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Abstract

In eukaryotic genomes, it is challenging to accurately determine target sites of transcription factors (TFs) by only using
sequence information. Previous efforts were made to tackle this task by considering the fact that TF binding sites tend to be
more conserved than other functional sites and the binding sites of several TFs are often clustered. Recently, ChIP-chip and
ChIP-sequencing experiments have been accumulated to identify TF binding sites as well as survey the chromatin
modification patterns at the regulatory elements such as promoters and enhancers. We propose here a hidden Markov
model (HMM) to incorporate sequence motif information, TF-DNA interaction data and chromatin modification patterns to
precisely identify cis-regulatory modules (CRMs). We conducted ChIP-chip experiments on four TFs, CREB, E2F1, MAX, and
YY1 in 1% of the human genome. We then trained a hidden Markov model (HMM) to identify the labels of the CRMs by
incorporating the sequence motifs recognized by these TFs and the ChIP-chip ratio. Chromatin modification data was used
to predict the functional sites and to further remove false positives. Cross-validation showed that our integrated HMM had a
performance superior to other existing methods on predicting CRMs. Incorporating histone signature information
successfully penalized false prediction and improved the whole performance. The dataset we used and the software are
available at http://nash.ucsd.edu/CIS/.
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Introduction

High throughput technologies such as ChIP-Chip [1,2] and

ChIP-sequencing [3,4] have been successfully applied to map

binding locations of individual transcription factors (TFs) at a

genomic scale in organisms ranging from yeast to human [2,5,6,7].

Due to the complexity of the human genome and the noise in high

throughput measurements, there still exists ambiguity to decide

whether the experimental signal reflects the true TF-DNA

interaction. In addition, the above technologies only reveal TF

binding, which does not necessarily suggest regulatory function of

such binding. Given that human genes are often under

combinatorial regulation of TFs and the functional binding sites

of cooperative transcription factors (TFs) tend to be located close

to each other to form clusters in the eukaryotic genome [8], which

are often referred as cis-regulatory modules (CRMs), locating

CRMs have been proven to be effective on improving the

accuracy of predicting TF binding and uncover functional binding

sites.

Numerous computational methods have been developed to

determine CRMs. Cister [9], COMET [10] and Cluster-Buster

[11] use position specific scoring matrices (PSSMs) either known

or determined by other means for a pre-selected group of TFs to

score genomic regions and find clusters as CRMs. The PSSMs are

fixed and not modified during the search for CRMs. In contrast,

methods such as CisModule [12] and EmcModule [13] conduct de

novo identification of CRMs in the sense of simultaneously defining

PSSMs for TFs and searching for binding site clusters of these TFs.

Additionally, conservation information has also been used to

further remove false positives and improve the prediction accuracy

[14,15,16,17,18,19].

Despite the success of these methods on various cases, there is

still much room to improve their performance. Particularly,

additional genomic data have been quickly accumulated along

with the development of new technologies. Tiling ChIP-Chip

array and ChIP-Sequencing technologies provide binding infor-

mation of TF, which should be informative in predicting CRMs.

Recent studies have shown that different regulatory elements such

as promoters and enhancers have distinct histone modification

patterns [20,21]. Incorporation of such information into a CRM

identification algorithm is also expected to boost its performance.

In this study, we developed a systematic approach to

incorporate information of TF binding motif, protein-DNA

interaction (ChIP-Chip) and histone modification pattern to locate

CRMs. We first conducted TF binding assays using tiling array for

four TFs: CREB, E2F1, MAX, and YY1, which often cooperate

with one another on regulating gene expression. Limited by the

cost of these experiments, the tiling array only covered the

ENCODE regions, which is 1% of the human genome.

We present a method to integrate information about sequence,

ChIP-Chip experiment and histone modification. Firstly, we refine

the PSSMs from TRANSFAC [22] based on the ChIP-Chip ratio

using a probabilistic model called GITTAR [23]. The refined
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PSSMs are used to construct a hidden Markov (HMM) model. To

train the HMM we used modified Baum-Welch algorithm to

incorporate both sequence and ChIP-Chip ratio. In this

configuration sequences are weighted by the ChIP-Chip experi-

ments that binding sequences are boosted and non-binding sites

are penalized during the training. To incorporate chromatin

modification signatures as additive information, an additional filter

is applied to remove predictions that are not supported by the

histone evidence.

Results

Data Set
We conducted ChIP-Chip experiment using tiling array for 4

TFs: CREB, E2F1, MAX and YY1 in the ENCODE regions (see

Methods and Supplementary data). We divided all the probes into

positive and negative sets using the p-value calculated by an error

model: if p-value,0.001, positive probe; if p-value.0.1, negative

probes. The probes with p-values between 0.001 and 0.1 were

considered as ambiguous. Because the length of sequence

segments generated by sonication is several hundreds of bps, we

concatenated nearby positive probes (within 2000 bps) to avoid

redundant representation of the same TF binding sites by multiple

probes: only the probe with the smallest p-value was included in

the positive set. In total, we found 373 CREB, 238 E2F1, 962

MAX and 346 YY1 positive probes. 20573, 22501, 19375, and

20723 probes were selected as negatives for CREB, E2F1, MAX,

and YY1, respectively (Table 1). The length of probes ranges from

100 bp to 1000 bp. The dataset can be found at http://nash.ucsd.

edu/CIS/. Using this dataset we performed five-fold cross-

validation tests.

The matrices of the core motif regions for the four TFs are

obtained from the TRANSFAC database [22]. We then applied a

probabilistic model called GITTAR [23] to further refine the

motif matrices and retrieve information beyond the core motif

region. GITTAR is a probabilistic model that incorporates

sequence motif and ChIP-chip ratio to identify the most reliable

binding sites of a TF of interest. The rationale is that the sites of

high ChIP-chip ratios, if also containing the binding motif of the

TF, are likely to be a true target of the TF. In GITTAR the

binding score is calculated

max
i

log
xi PSSM1j
xi PSSM0j

� �
, ð1Þ

where xi is the ith segment of sequence x with the core motif in the

middle and two flanking regions on both sides. Each segment is

selected by allowing 1 mismatches to the core motif. PSSM1 and

PSSM0 are position specific scoring matrices (PSSMs) for target

and background genes, respectively.

As an output GITTAR extended 7 bps at both ends of the core

motif and refined the matrix based on the ChIP-Chip ratio. The

matrices output from GITTAR (Figure 1) were used in

establishing the HMM model for CRM.

An HMM model for CRM
Previous studies have shown that hidden Markov models

(HMMs) [12,13,15,24] are effective in identification of cis-

regulatory modules. We designed an HMM structure composed

of multiple PSSM blocks to train on the DNA sequence as well as

the ChIP-Chip ratio(Figure 2). The overall structure of the HMM

is similar to those in previous studies such as [10]: there are inter-

and intra-module background states to model the regions not

bound by TFs and both forward and backward reading of a PSSM

are considered in our model.

A unique feature of the current HMM is the labeling of TF

blocks. A TF block in the HMM models the binding sites of TFs

and both forward and backward strands are considered. Each end

of the TF block has a branch used to link the background state to

each TF block and does not emit any symbol. The number of the

states in a TF block is 2s+2, where s is the length of a TF matrix

obtained by running GITTAR. Associated with each TF block is a

label. Including the label for background (‘x’), an HMM with n

TFs has n+1 labels. Each path through the model determines the

label of the DNA sequence with the corresponding TFs and the

background. This HMM is trained considering sequence infor-

mation and binding information of a TF to the sequence (see

Methods).

Once the HMM is trained, sequences are decoded using

posterior algorithm to find a path through the HMM [25]. If a

sequence path passes through the labeled states corresponding to a

TF, it is regarded as a target of the TF. A sequence can be

decoded as a target of multiple TFs if the associated path goes

through several labels. The trained model is found at http://nash.

ucsd.edu/CIS/.

Simulation Results
To illustrate the advantages of predicting the CRMs using one

model, we compared the prediction accuracy of HMMs that

model individual TFs and those that model multiple TFs. The

individual and multiple TF HMMs have the same structure and

the only difference is the number of PSSM block: one PSSM block

in the individual TF HMM and multiple PSSM blocks in the

multiple TF HMMs. Individual HMMs for the four TFs were

trained using the traditional Baum-Welch algorithm. A prediction

is considered as a true positive (TP) if a predicted TF a real target,

false positive (FP) if a TF is predicted and the sequence is a non-

target, true negative (TN) if a TF is not predicted and the sequence

is not a target of the TF, and false negative (FN) if a TF is not

predicted while the sequence is a target of the TF. We also defined

sensitivity = TP/(TP+FN) and specificity = TN/(TN+FP). Our

HMM method using multiple PSSMs was 5 fold cross-validated

and the receiver operator characteristic (ROC) curve was

generated by increasing the ratio of the background variable (vx)

from 0 until the curve reached the plateau (Figure 3). The

proposed method using multiple PSSM blocks showed better

performance than the performance over the HMMs using

individual HMMs. The success of the proposed model is achieved

by combining the 4 TFs and training the combined model while

considering experimental binding information of the TFs to a

sequence. The individual HMMs showed very good specificity

(.0.9) while their sensitivity remained below 0.1. The combined

model also showed better performance at the same specificity.

Table 1. Dataset of 4 TFs.

bindings
(p-value,0.001)

non-bindings
(p-value.0.1)

ambiguous
(0.001,p-value,0.1)

CREB 373 20573 3951

E2f1 238 22501 1798

MAX 962 19575 4200

YY1 346 20723 3468

doi:10.1371/journal.pone.0005501.t001

Integrated Cis-Module Analysis
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We compared the performance of our method with the existing

ones, COMET [10], Cluster-Buster [11] and Stubb [15] (Figure 3).

The ROC curves of COMET and Cluster-Buster were generated

by increasing the cut-off parameters starting from 0. COMET

predicted only 423 targets even using the lowest cut-off (when E-

value is 0) and its sensitivity remained below 0.02. Stubb and

Cluster-Buster showed better performance than the individual

HMMs. Stubb shows superior performance to Cluster-Buster in

this test but still worse than the proposed method. To test the

usefulness of the evolutionary conservation information we ran

Stubb with the aligned human and mouse genomes. This test

yielded a result with a very low sensitivity of 0.086.

Chromatin modification filter
Recent genome-wide surveys have revealed that regulatory

elements including promoters and enhancers are associated with

characteristic chromatin modification patterns. For example,

active promoters are often marked by mono- and tri-methylation

of Lys4 in H3 (H3K4Me1 and H3K4Me3); in contrast, much

reduced signal of H3K4Me3 are observed for enhancers [21].

Using 10 histone modification markers in the HeLa cell, Won et al.

developed a computational method to predict promoters and

enhancers [26]. We used the 438 promoters and 464 enhancers

that Won et al. reported in ENCODE region as additional filters to

remove false positives of cis-module predictions and identify

functional sites in the HeLa cell.

The chromatin modification patterns are often spread over

thousands of base pairs. We thus used distance from the prediction

to promoters or enhancers as a cutoff. We tested the distance

ranging from 500 bps to 20 kbps when we applied the chromatin

filter and searched for the optimal distance for identifying CRMs.

In this configuration only the predictions located within the

distance from the promoter or enhancer are only counted.

Predictions outside this range were discarded. We defined positive

predictive value (PPV) as TP/(TP+FP), negative predictive value

(NPV) as TN/(FN+TN) and the Matthews correlation coefficient

as CCð Þ~ TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP|FNð Þ FP|TNð Þ TP|FPð Þ FN|TNð Þ

p and

checked the effect of the histone modification filter.

Figure 4 shows that the chromatin modification filter restricted

false positives and further enhanced the performance of the HMM

model. The number of prediction would decrease if we used a

more stringent histone modification filter. However, the perfor-

mance of the predictions was significantly improved: even a loose

cutoff (d10000) produced a ROC curve close to an ideal predictor.

We observed that the maximum CC was achieved using a distance

around 1,2 Kb. The tradeoff between sensitivity and specificity is

further illustrated in Figure 5 and Table 2. When keeping the same

number of TPs, we observed dramatic decrease of FPs and

increase of TNs by applying histone modification filters. This

tradeoff is particularly important for guiding experimental design

because often only a limited number of predictions can be tested

and a high PPV is desired.

Discussion

Sequence analysis has been developed using statistical reasoning

based on sequence information and conservation analysis. Though

valuable, sequence information does not tell us the whole story

about the gene expression. For better prediction performance we

introduced ChIP experiment data and histone modification data

in constructing our predictor. ChIP-chip data reflects how likely a

genomic locus is bound by a TF. When it is included to train the

Figure 1. Binding motifs for the four TFs used in establishing the CRM. The sequence logos were generated using WebLogo [30].
doi:10.1371/journal.pone.0005501.g001
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HMM, the genomic regions with low ChIP ratios are penalized in

the model. Although ChIP-chip experiments can be quite noisy,

including such data is quite useful to weigh sequences in the model

training. Because a TF’s binding does not necessarily suggest

function, additional functional data is obviously useful to further

improve the model’s performance.

Histone modification data has been shown associated with

transcriptional regulation [21] and supplied us with information

about biological activity in certain regions. Therefore, it is not

surprising to see that histone modification filters can further reduce

false positives and increase PPVs. Due to the limit of resources,

usually only a handful of predictions can be tested. A high PPV is

thus important for guiding experimental validation.

Evolutionarily conserved information has been a useful tool for

finding biologically active regions. However, evolutionary informa-

tion can mislead us in that conservation sequences are also found in

many areas besides TFBSs in the genome. Also, recent studies show

a rewiring phenomenon that complicates the idea that functionally

conserved regulatory regions also share TFBS conservation across

species [27]. Histone modification data is quite useful compared to

conservation studies because histone modifications strongly corre-

late with specific biological activities. However, current knowledge

about histone modifications is not sufficient to explain the

mechanistic role of histone modifications on gene regulation.

Moreover, we do not know the long-range effects of histone

modifications. In our analysis we found an optimal distance between

a modification to a target gene based on optimizing the model’s

performance. Further evidence is required to better understand the

biological reasoning behind this optimal distance.

Furthermore, we showed that our model performed better on

predicting multiple TF binding sites than single TF binding sites,

which fits well to the cis-module concept. This feature makes our

model particularly appealing to predict cooperative TF binding

sites. In the present study, the ChIP-chip data is only available to

the 1% of human genome (ENCODE regions). With the

availability of ChIP-seq data, we expect our model will become

readily scaled up to the whole genome.

Materials and Methods

ChIP-Chip experiments using tiling array
Hela S3 cells from American Type Culture Collection (ATCC)

were grown in DMEM supplemented with 10% fetal bovine

serum, 2 mM glutamax and penicillin/streptomycin. Cells were

crosslinked with 1% formaldehyde for 20 min at room temper-

ature, washed with cold PBS three times and stored at 280uC.

Antibodies against E2F1 (sc-193), E2F4 (sc-1082x), MAX(sc-197),

YY1(Sc-7341) were obtained from Santa Cruz Biotechnology, CA.

Antibody specific against phospho-Creb(5322) was a kind gift from

Dr. Marc Montminy. Magnetic beads carrying sheep secondary

antibodies were from Dynal (Invitrogen, CA). For chromatin

Immunoprecipitation crosslinked cells were lysed and isolated

nuclei were lysed and DNA was sheared in a Branson-450 sonifier

for 15 cycles of 30 seconds each at 50% power with 120 seconds

cooling on ice between each sonication. Primary antibodies

immobilized on magnetic beads were used to immunoprecipitate

the chromatin and were washed several times in RIPA buffer.

DNA was then recovered from the beads following reverse-

crosslinking and purification by proteinase K and RNAse A

treatments. A small portion of the starting chromatin was also

purified in a similar way.

The immunoprecipitated DNA along with 20 ng of input

sample were amplified using a ligation-mediated PCR. Amplified

input and IP samples were labeled using Cy3 and Cy5 labeled

dCTPs respectively and hybridized together to a PCR microarray

carrying 24,537 non-repetitive sequences that are greater than

100 bps within the 44 ENCODE region. Each Chip-Chip

experiment was performed at least three times each from three

independently grown batches of Hela S3 cells. The dataset is

found at http://nash.ucsd.edu/CIS/.

Training an HMM
The conventional HMM training algorithm treats the sequence

equally and calculates the likelihood of the HMM parameters

using the given sequences. It is often required to assign a path of

the HMM states to a sequence. To guide a sequence path to the

corresponding HMM states, a class HMM has been suggested

[28]. A class HMM calculates the forward and the backward

variables while restricting its training to a path where the label of a

sequence matches to the label of a HMM state. It assigns only one

label to a symbol of a sequence. However, we may need to assign a

sequence with a set of labels. For example, a portion of a sequence

can be a target of several TFs. If we assign a label to each TF, the

sequence needs to be labeled with multiple symbols. To assign

multiple labels to a given set of sequences, we employed the

training method used for gene detection in Drosophila [29]. This

method assigns a probability distribution over labels to each base

in the sequence considering ChIP-chip ratio and sequence

information. The training algorithm is modified so that each path

of a sequence is weighted using the probability distribution

assigned to the sequence.

Firstly, to assign labels to the sequences we searched for the

binding site candidates using sequence and ChIP information.

Figure 2. The structure of the HMM with n transcription factors
(TFs). It is composed of n TF blocks and two background states.
Between TF blocks and a background block is a branch. Each PSSM
block is labeled with an alphabet. Background states are labeled with
‘x’. To model a forward and reverse PSSM, a PSSM block has 2s+2 states
inside, where s is the length of a PSSM.
doi:10.1371/journal.pone.0005501.g002

Integrated Cis-Module Analysis
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Using GITTAR [23] we calculated the probability of being a

binding site of each TF given the background and ChIP-chip ratio.

A set of labels are assigned in the next step on the putative binding

sites. The probability of being a target is treated as a confidence

weight [29] and used to normalize the label probabilities. If the

confidence is close to 1, the feature is considered certain, whereas

if it is close to 0, it is considered totally uncertain. Next, we

assigned a probability distribution of the n+1 labels (number of

TFs (n) and background) to the binding sites candidates. We used

ChIP-chip ratio to assign the label probabilities. If a binding is a

target of 2 Tfs, 3 labels (including background) are assigned.

Table 3 lists the value assigned to each label based on the ChIP-

chip ratio (before normalization). We assigned a probability of 1 to

a putative TF region of a positive probe, 0 to a negative probe, and

0.5 to an obscure probe. The background label has an adjustable

probability of vx. Changing the value of vx can change the ratio

between the probability of being background and that of being

TFBSs. We used pseudo counts (0.01) for non-binding regions.

The label probabilities are normalized to have a sum of 1. For

example, if the ChIP-chip ratio of a probe is positive for CREB

and E2F1, negative for YY1, and obscure for MAX, the

probabilities of the probe to be the binding site of each TF are

set to: p CREBð Þ~1:a, p E2F1ð Þ~1:a, p MAXð Þ~0:5:a,

p(YY1) = 0, p background xð Þð Þ~vx
:a, where a is a normalization

factor. When vx is set to 0.5, a~1=3, p(CREB) = p(E2F1) = 1/3,

p(MAX) = 1/6, p(YY1) = 0, and p(background) = 1/6.

The probability of being a target of a TF is used as a confidence

of the label probabilities. If the probability is 1, we fully trust the

label probabilities assigned using the ChIP ratio. If the probability

is 0, the label probabilities are evenly assigned. The final label

Figure 3. ROC curves for the cis-module predication. The prediction performance of COMET [10], Cluster-Buster [11], Stubb [15] and the
proposed HMM approach are compared.
doi:10.1371/journal.pone.0005501.g003
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probabilities assigned to a sequence is calculated using

p’l k½ �~ 1{confidenceð Þ= number of TFsz1ð Þ

zconfidence|pl k½ �:
ð2Þ

p’l k½ � is a weight multiplied to guide the calculation of likelihood

to the legal path with given probabilities. The probability of

yielding a sequence x~ x1,x2, . . . ,xLð Þ along a path

p~ p1,p2, . . . ,pLð Þ and a label y~ y1,y2, . . . ,yLð Þ in an HMM is

P x,y,pð Þ~ P
L

l~1
apl{1p1

epl
xlð Þd yl~c plð Þð Þp’l ylð Þ ð3Þ

where aij is the transition probability from state i to state j, and

ei xlð Þ the probability of emitting a symbol xl in state i. pl denotes

the HMM state that the lth element of a sequence visits. c plð Þ is

the label in the state pl . d is the Kronecker delta function. It is 1 if

yl~c plð Þ, and 0, otherwise. These probabilities are multiplied

along a path, so the probability of not using a path with high label

probabilities is heavily penalized. Without the penalty term

associated with labels (3) becomes

P x,pð Þ~ P
L

l~1
apl{1p1

epl
xlð Þ, ð4Þ

which is the classical equation to calculate the likelihood of a

sequence given an HMM [25]. The classical forward and

Figure 4. ROC curves after applying the histone modification filter to the predicted CRMs by the HMM. The distance of 20K, 10K, 5K, 3K,
2K, 1K, 0.5K bp (d20000 to d500) to the nearest TSS or p300 binding sites are used in the histone modification filters. A filter with 1,2 kb distance
shows the best performance.
doi:10.1371/journal.pone.0005501.g004

Integrated Cis-Module Analysis
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backward algorithm is used to calculate the probability and the

EM algorithm [25] is then utilized to update the emission and

transition probabilities of the HMM. The modified training

Figure 5. Evaluation of the histone modification filter. Results using various distances (20K, 10K, 5K, 3K, 2K, 1K and 0.5K bp) between the
center of the module and that of the predicted promoters from chromatin signature are shown.
doi:10.1371/journal.pone.0005501.g005

Table 2. The prediction performance using different histone
modification filters.

TP FP TN FN PPV CC

HMM+ChIP 715 10686 72485 1204 0.06 0.11

D20000 715 7336 75835 1204 0.09 0.15

D10000 715 6437 76735 1204 0.10 0.16

D5000 715 5944 77227 1204 0.11 0.17

D4000 715 5470 77701 1204 0.12 0.18

D3000 715 4841 78330 1204 0.13 0.19

D2000 715 4062 79110 1204 0.15 0.21

TP was kept same.
doi:10.1371/journal.pone.0005501.t002

Table 3. Assigned value on each label based on the ChIP-
chip ratio.

Positive
probe Obscure

Negative
probe Background

Putative TFBS 1 0.5 0 vx

Non-binding
regions

0.01 0.01 0 vx

doi:10.1371/journal.pone.0005501.t003

Integrated Cis-Module Analysis
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algorithm calculates forward and backward algorithm while

considering label probabilities assigned to a sequence. An HMM’s

performance usually is affected by the initial parameters and its

structure. As we chose our HMM with relatively simple structure,

the initial parameters do not significantly affect the performance.

To find out bindings of a TF to a sequence we used the posterior

label probability (PLP). The PLP calculates probability of a label of

each TF to a sequence. The PLP of a label at a position is the sum

of posterior probability of all states that emit the same label.
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