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A model of the interaction of a spherical gas bubble and a rigid spherical particle is derived as a
coupled system of second-order differential equations using Lagrangian mechanics. The model
accounts for pulsation and translation of the bubble as well as translation of the particle in an
infinite, incompressible liquid. The model derived here is accurate to order R5 /d5, where R is a
characteristic radius and d is the separation distance between the bubble and particle. This order is
the minimum accuracy required to account for the interaction of the bubble and particle.
Dependence on the size and density of the particle is demonstrated through numerical integration of
the dynamical equations for both the free and forced response of the system. Numerical results are
presented for models accurate to orders higher than R5 /d5 to demonstrate the consequences of
truncating the equations at order R5 /d5.
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I. INTRODUCTION

Theoretical models describing the interaction of two or
many gas bubbles in liquid have been in development for
decades.1–11 In the present work, the theoretical framework
for one such model,11 previously utilized to describe bubble-
bubble interaction, is applied to the interaction between a
pulsating spherical bubble and a rigid spherical particle. Both
the bubble and particle are free to translate.

There currently exist several models for the interaction
between bubbles and immovable solid objects. Coakley and
Nyborg12 derived an expression for the time-averaged force
generated between a spherical bubble pulsating infinitesi-
mally and a rigid, immovable sphere. Their expression is
recovered as a special case of the present model. Theoretical,
numerical, and experimental analyses of bubble behavior
near rigid boundaries of infinite extent have shown that a
bubble in pulsation translates toward plane, convex, and con-
cave boundaries.13–17 Other investigations have focused on
bubble motion near rigid and deformable, but also immov-
able spheres.18,19 These latter studies have concentrated pri-
marily on modeling the violent aspherical collapse of the
bubble and have employed boundary integral or other nu-
merical techniques. In contrast, here we present an analytical
model valid for low amplitude spherical oscillations, but for
which both the bubble and particle are free to translate.

The present investigation was motivated initially by a
desire to account for the interaction of cavitation clusters and
kidney stone fragments produced during shock wave
lithotripsy.20 However, the extreme conditions of lithotripsy
require consideration of liquid compressibility, cluster dy-
namics, and aspherical bubble deformation. While liquid
compressibility corrections and dynamics of clusters contain-
ing arbitrary numbers of bubbles and particles are reported

a�
Electronic mail: haymaker@mail.utexas.edu

J. Acoust. Soc. Am. 125 �3�, March 2009 0001-4966/2009/125�3
elsewhere,21 the discussion here is limited for simplicity to a
system with a single bubble and single particle under condi-
tions where the liquid may be assumed incompressible. The
assumption of incompressibility is valid if the wavelength of
the acoustic excitation is much larger than the characteristic
separation distance between the objects. In addition, the
magnitudes of the radial and translational velocities in the
system must be much less than the speed of sound in the
liquid. Finally, it is assumed that the bubble remains spheri-
cal, and we thus ignore shape deformation requiring spheri-
cal harmonics of higher order than monopole �pulsation� and
dipole �translation�.

In comparison to bubble-bubble interaction, a higher-
order model is required to describe bubble-particle interac-
tion. The model equations must be accurate to at least order
R5 /d5, where R is a characteristic radius and d is the distance
separating the bubble and particle. In contrast, the corre-
sponding model equations for the coupled pulsation and
translation of bubbles need only contain terms up to order
R2 /d2.11 In practice, when the bubble and particle are in
close proximity, a model with accuracy beyond R5 /d5 is nec-
essary to obtain numerical convergence. This issue will be
addressed in detail.

This paper is structured as follows. The system energy
and model equations are derived in Sec. II, and appropriate
loss mechanisms are discussed in Sec. III. In Secs. IV and V,
the effects of size and density of the particle are investigated
for both free and forced responses of the system via numeri-
cal integration of the dynamical equations.

II. THEORY

The geometry of the problem is presented in Fig. 1.
Coordinates with subscript 1 correspond to the gas bubble,
and coordinates with subscript 2 correspond to the rigid par-
ticle. Both objects are assumed to be spherical at all times.

Their positions are defined in relation to a fixed origin by the
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vectors r0i, i=1,2. The instantaneous and equilibrium radii
of the bubble are given by R1 and R01, respectively, while the
radius of the particle is fixed at R02. Motion is described by

the radial velocity of the bubble Ṙ1 and translational veloci-
ties Ui= ṙ0i, where dots over quantities indicate time deriva-
tives. Lagrange’s equations describing the dynamics of the
system are

d

dt� �L

�Ṙ1

� =
�L
�R1

,
d

dt
� �L

�Ui
� =

�L
�r0i

, �1�

where L=K−V is the Lagrangian, K is the kinetic energy,
and V is the potential energy of the system.

A. Potential energy

Potential energy is stored via compression or expansion
of the bubble. In differential form, it is expressed as

dV = �P0 − P1�dV1 = 4��P0 − P1�R1
2dR1,

where P0 is atmospheric pressure and V1= 4
3�R1

3 is the vol-
ume of the bubble. The pressure P1 in the liquid just outside
the bubble is taken to be

P1 = �P0 +
2�

R01
��R01

R1
�3�

−
2�

R1
, �2�

where � is the ratio of specific heats and � is surface tension.
Additional effects that contribute to this pressure, such as
heat transfer, gas diffusion, and condensation, are not consid-
ered here. Corrections for shear viscosity are discussed in
Sec. III.

B. Kinetic energy

The motion of the liquid, the particle, and the gas inside
the bubble all contribute to the kinetic energy of the system.
However, the gas density is negligible compared to the liquid
density, and kinetic energy associated with the motion of the
gas may be neglected. The kinetic energy due to translational
motion of the particle �Kpart� must be taken into account. The
total kinetic energy is thus

K = Kpart + Kliq, �3�

where Kliq is the kinetic energy of the surrounding liquid.

O

ρ2

r02

U2R02

r01

R1 U1

Ṙ1

d21

FIG. 1. Notation and geometry for bubble and particle with arbitrary trans-
lational motion.
The kinetic energy due to particle translation is simply
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Kpart =
1

2
m2U2

2, �4�

where m2 is the mass of the particle.
The remaining component of the total kinetic energy,

Kliq, accounts for the motion of the inviscid incompressible
liquid surrounding the bubble and particle. The liquid is as-
sumed to be irrotational, such that its motion is described by
a scalar velocity potential � which satisfies Laplace’s equa-
tion,

�2� = 0. �5�

The kinetic energy of the liquid is the integral

Kliq =
�

2
�

V

����2dV �6�

over the volume surrounding the bubble and particle, where
� is the liquid density. For a liquid at rest at infinity, Eq. �6�
can be rewritten as22

Kliq = −
�

2��S1

��r1�
���r1�

�r1
dS1 + �

S2

��r2�
���r2�

�r2
dS2� ,

�7�

where the surface Si coincides with the bubble or particle
wall, and ri= �ri� is the magnitude of the local coordinate
vector ri that defines position relative to the center of the
bubble or particle.

Calculation of the kinetic energy thus requires knowl-
edge of the velocity potential and its normal derivative on
the surface of the bubble and particle. The velocity potential
is expressed in the local coordinates of the bubble or particle.
The normal derivative of the velocity potential on the surface
of the bubble or particle is determined by the velocity bound-
ary conditions

	 ��

�r1
	

S1

= Ṙ1 + U1 · n1, �8�

	 ��

�r2
	

S2

= U2 · n2, �9�

where Ṙ1 accounts for pulsation of the bubble, Ui ·ni for
translation, and ni=ri /ri is the unit vector in the direction of
ri. Whereas Eq. �9� for the boundary condition on the surface
of the particle is exact because there can be no shape defor-
mation of a rigid particle, Eq. �8� ignores the possibility of
shape deformation of the bubble wall by the absence of
spherical harmonics beyond the monopole �pulsation� and
dipole �translation�.

There is no known expression for � that satisfies the
boundary condition on each sphere exactly. However, an ap-
proximate expression can be found that satisfies the bound-
ary conditions to a desired order of R /d. We determine � to
the required accuracy by following the iterative approach
used in Ref. 11. As shown in Sec. II C, it is necessary to
obtain an expression for � accurate to order R5 /d5. This

derivation is provided in the Appendix.
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The kinetic energy of the liquid is calculated by evalu-
ating � on the surfaces of the bubble and particle and sub-
stituting them into Eq. �7�. The result of this calculation is

Kliq = 2��
R1
3Ṙ1

2 +
1

6
R1

3U1
2 +

1

6
R2

3U2
2 +

R2
3R1

2Ṙ1

d12
2 �U2 · n21�

+
1

2

R1
3R2

3

d21
3 ��U1 · U2� − 3�U1 · n21��U2 · n21��

+
1

2

R1
4R2

3Ṙ1
2

d21
4 +

1

2

R1
5R2

3Ṙ1

d21
5 �U1 · n12�� . �10�

At this point it is convenient to place the bubble and particle
in the orientation shown in Fig. 2. The bubble and particle lie
along the x axis such that the position vectors become r01

=X1nx and r02=X2nx, and the translational velocities are
U1=U1nx and U2=U2nx. Note that d12=nx, d21=−nx, and
d21=d12=d. In these coordinates, the total kinetic energy is

K = 2���R1
3Ṙ1

2 +
1

6
R1

3U1
2 +

1

6
R2

3U2
2 +

R2
3R1

2

d2 Ṙ1U2 −
R1

3R2
3

d3 U1U2

+
R1

4R2
3

2d4 Ṙ1
2 +

R1
5R2

3

2d5 Ṙ1U1� +
1

2
m2U2

2. �11�

C. Equations of motion

The equations of motion are obtained by substituting
Eqs. �2� and �11� into Eqs. �1�. The first of Eqs. �1� is the
radial equation of motion for the bubble:

R1R̈1 +
3

2
Ṙ1

2

=
P1 − P0

�
+

1

4
U1

2 +
3V02

8�

 U̇2

d2 −
U2

d3 �U1 + 2U2�

−
R1

d4 �R1R̈1 + 2Ṙ1
2� −

R1
2

d5 �R1U̇1 + 4Ṙ1�U1 − U2��� , �12�

where P1 is given by Eq. �2�. The second of Eqs. �1� pro-
duces the translational equations of motion:

Ṁ1 = − F, Ṁ2 = F , �13�

M1 =
1

�V1U1 −
3

�V02�R1
3

3 U2 −
R1

5

5 Ṙ1� , �14�

X1

U1

Ṙ1
R1 ρ2

d

x
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R02

FIG. 2. Notation and geometry for bubble and particle with collinear trans-
lational motion.
2 2 d d
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M2 = �1

2
� + �2�V02U2 −

3

2
�V02�R1

2

d2 Ṙ1 +
R1

3

d3 U1� , �15�

F = 3�V02�R1
2

d3 Ṙ1U2 +
R1

3

d4 U1U2 −
R1

4

d5 Ṙ1
2� , �16�

where M1 and M2 are the generalized momenta of the bubble
and particle and F is the translational force that acts equally
and oppositely on the bubble and particle. In Eqs. �12�–�16�
it proved convenient for interpretation to introduce the vol-
umes V1= 4

3�R1
3 and V02= 4

3�R02
3 and the particle density �2

=m2 /V02. Except for the terms of order R5 /d5 and those con-
taining the particle mass, Eqs. �12�–�16� coincide with the
corrected order R4 /d4 equations published by Harkin et al.7

describing coupled pulsation and translation of two bubbles

after setting the radial velocity of the second bubble Ṙ2 to
zero in their equation �see footnote 17 in Ref. 11 for discus-
sion of the corrections�.

It is straightforward, albeit tedious, to obtain expressions
for the velocity potential and model equations to higher or-
ders of accuracy than R5 /d5. The steps outlined in the Ap-
pendix were automated with the aid of the MAXIMA computer
algebra system to generate expressions for � to arbitrary
order in Rn /dn. Harkin et al.7 used a different approach to
derive the velocity potential and model equations, which we
also automated to arbitrary order Rn /dn to verify the present
method. The results are identical. For example, to order
R10 /d10 the interaction force is given by

F =
2

5
��R1

2R02
3 �10

d3 U2Ṙ1 + 15
R1

d4 U1U2 − 10
R1

2

d5 Ṙ1
2

− 25
R1

3

d6 Ṙ1U1 −
R1

d7 �15R1
3U1

2 + 15R02
3 U2

2 + 27R1
3Ṙ1U2

+ 20R1Ṙ1
2R02

2 � − 70
R1

3R02
4

d8 Ṙ1U1 − 2
R1

2

d9 �15R02
4 Ṙ1

2

+ 30R1
2R02

2 U1
2 + 30R1R02

3 U1
2 − 18R1

4Ṙ1
2 − 20R1R02

3 Ṙ1U2�

+
9

2

R1
3

d10U1�9R1
4Ṙ1 + 10R1R02

3 U2 − 30R02
4 Ṙ1�
 . �17�

An analytic expression for the time-averaged interaction
force �F� can be derived for infinitesimal bubble pulsation at
an instant when the translational velocities of the bubble and
particle are zero. At this instant M1=M2=0 and Eqs. �14�
and �15� can be rearranged to obtain

U2 =
3�

� + 2�2

R1
2

d2 Ṙ1 + O�R3

d3 � , �18�

U1 = 3
R02

3

d3 U2 =
9�

� + 2�2

R1
2R02

3

d5 Ṙ1 + O�R6

d6 � . �19�

Substitution of Eqs. �18� and �19� into Eq. �17�, assuming

small periodic bubble pulsations with
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R1�t� = R01 + �0 sin �t, �0 � R01, �20�

and time-averaging over one acoustic cycle yields to leading
order in �0 the following contributions at fifth-, seventh-, and
ninth-orders, respectively:

�F5� = 4��� � − �2

� + 2�2
�R01

4 R02
3

d5 �2�0
2, �21�

�F7� = − 4��
R01

4 R02
5

d7 �2�0
2, �22�

�F9� = −
3

5
����15� − 24�2�R01

4

+ �10� + 20�2�R02
4 �

R01
4 R02

3

�� + 2�2�d9�2�0
2. �23�

There are no time-averaged contributions from terms at first
through fourth orders, or from any even-order terms in R /d.
Equation �21� is the expression derived by Coakley and
Nyborg,12,23 by an entirely different approach, for the force
acting between a bubble and a rigid, stationary particle.
Equation �21� indicates that, to leading order, for a particle
having density greater than that of the liquid, �2��, the
time-averaged interaction force is negative, and the bubble
and particle are attracted toward one another. For a less
dense particle, �2	�, the bubble and particle repel. The re-
sult also demonstrates why it is essential to retain terms
through fifth order in R /d in the equations of motion. Despite
the restrictive conditions under which Eq. �21� is derived, the
same trends are predicted by numerical solutions of Eqs.
�12�–�16� even for large bubble pulsations and with the par-
ticle in motion.

While it is true that the influence of terms at higher
orders, proportional to Rn /dn, tends to decrease with increas-
ing order n, the higher-order contributions to the translational
force may not be negligible for sufficiently small separation
distances. For a neutrally buoyant particle ��2=�� the contri-
bution of the fifth-order terms, given by Eq. �21�, vanishes.
This seems to suggest that a seventh-order model is needed
whenever considering neutrally buoyant particles, but we
will show in Sec. IV A that the contribution of the higher-
order terms is small unless the bubble and particle are ex-
tremely close. Note that the time-averaged contribution from
the seventh-order force terms is always attractive, regardless
of the relative particle density, while the contribution from
the ninth-order terms is attractive except in the case of very
dense, small particles.

III. SIMULATION PARAMETERS AND LOSSES

Inclusion of loss factors is guided by parameter values
used for the numerical simulations. The equilibrium radius of
the bubble was always taken to be R01=100 
m, the param-
eters for the surrounding liquid to be �=1000 kg /m3 and �
=0.073 N /m, and the ambient pressure and gas constant to
be P0=101 kPa and �=1.4, respectively, corresponding to an

air bubble in water at one standard atmosphere.
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The natural frequency of the bubble in the absence of
viscosity, commonly called the Minnaert frequency, is
32 kHz. For all simulations the bubble is either released from
a non-equilibrium radius and allowed to ring down at its
natural frequency, or it is driven at its natural frequency by
an acoustic excitation. In this case it is sufficient for our
purposes to introduce a damping term in the radial equation
of motion that provides the correct attenuation at the natural
frequency. Damping of the radial motion of the bubble is

modeled via introduction of the quantity −4��eff /��Ṙ1 /R1 on
the right-hand side of Eq. �12�.24 Here, �eff is an effective
viscosity that is assigned the value �eff=20�=20 mPa s,
where �=1 mPa s is the viscosity of water. This choice of
�eff approximates the total damping, due to heat transfer and
radiation as well as viscosity, of a 100 
m bubble that pul-
sates at its natural frequency.23 Harkin et al.7 used the same
value in their simulations of interacting bubbles with radii on
the order of 100 
m. The translational velocity of the bubble
is small, and viscous drag on the translational motion was
taken into account by introducing the drag force −4��R1Ur1

on the right-hand side of Eq. �13� for M1, where Uri is the
translational velocity of the bubble �or particle� relative to
the local velocity of the surrounding liquid.11 Viscous drag
on the translational motion of the particle was taken into
account by introducing the Stokes drag term −6��R2Ur2 on
the right-hand side of Eq. �13� for M2. Further discussion of
drag is given in Ref. 11.

In the simulations that follow, the equations of motion
were integrated numerically with a standard backward differ-
entiation routine for different separation distances, acoustic
excitations, and values of equilibrium radius and density of
the particle. The case of free response, with no acoustic ex-
citation, is considered first. The reason for investigating the
free response is to avoid the primary Bjerknes forces pro-
duced by acoustic excitation and thus isolate the bubble-
particle interaction forces, i.e., the secondary Bjerknes
forces.

IV. FREE RESPONSE

The free response of the system is investigated by set-
ting the initial bubble radius to a non-equilibrium value
R1�0��R01 and releasing it from rest. The particle is initially
at rest in its equilibrium state. The simulations in this section
were run with the higher-order extensions of Eqs. �12�–�16�
that are accurate to order R9 /d9, where the numerical solu-
tion converges, as will be demonstrated in Sec. IV A.

Presented in Fig. 3 are results for a particle of equilib-
rium radius R02=2R01=200 
m. Larger particles are used to
emphasize interaction effects, because as seen from Eqs. �12�
and �16�, to leading order the interaction forces are propor-
tional to the volume of the particle. The initial positions of
the bubble and particle are, respectively, X1�0�=0 and
X2�0�=2.5R02=500 
m, when the bubble is released from its
initial radius R1�0�=120 
m, a value 20% greater than its
equilibrium radius. Responses are shown for three different
particle densities: �2=500, 1000, and 2000 kg /m3 ��2 /�

=0.5, 1, or 2�. To aid the reader, the indices i=1 and i=2 on
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parameters shown in the figures are replaced with the sub-
scripts “bub” and “part,” respectively, and the density of the
liquid is denoted by �liq.

The radial response of the bubble, which is independent
of the density ratio �part /�liq to within graphical resolution, is
shown in Fig. 3�a�. Figures 3�b�–3�d� display the positions of
the bubble and particle for the three density ratios �note the
split vertical axes�. Consistent with the approximate analyti-
cal result for the time-averaged interaction force given by
Eqs. �21�–�23�, the bubble and particle repel for �part /�liq

=0.5, while they attract for �part /�liq=2 and �part /�liq=1, al-
though the attractive force is less when the particle is neu-
trally buoyant. The attractive force in the case of a neutrally
buoyant particle is due only to the inclusion of the higher-
order terms which, as Eqs. �22� and �23� show, are both
attractive for this set of parameters. If instead the order R5 /d5

model equations were used, there would be virtually no
translation in the case of a neutrally buoyant particle. Note
that whereas the bubble is observed to come to rest within
the time frames shown, the inertia of the particle causes it to

ρpart/ρliq = 2
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FIG. 3. Response of a bubble with equilibrium radius 100 
m and initial
radius 120 
m with rigid particles of different densities. Bubble and particle
initially separated by 500 
m. �a� Radial response of the bubble �indepen-
dent of �part /�liq�. �b� Positions for a light particle ��part /�liq=0.5�. �c� Posi-
tions for a neutral particle ��part /�liq=1�. �d� Positions for a heavy particle
��part /�liq=2�.
drift for considerably longer times.
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The dependence on particle size is illustrated in Fig. 4.
Figure 4�a� is repeated from Fig. 3�d� �on an expanded axis�,
and Fig. 4�b� shows the effect of increasing the particle ra-
dius by 50%. Equation �16� indicates that the interaction
force will increase for larger particles, although the actual
increase is stronger than the R02

3 dependence suggested by
Eq. �16� because of the inclusion of the higher-order terms in
the simulation model.

A. Truncation error

The order R5 /d5 model presented in Sec. II C is accurate
to the minimum order in R /d required to account for the
interaction force between the bubble and a rigid particle. As
described previously, the steps outlined in Sec. II were auto-
mated with the aid of a computer algebra system to generate
models of arbitrary accuracy in Rn /dn for the case of two
interacting spheres. Here we discuss higher-order models of
a bubble interacting with a rigid particle. Equation sets ac-
curate up to and including order R15 /d15 were solved numeri-
cally at various separation distances to determine the influ-
ence of higher-order terms on the system dynamics. Figure 5
shows cases of different initial separation distances for heavy
��part /�liq=2� and light ��part /�liq=0.5� rigid particles of ra-
dius R02=200 
m. The bubble and particle were initially
separated by d�0�=0.5 mm �Fig. 5�a�� or 1.5 mm �Figs. 5�b�
and 5�c�� �i.e., 2.5 or 7.5 particle radii�.

The time-averaged contributions of terms of higher or-
der than R5 /d5 in the interaction force are attractive for these
particle parameters �see Eqs. �22� and �23��. Therefore, we
expect the inclusion of these terms to result in greater trans-
lational motion in the case of a heavy particle �Fig. 5�c��, but
less translation in the case of a light particle �Fig. 5�b��. This
prediction is confirmed by the simulations. As Fig. 5�a�
shows, at large separation distances it is sufficient to truncate
the model at n=5 �Eqs. �12�–�16��. However, as the bubble
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FIG. 4. Response of a bubble with equilibrium radius 100 
m and initial
radius 120 
m with rigid heavy ��part /�liq=2� particles of different radii.
Bubble and particle initially separated by 500 
m. �a� Particle radius R02

=200 
m. �b� Particle radius R02=300 
m.
and particle move closer together the contribution of the
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higher-order terms becomes significant. In the cases consid-
ered here the solution converges numerically at order n=9
for both light �Fig. 5�b�� and heavy �Fig. 5�c�� particles.

V. FORCED RESPONSE

The system may also be driven by an acoustic source.
The source was included in the model using the method of
Ilinskii et al.11 To summarize, the kinetic energy due to a
pulsating sphere with prescribed motion is interpreted in
terms of psrc and usrc, the pressure and particle velocity of an
external source. The source kinetic energy is calculated to
order R5 /d5 and is thus consistent with the free-response
model derived in Sec. II. This additional kinetic energy is
added to the system kinetic energy, Eq. �10�. The same pa-
rameter set outlined in Sec. IV was used, with an initial
separation distance between the bubble and particle of
500 
m and a sinusoidal acoustic pressure of amplitude p0

=1 kPa and frequency of 32 kHz �equal to the natural fre-
quency of the bubble�. Because the model is spatially one-
dimensional, the acoustic wave radiated by the source must
be planar and propagate along the x axis. While the inclusion
of source terms is an acknowledgment of finite liquid com-
pressibility, in this case the acoustic wavelength is much
larger than the separation distance between the bubble and
particle. Therefore the liquid may be assumed to be locally
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FIG. 5. Numerical solution of models accurate to various orders of R /d for
a bubble of equilibrium radius 100 
m and initial radius of 120 
m with
rigid particles of radius 200 
m and various densities. �a� Bubble and par-
ticle initially separated by 1.5 mm for models of order R5 /d5 and higher for
heavy ��part /�liq=2� and light ��part /�liq=0.5� particles. �b� Bubble and a
light ��part /�liq=0.5� particle initially separated by 0.5 mm for models accu-
rate to order R5 /d5 or R9 /d9 and higher. �c� Bubble and a heavy ��part /�liq

=2� particle initially separated by 0.5 mm for models accurate to order
R5 /d5 or greater than R9 /d9.
incompressible from the standpoint of the bubble or particle.
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While source interaction terms were included to order
R5 /d5, terms accounting for bubble-particle interaction were
included up to R9 /d9 as in Sec. IV. Simulation results for the
source parameters used in the present section suggest that
source interaction terms are negligible at R4 /d4, and there-
fore omission of the higher-order source terms will not affect
the system dynamics.

Figure 6 shows the positions and separation distances
between the bubble and particle for the three density ratios
��part /�liq=0.5,1 ,2� when the source is located at −10 cm
along the x axis, and Fig. 7 shows results for a source located
at +10 cm. In both figures the bubble position is plotted in
part �a�, the particle position in part �b�, and the distance
separating the bubble and particle in part �c�. For compari-
son, results for a two-bubble system �with a second bubble of
radius 100 
m replacing the particle� are shown with dashed
lines. Note that in both figures translation in the two-bubble
system is much greater than in the bubble-particle system.
This is because the secondary Bjerknes force acting between
two oscillating bubbles is of order R2 /d2, three orders larger
than the translational force in the bubble-particle system.

Notice that the direction of particle translation �Figs.
6�b� and 7�b�� is determined by the particle density �repul-
sive for a sufficiently light particle but attractive otherwise;
recall Eqs. �21�–�23��. However, the radiation force �primary
Bjerknes force� exerted on the bubble by the acoustic field
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FIG. 6. Translational motion of a bubble of equilibrium radius 100 
m
interacting with a second bubble of radius 100 
m �dashed line� or rigid
particles of radius 200 
m �solid lines� and density ratios �part /�liq=0.5, 1,
and 2 excited by a sinusoidal plane wave source of amplitude 1 kPa located
at −10 cm along the x axis. Initial separation distance 500 
m. �a� Bubble
position. �b� Particle position. �c� Separation distance between bubble and
particle.
has a non-zero time average. Therefore, the direction of
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bubble translation �Figs. 6�a� and 7�a�� is also influenced by
the propagation direction of the acoustic excitation. In Fig. 6,
with the source located at −10 cm, the radiation force tends
to push the bubble toward the particle. This force, in combi-
nation with the higher-order interaction terms, causes the
bubble to move toward the particle �Fig. 6�a�� for neutrally-
buoyant and heavy particles, while in the case of a light
particle the bubble remains nearly stationary. In Fig. 7, with
the source located at +10 cm, the radiation force tends to
push the bubble away from the particle. For the light particle
its effect is sufficient to overcome the attractive force of the
higher-order contributions �see Eqs. �21�–�23�� and cause
overall repulsion of the bubble and particle. However, for
heavy and neutrally buoyant particles, forces due to bubble-
particle interaction dominate, resulting in attraction �Fig.
7�c��.

These results suggest that bubble-particle interaction
forces are certainly important for accurate description of
free-response translational dynamics. However, in the case of
a forced system the bubble-particle translational forces may
be overshadowed by the primary Bjerknes forces from an
acoustic source of sufficient amplitude.

VI. SUMMARY

Lagrangian mechanics were used to derive dynamical
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FIG. 7. Translational motion of a bubble of equilibrium radius 100 
m
interacting with a second bubble of radius 100 
m �dashed line� or rigid
particles �solid lines� of radius 200 
m and density ratios �part /�liq=0.5, 1,
and 2 excited by a sinusoidal plane wave source of amplitude of 1 kPa
located at +10 cm along the x axis. Initial separation distance 500 
m. �a�
Bubble position. �b� Particle position. �c� Separation distance between
bubble and particle.
equations describing the interaction of a gas bubble and a
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rigid particle in an incompressible liquid. The derivations
were carried out through order R5 /d5 because this is the
minimum accuracy required to account for the interaction
force. Dynamical models accurate to higher orders of Rn /dn

were generated via a computer algebra system to illustrate
consequences of truncating the model at order R5 /d5. In the
case of a forced response, the presence of an external plane
wave source was included to an order consistent with the
model at order R5 /d5. The system dynamics exhibit depen-
dence on the density and size of the particle as well as the
direction of source propagation.
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APPENDIX: DERIVATION OF THE VELOCITY
POTENTIAL

Here an expression for the velocity potential, which sat-
isfies Eq. �5� to order R5 /d5 subject to the boundary condi-
tions �Eqs. �8� and �9��, is derived. The resulting expression
may then be substituted into Eq. �7� to obtain an expression
for the kinetic energy of the liquid. The total velocity poten-
tial is expressed as

��ri� = �r�ri� + �t�ri� , �A1�

where �r is the component due to radial pulsation of the
bubble and �t is the component due to translation. First, an
expression for the radial component of the velocity potential
is obtained. Although the particle is rigid and therefore does
not pulsate, for the moment we will proceed as though it

pulsates radially with velocity Ṙ2. We then specialize the
result for a rigid particle. For an isolated pulsating sphere

with radius Ri and wall velocity Ṙi in an infinite liquid, the
radial component of the velocity potential a distance ri from
the center of the sphere is

�0i
r �ri� = −

Ri
2

ri
Ṙi. �A2�

An initial approximation of the radial velocity potential for
an infinite liquid containing two pulsating spheres is the sum

�0
r = �01

r + �02
r . �A3�

While Eq. �A3� satisfies Eq. �5�, it does not obey the bound-
ary condition on either sphere. For example, let the velocity
potential be expressed in terms of the coordinates of the
bubble �ri=r1�, and calculate the liquid velocity at the
bubble wall for comparison with Eq. �8�. The velocity poten-
tial corresponding to the particle, �02

r �r2�, can be expressed
in terms of r1 by expanding �02

r in a Taylor series evaluated

at the bubble wall:
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�02
r �r2� = �02

r �d21 + r1�

� ��02
r �d21� + �r2

�02
r �r2��r2=d21

· r1

= −
R2

2

d21
Ṙ2 +

R2
2

d21
2 r1Ṙ2�n21 · n1� , �A4�

where d21=r01−r02 is the vector pointing from the center of
the particle to the center of the bubble �recall Fig. 1�, d21

= �d21�, and n21=d21 /d21. In Eq. �A4� and all subsequent ex-
pansions the series is truncated after the linear �dipole� term
because all higher-order terms are orthogonal to the mono-
pole and dipole terms in the integrand of Eq. �7�, and there-
fore cannot contribute to the kinetic energy, as a result of
including only monopole and dipole terms in boundary con-
ditions �Eqs. �8� and �9��.

Evaluating the velocity at the bubble wall due to �0
r ,

	 ��0
r

�r1
	

S1

= 	� ��01
r

�r1
+

��02
r

�r1
�	

S1

= Ṙ1 +
R2

2

d21
2 Ṙ2�n21 · n1� ,

�A5�

and comparing with Eq. �8� shows that the error in satisfying
the boundary condition on the radial motion is of order R2 /d2

�the dipole term Ui ·ni in Eq. �8� will be satisfied by �t in Eq.
�A1��. To counteract the second term in Eq. �A5� a correction
�1

r is added to �0
r which satisfies Eq. �5� as well as

	 ��1
r

�r1
	

S1

	 = −
��0

r

�r1
	

S1

+ Ṙ1 = −
R2

2

d21
2 Ṙ2�n21 + n1� . �A6�

The appropriate correction, applied to both the bubble and
particle and expressed in terms of the local coordinate r1 of
the bubble, is

�1
r = �11

r �r1� + �12
r �d21 + r1�

� ��11
r �r1� + �12

r �d21� + �r2
�12

r �r2��r2=d21
· r1

=
R2

2R1
3

2d21
2 r1

2 Ṙ2�n21 · n1� +
R1

2R2
3

2d21
4 Ṙ1 +

R1
2R2

3

d21
5 r1Ṙ1�n21 · n1� .

�A7�

Examining the velocity at the bubble wall due to terms �0
r

and �1
r ,

	 �

�r1
��0

r + �1
r�	

S1

= Ṙ1 +
R1

2R2
3

d21
5 Ṙ1�n21 · n1� , �A8�

shows that the error in satisfying the boundary condition for
the radial motion is of order R5 /d5, and therefore another
correction term, �2

r , must be added. The appropriate correc-
tion is

�2
r = �21

r �r1� + �22
r �d21 + r1�

=
R1

5R2
3

2d21
5 r1

2 Ṙ1�n21 · n1� + O�R7

d7 � . �A9�

The velocity at the bubble wall, based on the sum of �0
r

r r
with correction terms �1 and �2, is
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	 �

�r1
��0

r + �1
r + �2

r�	
S1

= Ṙ1 + O�R8

d8 � . �A10�

Comparison with Eq. �8� shows that the expression is accu-
rate to the desired order R5 /d5. The final form of the velocity
potential for the radial motion, expressed in the local coor-
dinates of the bubble and consisting of terms �0

r , �1
r , and �2

r ,
is

�r�r1� = −
R1

2

r1
Ṙ1 −

R2
2

d21
Ṙ2 +

R2
2

d21
2 r1Ṙ2�n21 · n1�

+
R2

2R1
3

2d21
2 r1

2 Ṙ2�n21 · n1� −
R1

2R2
3

2d21
4 Ṙ1

+
R1

2R2
3

d21
5 r1Ṙ1�n21 · n1� +

R1
5R2

3

2d21
5 r1

2 Ṙ1�n21 · n1� .

�A11�

The corresponding expression in terms of the coordinates of
the particle, r2, is obtained simply by exchanging the sub-
scripts 1 and 2 in all quantities. Velocity potential expres-
sions for our specific case of a rigid particle with radius R02

and zero radial velocity are then obtained from Eq. �A11� by

setting R2=R02 and Ṙ2=0.
The translational component of the velocity potential is

obtained in a similar fashion. For an isolated translating
sphere with radius Ri and translational velocity Ui, the veloc-
ity potential at a distance ri from the center of the sphere is

�0i
t �ri� = −

Ri
3

2ri
2Ui · ni. �A12�

As with the radial component, the individual contributions
from each sphere are summed and then the contribution from
the particle is expressed in terms of the local coordinate of
the bubble:

�0
t = �01

t �r1� + �02
t �d21 + r1�

� ��01
t �r1� + �02

t �d21� + �r2
�02

t �r2��r2=d21
· r1

= −
R1

3

2r1
2 �U1 · n1� −

R2
3

2d21
2 U2 · n21

+
R2

3

2d21
3 r1�3�U2 · n21��n21 · n1� − U2 · n1� . �A13�

Evaluating the translational velocity at the wall of the
bubble,

	 ��0
t

�r1
	

S1

= U1 · n1 +
R2

3

2d21
3 �3�U2 · n21��n21 · n1� − U2 · n1� ,

�A14�

and comparing with Eq. �8� shows that the error is of order
R3 /d3. A correction term, �1

t , which satisfies Eq. �5� as well

as the condition
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	 ��1
t

�r1
	

S1

	 = −
��0

t

�r1
	

S1

+ U1 · n1

= −
R2

3

2d21
3 �3�U2 · n21��n21 · n1� − U2 · n1� ,

�A15�

is needed. The appropriate correction, applied to both the
bubble and particle and expressed in terms of r1, is

�1
t = �11

t �r1� + �12
t �d21 + r1�

� ��11
t �r1� + �12

t �d21� + �r2
�12

t �r2��r2=d21
· r1

=
R1

3R2
3

4r1
2d21

3 �3�U2 · n21��n21 · n1� − U2 · n1�

−
R2

3R1
3

d21
5 �U1 · n21� + O�R6

d6 � . �A16�

Evaluating the translational velocity at the wall of the bubble
yields

	 ��t

�r1
	

S1

= 	 �

�r1
��0

t + �1
t �	

S1

= U1 · n1 + O�R6

d6 � , �A17�

and therefore the expression for the translational velocity po-
tential is accurate to the desired order of R5 /d5. The final
form of the translational velocity potential, consisting of �0

t

and the correction term �1
t , is

�t�r1� = −
R1

3

2r1
2 �U1 · n1� −

R2
3

2d21
2 U2 · n21

+
R2

3

2d21
3 r1�3�U2 · n21��n21 · n1� − U2 · n1�

+
R1

3R2
3

4r1
2d21

3 �3�U2 · n21��n21 · n1� − U2 · n1�

−
R2

3R1
3

d21
5 �U1 · n21� . �A18�

As with Eq. �A11�, the expression for Eq. �A18� in terms of
the coordinates of the particle, r2, is obtained by exchanging
the subscripts 1 and 2. The total velocity potential �, the sum
of Eqs. �A11� and �A18�, may now be substituted into Eq. �7�
to obtain Eq. �10�.
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