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Abstract

DRIL1 is an ARID family transcription factor that can immortalize primary mouse fibroblasts, bypass RASV12-induced cellular
senescence and collaborate with RASV12 or MYC in mediating oncogenic transformation. It also activates immunoglobulin
heavy chain transcription and engages in heterodimer formation with E2F to stimulate E2F-dependent transcription. Little,
however, is known about the regulation of DRIL1 activity. Recently, DRIL1 was found to interact with the SUMO-conjugating
enzyme Ubc9, but the functional relevance of this association has not been assessed. Here, we show that DRIL1 is
sumoylated both in vitro and in vivo at lysine 398. Moreover, we provide evidence that PIASy functions as a specific SUMO
E3-ligase for DRIL1 and promotes its sumoylation both in vitro and in vivo. Furthermore, consistent with the subnuclear
localization of PIASy in the Matrix-Associated Region (MAR), SUMO-modified DRIL1 species are found exclusively in the MAR
fraction. This post-translational modification interferes neither with the subcellular localization nor the DNA-binding activity
of the protein. In contrast, DRIL1 sumoylation impairs its interaction with E2F1 in vitro and modifies its transcriptional
activity in vivo, driving transcription of subset of genes regulating leukocyte fate. Taken together, these results identify
sumoylation as a novel post-translational modification of DRIL1 that represents an important mechanism for targeting and
modulating DRIL1 transcriptional activity.
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Introduction

E2FBP1/ARID3A/DRIL1 (hereafter referred to as DRIL1)

was originally isolated as a novel E2F1 heterodimeric partner that

stimulates E2F-dependent transcription [1]. DRIL1 belongs to the

AT-rich interaction domain (ARID) family DNA-binding protein

known to exert pleiotropic roles in embryonic patterning, cell

lineage gene regulation, cell cycle control, chromatin remodeling

and transcriptional regulation [2]. DRIL1 is evolutionary

conserved, with specific orthologs in the fly, mouse, zebrafish

and C. elegans genomes [2]. Drosophila DRIL1 (DRI) is

developmentally regulated, being expressed in a restricted

population of cells including a subset of neural cells of the central

nervous system, differentiating cells of the gut, and salivary gland

ducts [3]. DRI is involved in various developmental processes,

either as a transcriptional activator or repressor. Its loss-of-

function mutations result in embryonic lethality [4]. Experiments

in Xenopus embryos identified DRIL1 as a novel regulator of

TGFb signaling and a vital component of mesodermal patterning

and embryonic morphogenesis [5]. The mouse ortholog of

DRIL1, B cell regulator of Ig heavy chain transcription

(BRIGHT), exhibits specific matrix-attachment regions (MARs)

binding properties and regulates immunoglobulin transcription at

late stages of B lymphocyte differentiation [6]. BRIGHT protein

was found to associate with Bruton’s tyrosine kinase (Btk) [7].

Defective Btk causes inherited agammaglobulinemia, an X-linked

severe immunodeficiency characterized by an early block in B cell

differentiation at the pre-B to immature B cell stage, resulting in

abnormal low levels of serum Ig [8]. While murine BRIGHT

protein seems to be prevalently found in the B cell-lineage, human

DRIL1 expression appears to be ubiquitous, raising the possibility

that the function of DRIL1 depends on the species and the cellular

context [9]. We recently demonstrated that DRIL1 allows primary

mouse fibroblasts (MEFs) to efficiently bypass both spontaneous

and activated RAS-induced senescence by deregulating the Rb/

E2F1 pathway [10]. On the other hand, DRIL1 was shown to be a

direct p53 target gene and to be activated in response to specific

cues, such as UV-induced DNA damage or doxorubicin treatment

in a p53-dependent manner [11]. The functional connection of

DRIL1 to both Rb/E2F1 and p53 tumor suppressor pathways, as

well as its pivotal function in promoting either cellular prolifer-

ation or growth arrest, implies a tight and finely tuned regulation

of DRIL1 activity and binding affinities. However, such regulatory

mechanisms of DRIL1 function remain largely unknown.

Post-translational modification of transcription factors is a

common and important mechanism to achieve dynamic regulation

of gene expression. Small Ubiquitin-related MOdifier (SUMO)

has emerged as an important post-translational regulator involved
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in a wide range of cellular processes including gene transcription,

cell cycle progression, genomic integrity and chromatin dynamics

[12]. Sumoylation is a multistep enzymatic reaction in which

SUMO is activated by an E1 Aos1/Uba2 heterodimer in an ATP-

dependent manner, transferred to E2-conjugating enzyme Ubc9

and covalently linked to target lysine residues of protein substrates

via an isopeptide bond. Ubc9 interacts directly with the substrates

and is able to append SUMO to lysine residues in vitro. However,

different classes of SUMO E3 ligases, including the nucleoporin

RanBP2, the protein inhibitor of activated STAT (PIAS) family,

and Polycomb Pc2, have been shown to considerably enhance the

sumoylation efficiency by bridging SUMO-Ubc9 to specific target

proteins [12]. Conjugation to SUMO is highly dynamic and

reversible; hence, several desumoylating enzymes (also named

Ubiquitin-like proteases) are involved in the removal of SUMO

moiety [13].

Interestingly, DRIL1 has been shown previously to interact

directly with Ubc9 and Sp100, a scaffold component of the PML

nuclear bodies (NBs, also referred to as PODs, ND10s) [14].

Nuclear bodies are dynamic macromolecular domains known to

favor the docking of SUMO-modified proteins [15]. These results,

together with the recent findings showing that RBP1, an ARID-

containing protein, undergoes SUMO-dependent regulation of its

repressor activity [16], prompted us to investigate whether DRIL1

is subjected to SUMO modification and whether sumoylation

contributes to the regulation of DRIL1 transcriptional activity.

We observed that DRIL1 is covalently modified by SUMO1 in

vitro and in vivo at a single lysine residue identified as lysine 398.

The nuclear matrix-associated SUMO E3 ligase PIASy, but not

other PIAS proteins nor RanBP2, serves as a SUMO E3 ligase for

DRIL1 by efficiently enhancing its sumoylation in vitro and in vivo.

Consistent with the subnuclear localization of PIASy, SUMO-

modified DRIL1 forms are found exclusively in the MAR fraction.

A SUMO-deficient DRIL1 mutant is not subject to incorrect

subcellular localization and retains DNA-binding capability

comparable to wild-type DRIL1. In contrast, DRIL1 sumoylation

prevents it from interacting with E2F1 and appears to redirect its

transcriptional activity towards leukocyte lineage-specific genes.

Altogether, this study establishes sumoylation of DRIL1 as a novel

and relevant control mechanism modulating DRIL1 function.

Results

DRIL1 is sumoylated in vitro and in vivo
The sumoylated target lysine is usually found in the so-called

SUMO consensus motif consisting in a YKXE/D tetrapeptide,

where ‘Y’ denotes an hydrophobic residue, and ‘X’ any residue

[12]. In order to examine if DRIL1 is a potential target for

sumoylation, we analyzed its amino acid sequence with the

SUMOplotTM Analysis Program (Abgent; www.abgent.com/doc/

sumoplot). The sequence scan of DRIL1 protein identified four

potential SUMO consensus motifs with significant SUMOplotTM

scores (Fig. 1A, upper part), raising the possibility that DRIL1 can

be sumoylated. The four putative target lysine residues, K126,

K398, K399 and K453, appear to be scattered throughout the

DRIL1 protein (Fig. 1A, lower part). In addition to the central

ARID core, DRIL1 consists of an acidic N-terminal region of

unknown function that includes K126, and an oligomerization

domain, named REKLES (after this conserved hexa-aminoacid

motif), in the C-terminal third of the molecule in which K453

resides [2]. Lysines 398 and 399 are located in a putative nuclear

localization signal (NLS).

To address experimentally whether DRIL1 is modified by

SUMO, we used an in vitro-reconstituted sumoylation assay, in

which a 35S-labeled DRIL1, generated by in vitro translation, serves

as a target for SUMO modification in the presence of recombinant

E1 (the Aos1/Uba2 heterodimer), recombinant Ubc9, SUMO1,

and ATP. Following the reaction, the proteins were resolved by

SDS-PAGE and visualized by autoradiography. In the control

reaction, which lacked SUMO1, a unique and expected band of

DRIL1 migrating at 75 kDa was detected (Fig. 1B, lane 1),

whereas an additional +20 kDa shifted band was observed when

recombinant SUMO1 was added to the in vitro reaction, at the

predicted size of a SUMO1-DRIL1 conjugate (Fig. 1B, lane 2),

indicating that DRIL1 is sumoylated in vitro. Then, we assayed

lysine to arginine substitution mutants (K126R, K398R, K399R,

K453R and the quadruple mutant Kx4R) for their ability to be

sumoylated in vitro. When Kx4R and K398R mutants were tested,

or any double and triple mutant that includes the K398R

substitution, sumoylation was completely abolished (Fig. 1B, lanes

4, 12 and data not shown). These results indicated that DRIL1

sumoylation occurs on K398 and this lysine is the unique SUMO

acceptor site in the in vitro conditions.

Next, we addressed whether DRIL1 is also able to undergo

SUMO modification in a cellular context. Therefore, we

transfected plasmids expressing wild type (wt) DRIL1, K398R

and Kx4R mutants into 293T cells. Western blotting of cell

extracts revealed a 75 kDa molecular weight protein correspond-

ing to DRIL1, as well as a slower migrating SUMO1-DRIL1

conjugated species migrating at 95 kDa (Fig. 1C). Importantly, this

band was not observed when either K398R or Kx4R SUMO

mutant was expressed, suggesting that, in intact cells also, K398 is

the exclusive target lysine for modification by the endogenous

SUMO machinery.

To address if this slower migrating band corresponds to a

SUMO1-DRIL1 species, we immunoprecipitated DRIL1 from

these lysates using DRIL1 antibody, and analyzed the precipitates

by western blotting using DRIL1 and SUMO1 antibodies. As

shown in figure 1D, the slower migrating form of DRIL1 was

recognized by the anti-SUMO1 antibody, confirming that DRIL1

is conjugated to SUMO1 in vivo. Importantly, K398R and Kx4R

mutations completely suppressed DRIL1 sumoylation since

neither the anti-DRIL1 nor the anti-SUMO1 antibody detected

a 95 kDa product (Fig. 1D). Collectively, these experiments show

that DRIL1 is sumoylated in vivo and that lysine 398 is the unique

site for this modification. Alignment of the amino acid sequences

between human, mouse and zebrafish DRIL1 orthologs revealed

that K398 and the residues that form the SUMO consensus motif

are highly conserved, suggesting that sumoylation of DRIL1 is a

mechanism maintained throughout evolution (Fig. 1E).

PIASy is a SUMO E3 ligase for DRIL1
In reconstituted sumoylation assays, E3 ligases are dispensable,

but in a physiological context these proteins play an essential role

in regulating post-translational sumoylation of proteins. Few

proteins have been identified to function as SUMO E3 ligases.

They include the members of the PIAS protein family, the

nucleoporin RanBP2 and the Polycomb group protein Pc2 (also

CBX4). Since DRIL1 K398 is located in a putative NLS and

DRIL1 is a MAR binding protein, we hypothesized that either the

nucleoporin RanBP2 or the MAR-associated PIASy protein may

function as E3 ligase for DRIL1. Therefore, we tested RanBP2

and PIAS family members for their potency to catalyze DRIL1

sumoylation in vitro. When SUMO1 was added to the reaction

mix, only minimal sumoylation of DRIL1 was observed after

15 minutes of assaying (Fig. 2A, lane 2). Addition of recombinant

RanBP2 active fragment (lacking the FG repeats, also termed

RanBP2DFG) or unlabeled in vitro translated PIAS3 to the SUMO

DRIL1 Sumoylation
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reaction had no effect on the reaction (Fig. 2A, lanes 3, 5), while

addition of PIAS1, PIASxa and PIASxb induce only a moderate

increase in DRIL1 sumoylation (Fig. 2A, lanes 4,7,8). In contrast,

addition of PIASy to the SUMO reaction dramatically enhanced

DRIL1 sumoylation, leading to the complete disappearance of the

unmodified form of DRIL1 and its conversion into poly-

sumoylated products (Fig. 2A, lane 6). This was not due to any

differential expression of the PIAS proteins (Fig. 2A, insert). These

results show that PIASy displays efficient and specific SUMO

ligase activity towards DRIL1.

Figure 1. DRIL1 is sumoylated in vitro and in vivo. (A) Table showing DRIL1 potential SUMO consensus motifs and SUMOplotTM score (Abgent;
www.abgent.com/doc/sumoplot). Below is the schematic structure of DRIL1 showing lysines 126, 398, 399, 453 and the functional domains. (B) In
vitro sumoylation assay performed with 35S-labeled in vitro-translated wt, SUMO point mutants (K126R, K398R, K399R, K453R) or the quadruple
mutant (Kx4R) of DRIL1, incubated in a sumoylation mix containing purified E1, E2 and ATP in the absence or presence of SUMO1. (C) 293T cells
transfected with wt DRIL1, K398R or Kx4R mutants. Lysates were Western blotted using antibodies against DRIL1 and b-actin as loading control. (Sh
Exp) for short exposure and (Lg Exp) for long exposure. (D) 293T cells transfected with wt DRIL1, K398R or Kx4R. Lysate were immunoprecipited (IP)
with antibody against DRIL1, and precipited proteins were western blotted (WB) using antibodies against DRIL1 (left panel) or SUMO1 (right panel).
(E) Alignment of amino acid sequences of DRIL1 from human, mice and zebrafish spanning the conserved SUMO consensus motif using Clustal
software.
doi:10.1371/journal.pone.0005542.g001

DRIL1 Sumoylation
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Next, we investigated whether PIASy protein exerts similar

activity towards DRIL1 in vivo. 293T cells were co-transfected with

DRIL1, PIASy and SUMO1 expression constructs. As shown in

figure 2B, PIASy expression significantly enhanced SUMO

modification of DRIL1 (lane 3). Similarly to what was observed

in vitro, PIASy induced the attachment of at least three SUMO1

molecules to DRIL1. This could either represent SUMO–SUMO

chains that are formed on lysine 398, the major SUMO

attachment site in DRIL1, or may result from SUMO conjugation

to additional – less potent acceptor - lysine residues of DRIL1. In

contrast, and also consistent with the results obtained in vitro,

PIAS1 overexpression had no effect on DRIL1 sumoylation and

cells exhibited comparable (basal) levels of SUMO1-DRIL1 to that

observed in control SUMO1 co-transfected cells (Fig. 2B compare

lane 2 with lane 4). Interestingly, PIASy-mediated DRIL1

sumoylation was specific for SUMO1, as it was not observed for

Figure 2. PIASy is an E3 SUMO ligase for DRIL1. (A) In vitro sumoylation assay performed with 35S-labeled in vitro-translated wt DRIL1, in vitro-
translated PIAS1, PIAS3, PIASy, PIASxa, PIASxb or recombinant RanBP2 and incubated in a sumoylation mix containing purified E1, E2, ATP and
SUMO1. 10% of the in vitro-translated PIAS1 (P1), PIAS3 (P3), PIASy (Py), PIASxa (Pxa), PIASxb (Pxb) were 35S-labeled in vitro-translated for input
control (inset). (-) for empty vector. (B) 293T cells co-transfected with wt DRIL1, T7-PIAS1, T7-PIASy, SUMO1 or SUMO2 constructs. Lysates were
Western blotted using antibodies against DRIL1, T7 and b-actin as loading control. (-) for empty vector.
doi:10.1371/journal.pone.0005542.g002

DRIL1 Sumoylation

PLoS ONE | www.plosone.org 4 May 2009 | Volume 4 | Issue 5 | e5542



the SUMO2 paralogue (Fig. 2B, lanes 5, 6 and 7). Hence,

although we cannot formally exclude the possibility that other

PIAS proteins can promote DRIL1 sumoylation in certain tissue

or cellular contexts, these data demonstrate that PIASy is a bona

fide, potent and specific SUMO E3 ligase for DRIL1 in vitro and in

vivo, and exerts a selective activity in promoting DRIL1

modification by SUMO1.

Sumoylation does not affect DRIL1 subcellular
localization

In addition to other functions, sumoylation has been linked to

multiple aspects of nucleocytoplasmic trafficking and subnuclear

targeting of substrates [12]. Previous work has shown that the

murine ortholog of DRIL1, named BRIGHT, resides mainly

within the nuclear matrix but is able to actively shuttle between the

nucleus and the cytoplasm in a Crm1- and cell cycle-dependent

manner. This is mediated by a functional nuclear localization

signal (NLS) and nuclear export signal (NES) within the REKLES

region [17]. To address whether SUMO1 modification is required

for proper subcellular localization of DRIL1, we compared the

localization of wt DRIL1 with the sumoylation-deficient mutants.

293T cells were transfected with wt DRIL1 or K398R, and

analyzed by indirect immunofluoresence and confocal microscopy.

As shown in figure 3A, wt DRIL1 and SUMO-defective mutant

showed a similar pattern of intranuclear localization, suggesting

that SUMO modification is not essential for DRIL1 cellular

localization to the nucleus. Importantly, the Kx4R mutant was

also found correctly localized to the nucleus, ruling out a role for

any of these candidate sumoylation sites in this process.

Next, we investigated whether the SUMO-modified pool of

DRIL1 adopts a particular subnuclear distribution pattern. To

characterize the distribution of SUMO1- conjugated DRIL1 in the

nucleus, we applied biochemical fractionation of 293T cells

transfected with wt DRIL1, K398R or K4xR mutants. Soluble

fractions were isolated, and the pellets were treated with DNase I to

release chromatin-bound proteins. Then, nuclear matrix proteins

were extracted in high salt buffer (see materials and methods). These

fractions will be referred to as ‘soluble’, ‘chromatin’, and ‘MAR’

fraction, respectively. Equivalent proportions of these three fractions

were probed with DRIL1 antibody by Western immunoblotting.

Controls for soluble (tubulin), chromatin (histone H1), and nuclear

matrix (lamin B) fractions revealed no cross-contamination (Fig. 3B,

lower panels). SUMO1 conjugated DRIL1 was solubilized only by

the last high salt treatment (Fig. 3B, upper panel), indicating that

SUMO1 conjugated DRIL1 is exclusively present in the MAR

fraction. Since PIASy is also a MAR protein and acts as a SUMO

E3 ligase for DRIL1, this raises the possibility that sumoylation of

DRIL1 takes place in the MARs. From these results, we conclude

that sumoylation does not play a crucial role in the nucleocytoplas-

mic trafficking of DRIL1. Rather, sumoylation of DRIL1 may

modulate MAR-specific DRIL1 function.

Sumoylation does not affect DRIL1 DNA-binding activity
DRIL1 displays affinity towards A/T DNA sequences through its

AT-rich interaction domain (ARID). To determine whether DRIL1

sumoylation modulates this interaction, we performed an electro-

mobility shift assay (EMSA) to examine the binding of wild-type and

non-sumoylable DRIL1 to two oligonucleotides representing

prototypic DRIL1 binding sites (bf150 and TX125, respectively

[6]). For both probes, specific DNA binding activity, as confirmed

by a DRIL1 antibody supershift, was detected in samples containing

equal amounts of both exogenous wild-type and SUMO-defective

DRIL1 (Fig. 4). Furthermore, DRIL1 DNA binding activity was

unaffected by co-expression of SUMO1 (Fig. 4, lane 3 and 9). These

results suggest that the sumoylated species of DRIL1 do not

contribute to the total DRIL1-binding activity in a major way.

Sumoylation of DRIL1 impairs its interaction with E2F1
DRIL1 binds to E2F1 both in vivo and in vitro, and exerts

cooperativity towards E2F-dependent transcription [1]. Because

DRIL1 interaction with E2F1 involves a region including the

SUMO target lysine K398, we hypothesized that sumoylation might

influence DRIL1-E2F1 binding. Therefore, we tested whether

SUMO-modified DRIL1 can still bind directly to E2F1. For this, we

performed an in vitro binding assay using an unmodified or a

sumoylated 35S-labeled DRIL1 with recombinant GST-E2F1 or

GST protein as a control (Fig. 5A). We first confirmed the binding of

E2F1 to DRIL1 (Fig. 5B, lane 2). However, when a mixture

containing comparable amount of unsumoylated and monosumoy-

lated DRIL1 (Fig. 5B, lane 4) was assayed for binding to E2F1, we

observed that E2F1 preferentially interacts with unsumoylated

DRIL1 (Fig. 5B, lane 5). Quantification of E2F1-bound species

further revealed a decrease of more than 50% of sumoylated DRIL1,

compared to the input, while conversely a 12% increase is observed

for unsumoylated DRIL1 (Fig. 5C). These results suggest that

sumoylation of DRIL1 impairs its interaction with E2F1. However,

we do observe some residual binding of sumoylated DRIL1 to E2F1,

this, could possibly be indirect and due to DRIL1/SUMO1-DRIL1

heterodimerisation, as DRIL1 was previously shown to self-associate

through its REKLES subdomain [12].

Supporting this hypothesis, fully sumoylated DRIL1 species,

obtained by in vitro sumoylation in presence of PIASy, do not

interact with E2F1, unless unsumoylated DRIL1 is added to the

binding reaction (data not shown). Regardless, these results show

that DRIL1 sumoylation is a key regulator of the interaction

between DRIL1 and E2F1.

Sumoylation modifies DRIL1 transcriptional activity
Sumoylation can have an inhibitory role in transcription by

leading to the recruitment of repressive factors with chromatin

remodeling activity or by initiating the formation of repressive

complex [18]. In order to test whether SUMO modification of

DRIL1 can modulate its transcriptional activity, we expressed wt,

K398R, Kx4R mutants or empty vector in 293T cells and

performed genome-wide expression microarray analysis (the raw

data of the microarray analyses are available at http://www.ebi.

ac.uk/microarray-as/aer/#ae-main[0], accession E-TABM-681).

We found 215 genes significantly regulated by wt DRIL1 when

compared to empty vector (p,0.01), of which 86% were

upregulated (table S1). Among those genes, 47 were regulated

by wt DRIL1 only, pointing to a possible SUMO-specific

regulation of this subset of genes (table S1, bold).

To test whether SUMO modification of DRIL1 leads to

regulation of a subset of genes implicated in a specific biological

process, we performed an unbiased Gene Ontology (GO) analysis

using Gene Ontology Enrichment Analysis Software Toolkit ([19],

http://omicslab.genetics.ac.cn/GOEAST/). We found 193 GO

classes enriched by wt DRIL1 (table S2), among them 86 GO

classes were not found in the SUMO mutants (table S2, bold),

suggesting a SUMO-specific regulation of these GO classes by

DRIL1. Interestingly, among the enriched GO classes by wt

DRIL1 only, we found 12 GO classes implicated in the control of

multiple biological processes of leukocytes, including leukocyte

migration, differentiation and activation (figure 6). Non of the GO

classes implicated in leukocytes processes were enriched by the

SUMO mutants. Whether this contributes to specific functions of

DRIL1 in leukocytes fate needs further study. This not

withstanding, these results reveal an unexpected role of SUMO-

DRIL1 Sumoylation
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modification of DRIL1 in the control of a specific subset of genes

implicated in immune cell types regulation.

Discussion

DRIL1 was previously described to interact with Ubc9, the only

known SUMO E2 conjugating enzyme [14]. In this study, we

demonstrate that DRIL1 is sumoylated both in vitro and in vivo, and

identified the corresponding site, lysine 398. Interestingly, it was

recently found that RBP1, another member of the ARID DNA-

binding family protein, is also SUMO-modified [16]. RBP1

sumoylation occurs in two SUMO acceptor lysine residues within

the transcriptional repression region R1 of the protein [16].

Mutation of these specific lysines leads to an inhibition of the

Figure 3. Sumoylation does not affect DRIL1 localization. (A) Immunofluorescence of DRIL1 in 293T cells transfected with wt DRIL1, K398R or
Kx4R. DNA was counterstained with TO-PRO. (B) wt DRIL1, K398R or Kx4R were expressed in 293T cells and fractions were prepared as described in
‘‘materials and methods’’. Relative nuclear distribution of DRIL1 was determined by SDS-PAGE and western blotting. Purity of fractions was assessed
by blotting with antibodies against tubulin (soluble), histone H1 (chromatin) and lamin B (matrix associated region, MAR). (Sh Exp) for short exposure
and (Lg Exp) for long exposure.
doi:10.1371/journal.pone.0005542.g003

DRIL1 Sumoylation
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repression activity of the R1 region. Importantly, among the

ARID family proteins, ARID3C and RBP1 share with DRIL1 the

same IKKE sumo site, revealing a putative conserved SUMO

motif in a subset of ARID family members. Our search for SUMO

motifs within the 15 human ARID family proteins using

SUMOplotTM analysis program led us to find that all the ARID

members harbor multiple putative SUMO sites (data not shown).

Altogether, these data might pinpoint a common post-translational

modification that could regulate the activity of the entire ARID

family proteins.

SUMO E3 ligases have been shown to considerably enhance

the sumoylation efficiency by bridging SUMO-Ubc9 to specific

target proteins [12]. In this study, we found that the SUMO E3

ligase PIASy is able to catalyse the SUMO modification of DRIL1

in vitro and in vivo. Interestingly, PIASy is the only matrix-associated

SUMO E3 ligase that was described so far [20]. These results are

particularly interesting because SUMO1 conjugated DRIL1 is

exclusively located in the MAR fraction, suggesting that

endogenous DRIL1 might be SUMO modified on this nuclear

fraction.

DRIL1 is a nuclear protein that contains a putative nuclear

localization signal (NLS) KIKK [21]. Although K398 is the central

lysine of this putative NLS sequence, the SUMO DRIL1 mutant

K398R was not mislocalized (figure 3). These results confirmed

previous observations made by Nixon et al., who showed that a

KIKK BRIGHT deletion mutant was not excluded from the

nucleus [21], revealing that BRIGHT enters the nucleus through

other means. These data were confirmed recently also by Philip

Tucker’s group showing that BRIGHT was able to shuttle from

the cytoplasm to the nucleus via a complex mechanism involving a

non-classical NLS and a nuclear export signal (NES) both located

in the REKLES domain that are regulated by other functional

domains of BRIGHT including the N-terminal acidic region and a

large central region including the KIKK motif [17,22]. Collec-

tively, these results show that the SUMO modification of DRIL1

in K398 might be necessary but not sufficient for the nuclear

localization or the shuttling.

We recently demonstrated that DRIL1 allows primary mouse

fibroblasts (MEFs) to efficiently bypass both spontaneous and

activated RAS-induced senescence by deregulating the Rb/E2F1

pathway [10]. We tested whether the SUMO modification of

DRIL1 was implicated in this phenomenom. Like wt DRIL1, all

the SUMO mutants were able to bypass both spontaneous and

activated RAS-induced senescence (data not shown), reaveling that

this modification is not implicated in this process.

DRIL1 was first described as an E2F1-binding protein that

stimulates E2F-dependent transcription by forming heterodimers.

DRIL1 interacts with E2F1 through a large domain that include

IKKE and REKLES motifs [1]. We show in our study that DRIL1

sumoylation impairs the interaction between DRIL1 and E2F1 in

vitro (figure 5). Further investigation will be needed to elucidate the

precise role of DRIL1 sumoylation on E2F1 activity in vivo. The

fact that ARID3C and RBP1 share with DRIL1 the IKKE

sumoylation site might suggest that they are putative E2F1

interacting proteins.

The ARID DNA-binding family protein exhibits a range of

cellular functions, including chromatin remodeling and regulation

of gene expression during cell growth, differentiation and

development [23]. This study is the first to analyze the DRIL1

transcriptome in a genome-wide fashion. We found 215 genes that

are significantly modulated by DRIL1 and in most of the cases we

observed an upregulation of the target genes (table S1). Among

them, 47 genes were specifically modulated by wt DRIL1 and not

by any of the SUMO mutants. We performed a GO class analysis

and found a SUMO-dependent enrichment of genes implicated in

leukocyte lineages (figure 6). This result reveals a crucial role for

SUMO modification of DRIL1 in the control of its transcriptional

activity. Indeed, DRIL1 was first described as a regulator of IgH

expression [6] and our data are now showing that DRIL1 might

also control the expression of other key genes implicated in the

differentiation and activation of lymphocytes. In particularly, C/

EBPc (a transcription factor that activates the transcription of the

interleukin-6 and interleukin-8 in B lymphoblast cells; [24]),

integrin b2 (CD18, a key cell surface adhesion receptor, expressed

in leukocytes and required for the recruitment and the activation

of polymorphonuclear neutrophils during inflammation; [25]) and

UL16 binding protein 1 (ULBP1, ligand for NKG2D receptor that

activate multiple signaling pathways in primary NK cells, resulting

in the production of cytokines and chemokines; [26]). Further

experiments will be needed to confirm that these genes are direct

target genes and validate these targets in other cell systems,

particularly lymphocytes.

Interestingly, Siatecka and co-workers have obtained similar

results with the transcription factor Erythroid Kruppel-like factor

(EKLF) [27]. Indeed, sumoylation of EKLF promotes transcrip-

tional repression and is involved in inhibition of megakaryopoiesis.

These results may shed light on a key role of sumoylation in the

control of transcription factors implicated in lineage decision.

In conclusion, we have identified a new post-translational

modification of DRIL1 that constitute an important mechanism

Figure 4. Sumoylation does not affect DRIL1 DNA-binding activity. Nuclear extracts from 293T cells transiently transfected with wt DRIL1,
K398R or Kx4R and SUMO1 were prepared. EMSA was performed using 32P-labeled, Bf150 and TX125 prototypic MAR probes (left panel). Supershift
was performed with anti-DRIL1 antibody (arrow indicate supershifted DRIL1 complex). Equivalent input was confirmed by Western blotting, using
antibodies against DRIL1 and SP1 as loading control (right panel).
doi:10.1371/journal.pone.0005542.g004
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for the tight regulation of the activity of this transcription factor

and in the control of leukocyte fate.

Materials and Methods

Plasmids and antibodies
pcDNA3.1-wtDRIL1 construct was already described [10].

DRIL1 SUMO mutations were obtained by site-directed muta-

genesis using the Quick-Change Site Directed Mutagenesis kit

(Stratagene). pSG5T7-PIAS1, pSG5T7-PIAS3, pSG5T7-PIAS-

Xalpha, pSG5T7-PIASXbeta, pCDNA3.1-SUMO1 and

pCDNA3.1-SUMO2 constructs were a kind gift from Dr. A.

Dejean (Institut Pasteur, France).

Immunoblotting was performed with the following antibodies:

rabbit DRIL1 and mouse T7 from Bethyl laboratory, mouse

SUMO1 and goat lamin B from Santa-cruz, mouse b-actin and

mouse a-tubulin from Sigma, mouse Histone H1 from Roche,

mouse SP1 from Abcam. Conjugated with horseradish peroxidase

goat anti-mouse from BioRad, goat anti-rabbit and swine anti-goat

from Biosource.

Cell culture and Transfections
293T cells were cultured in DMEM (Life technologies)

supplemented with 10% FCS (Greiner bio-one), 2 mM L-

glutamine, 100 units.ml21 penicillin and 0.1 mg.ml21 streptomy-

cin (all Gibco).

Figure 5. Sumoylation impairs interaction of DRIL1 with E2F1 in vitro. (A) Coomassie staining of the gel showing expression of recombinant
GST-fusion proteins purified from bacteria, asterix for full length recombinant GST-E2F1 and GST. (B) GST pull-down assay of in vitro translated
unsumoylated (DRIL1) or sumoylated (DRIL1-S) DRIL1, and Luciferase control, with GST-E2F1 and GST control. (C) Quantification by ImageJ software of
DRIL1 species recovered by pulldown vs input (% of input band intensity).
doi:10.1371/journal.pone.0005542.g005
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293T cells (106) were plated in 10 cm dishes 12 hours before

transfection. The cells were transiently transfected using standard

calcium phosphate transfection [28]. For co-transfection, we

equalized the total DNA amounts by adding the appropriate

amount of pCDNA3.1 empty circular vector (Invitrogen).

In vitro Transcription/Translation and in vitro sumoylation
assay

Wt DRIL1, SUMO mutants DRIL1 and all PIAS were

expressed using the TNT Coupled reticulocyte lysate system

(Promega) following the manufacter’s instructions, in the presence

or not of 35S-Methionine (Promix, Amersham). Protein integrity

and level were assessed by SDS-PAGE. The recombinant

SUMO1, Ubc9, Aos1/Uba2 and RanBP2DFG were a kind gift

from Dr. T. Sixma (NKI, The Netherlands).

The sumoylation reaction was carried out as follows in a total

volume of 20 ml at 32uC for 1 hour (unless otherwise stated): 3 ml

of 35S-Methionine labeled in vitro translated target protein, 10 mM

SUMO1, 200 nM Aos1/Uba2, 700 nM Ubc9 recombinant

proteins, final reaction buffer (20 mM HEPES, 5 mM MgCl2,

2 mM KAc, 0.1 mg/ml BSA, 0.02% Tween 20; 0.05 mM DTT,

5 mM ATP, ddH2O). The reactions were analyzed by autoradi-

ography. For the E3 ligase assay, 1 ml of unlabeled in vitro

translated PIAS proteins or 5 nM final of recombinant

RanBP2DFG fragment were added to the SUMO reaction.

Western blotting and immunoprecipitations
Cells were washed with PBS and lysed in RIPA buffer (1%

NP40, 1% SDS, 0.5 DOC, 50 mM TRIS-HCl pH 8, 2 mM

EDTA) supplemented with N-ethylameinide (NEM, Sigma),

protease inhibitor cocktail (Roche) and phosphatase inhibitor

(Sigma) After measuring concentrations using Bradford method

(Biorad) equal amounts of protein were loaded onto precast

gradients gels (NuPage, Invitrogen) and subjected to SDS-PAGE

using standard procedures. Samples were transferred to nitrocel-

lulose membranes (Millipore). We used secondary antibodies

conjugated with horseradish peroxidase, and developed the blots

using ECL (Dura, Pierce).

293T cells were tansfected with pcDNA3.1 wt DRIL1, grown

for 48 hours in a 6-well plate and lysed in 0.3 ml of lysis buffer

(50 mM HEPES-KOH, pH 7.4; 200 mM KCl; 10% glycerol; 1%

Nonidet P-40; 1 mM EDTA, and 1 mM DTT) supplemented with

0.3 ml of protease inhibitor mixture (Roche) and incubated on ice

for 5 minutes. After centrifugation at 12,000 rpm for 15 minutes,

the supernatant was incubated with 40 ml of 50% protein-A-

Sepharose beads (Amersham Biosciences) with constant agitation

for 30 min. The supernatant was transferred to a fresh 1.5-ml tube

after centrifugation at 2,000 rpm for 1 minute and 30 ml of the

supernatant was saved for the input samples. Three ml of anti-

DRIL1 antibody was incubated with the lysate for 1 hour with

constant agitation. Then 30 ml of 50% protein-A-Sepharose beads

Figure 6. DRIL1 sumoylation controls leukocyte biological processes. Unbiased Gene ontology (GO) analysis was applied on the DRIL1
microarray data sets and 12 out of 86 significantly upregulated classes by wt DRIL1 only (those that are implicated in leukocyte biological processes)
are represented in the chart (the full panel is represented in Table S2). Log2 (odds ratio) of the enrichment of the GOID were obtained using Gene
Ontology Enrichment Analysis Software Toolkit ([19], http://omicslab.genetics.ac.cn/GOEAST/).
doi:10.1371/journal.pone.0005542.g006
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was added to the lysate and incubated for 2 hours as above. Beads

were washed three times by rounds of agitation (in 1 ml of lysis

buffer for 5 minutes) and centrifugation. After the final wash, the

beads were suspended in 37.5 ml of 16SDS sample buffer and

boiled for 5 minutes. The input samples were mixed with 7.5 ml of

56SDS sample buffer and boiled for 5 minutes. Lysates were

subjected to SDS-PAGE as described above and western blotted

with antibodies against DRIL1 and SUMO1.

Immunofluoresence
Twenty-four hours after transfection, 105 cells were plated on

LabTek slides (Nalge Nunc International) and left overnight in

complete medium, washed in PBS, fixed in 4% PBS-buffered

formaldehyde for 15 minutes, permeabilized in 0.2% tritonX-

PBS, blocked in PBS-buffered 5% normal goat serum, 0.2%

tween20, 0.2% gelatin for 1 hour, incubated with DRIL1 antibody

(1:200) for 45 minutes, incubated with Alexa Fuor 568 (1:200)

secondary antibody (Invitrogen) for 30 minutes and counter-

stained with TO-PRO-3 (Invitrogen).

Nuclear protein extraction and subnuclear fractionation
into Nuclear Matrix

For nuclear protein extraction, 107 cells were washed and

scrapped in ice-cold PBS. The pellet was washed in 500 ml wash

buffer (10 mM HEPES pH 7.9, 20 mM KCl, 2 mM MgCl2,

0.1 mM EDTA pH 7), centrifuged 1 minute, lysed in 300 ml of

cytoplasmic extraction buffer (10 mM HEPES pH 7.9, 10 mM

KCl, 2 mM MgCl2, 0.1 mM EDTA pH 7, 0.2% NP40)

supplemented with protease inhibitor cocktail and centrifuged to

removed cellular debris. Pelleted nuclei were resuspended in

110 ml nuclear extract buffer (20 mM HEPES pH 7.9, 0.63 M

NaCl, 1.5 mM MgCl2, 0.2 mM EDTA pH 7, 25% glycerol)

supplemented with protease inhibitor cocktail, incubated for

30 minutes at 4uC, centrifuged for 30 minutes at 14,000 RPM

and the protein amounts were quantified using Bradford method.

Fractionations were preformed according to the method of

Reyes et al. [29]. Briefly, following transfection with wt and

mutant constructs, 293T cells (in 6-well plates) were scraped,

washed, and resuspended in 80 ml of CSKT (10 mM PIPES,

pH 6.8; 100 mM NaCl; 300 mM sucrose; 3 mM MgCl2; 1 mM

EGTA; 1 mM DTT, and 0.5% Triton X-100 supplemented with

0.5 ml of protease inhibitor mixture). The suspension was

incubated for 5 minutes and centrifuged at 7,500 rpm for

3 minutes. The supernatant was used for the soluble fraction,

and the pellet was washed with CSK (CSKT minus Triton X-100),

centrifuged, and suspended in 60 ml of CSK supplemented with

6 ml of RNase-free DNase I (Invitrogen). The suspension was

incubated at 37uC for 2 hours and then 20 ml of 1 M ammonium

sulfate (NH4)2SO4/CSK was added to a final concentration of

0.25 M (NH4)2SO4. After incubation at 4uC for 5 minutes, the

suspension was centrifuged at 7,500 rpm for 3 minutes. The

supernatant contained the chromatin fraction. The pellet,

containing the nuclear matrix fraction, was suspended in 80 ml

of 2 M NaCl/CSK and centrifuged again at 7,500 rpm for

3 minutes. The pellet was suspended in 80 ml of 8 M urea buffer

(8 M urea and 10 mM Tris-Cl, pH 8.0).

ElectroMobility Shift Assay (EMSA)
Binding reactions were performed for 30 min at room

temperature with 5 mg nuclear proteins in 20 mM HEPES,

pH 7.9, 10 mM KCl, 0.2 mM EDTA, 20% (v/v) glycerol, 1%

(wt/v) acetylated BSA, 3 mg of poly(dI-dC) (Amersham Pharmacia

Biotech, Aylesbury, U.K.), 1 mM DTT, 1 mM PMSF, and

100,000 cpm of 32P-labeled double-stranded oligonucleotide

probes. Probes were prepared by annealing the appropriate

single-stranded oligonucleotide (Sigma) at 65uC for 10 minutes in

10 mM Tris, 1 mM EDTA, 10 mM NaCl, followed by slow

cooling to room temperature. The probes were then labeled by

end-filling with the Klenow fragment of Escherichia coli DNA

polymerase I (Roche), with [{alpha}-32P]-dATP and [{alpha}-

32P]-dCTP (Promix, Amersham). Labeled probes were purified by

spin chromatography on Sephadex G-25 columns (Roche). DNA-

protein complexes were separated from unbound probe on 4%

native polyacrylamide gels at 150 V in 0.25 M Tris, 0.25 M

sodium borate, and 0.5 mM EDTA, pH 8.0. Gels were vacuum-

dried and exposed to Kodak x-ray film at 280uC for 12 hours. For

supershifting experiments, 1.5 ml of DRIL1 antibody was

incubated with the extracts for 30 min before addition of the

radiolabeled probe. The sequences of the oligonucleotide used in

this work were as follows: palindromic Bf150 probe, 59- GGTT-

CCCCAAAATATAAGTATAAATATGTGCAAAACTTGTTT-

ATTAACTTATTTATCTTAAAATCTGG-39; palindromic

TX125 probe, 59- GGTTAACTTGTTAAATCACAATAAAA-

TATTGAAGTGTTATCACATACACATACTAAA-

CAATTTTCTAA-39.

GST in vitro binding assay
GST-E2F1 and GST proteins were expressed in E. coli BL21

for 4 hours at 37uC by induction with 0.2 mM IPTG (Sigma).

After bacterial lysis, recombinant proteins were purified on

glutathione-Sepharose beads (Amersham). 20 ml of 35S-Methio-

nine-labeled in vitro translated DRIL1, unmodified or sumoylated,

was incubated with GST-E2F1 or GST proteins loaded on

glutathione-Sepharose 4b beads for 2 hours at 4uC in GST

binding buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.1%

Nonidet P-40, 1 mM DTT, 20 mM NEM, 1X protease inhibitors

cocktail tablets, Roche). The input samples were incubated for the

same duration and temperature as the binding reactions to enable

direct comparison. Beads were washed five times with binding

buffer, and bound proteins were eluted with 2X SDS sample

buffer and analyzed by gel electrophoresis, followed by autoradi-

ography.

Microarray gene expression analysis
Total RNA was isolated by using RNeasy Protect Mini Kit

(Qiagen) according to the manufacturer instruction. 350 ng of

total RNA was reverse transcribed and amplified overnight with

T7 RNA polymerase and labeled with biotin following the

manufacturer’s protocol. 1.5 microgram of biotin-labeled cRNA

was hybridized to Illumina Human WG-6 BeadChips at 55uC for

18 hrs. BeadChips were incubated with Cy3 streptavidin and

washed according to the manufacturer’s protocol. The hybridized

BeadChips were scanned by Illumina BeadScan confocal scanner

and analyzed by Illumina’s BeadStudio version 1.5.1.3. Data were

normalized with the Illumina Beadstudio software, using average

normalization.

Supporting Information

Table S1 List of genes modulated by wt DRIL1. Mean average

signal for microarrays (AVG_signal) from two independent

experiments. Genes significantly modulated in the two indepen-

dent experiments (p,0.01 for each microarray). (-) for 293T

infected by empty vector, wt for 293T infected by wt DRIL1. In

bold, genes modulated by wt DRIL1 only.

Found at: doi:10.1371/journal.pone.0005542.s001 (0.07 MB

PDF)
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Table S2 List of Gene Ontology (GO) classes enriched by wt

DRIL1. Log2 (odds ratio) of the enrichment of the GOID were

obtained using Gene Ontology Enrichment Analysis Software

Toolkit ([19], http://omicslab.genetics.ac.cn/GOEAST/). P-val-

ue of the significance for the enrichment in the dataset of the listed

GOID using multiple-test adjusted false discovery rate (FDR). In

bold, GO classes enriched by wt DRIL1 only.

Found at: doi:10.1371/journal.pone.0005542.s002 (0.05 MB

PDF)
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