more nutrients from a given meal. This pattern would

mirror among-species variation in the magnitude of

SDA, which tends to be two to three times the SMR

regardless of the magnitude of SMR (Secor 2009). An

exception may be some of the tunas, which can have both a

very high SMR and SDA in relation to SMR (Fitzgibbon

et al. 2007).

As well as having a high peak and total SDA, individual

salmon with a high SMR recovered rapidly to baseline

levels of oxygen consumption following feeding. This

phenomenon suggests that they process and assimilate

meals rapidly. Such a link between SMR and the rate of

processing food exists among species of snake (Secor &

Diamond 1998), but has not previously been shown to

apply within a species of animal.

Overall, the results of the present study suggest that a

high SMR in salmon enables a high physiological potential

for growth. In this respect, individuals with a relatively

high SMR may be considered to be energy speculators, in

the same sense as tunas (Fitzgibbon et al. 2007), having

the potential to grow fast in favourable environments but

at the cost of a high allocation of resources to routine

metabolism. Those with lower SMR adopt a more

conservative strategy that may be more resilient in adverse

food environments due to low running costs but

constrains performance as reflected in SDA. The large

variation in SMR in Atlantic salmon may reflect the fact

that individuals exhibit a diverse range of behavioural

strategies to survive, from aggressive defence of space

(Kalleberg 1958) to cryptic exploitation of marginal

habitat (e.g. Höjesjö et al. 2005). This study provides

the first evidence that intraspecific variation in metabolic

costs incurred during digestion correlates with variation in

basal metabolism; the way in which alternative metabolic,

foraging, assimilation and growth strategies are linked and

the trade-offs that underlie them are areas that are now

open to much further research.
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