
Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2009, Article ID 381457, 19 pages
doi:10.1155/2009/381457

Research Article

Unsupervised Learning of Overlapping Image Components
Using Divisive Input Modulation

M. W. Spratling,1, 2 K. De Meyer,1, 2 and R. Kompass3

1 Division of Engineering, King’s College London, London WC2R 2LS, UK
2 Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK
3 Artificial Intelligence Group, Institute of Computer Science, Freie Universität Berlin, 14195 Berlin, Germany

Correspondence should be addressed to M. W. Spratling, michael.spratling@kcl.ac.uk

Received 27 August 2008; Accepted 7 February 2009

Recommended by Seungjin Choi

This paper demonstrates that nonnegative matrix factorisation is mathematically related to a class of neural networks that employ
negative feedback as a mechanism of competition. This observation inspires a novel learning algorithm which we call Divisive
Input Modulation (DIM). The proposed algorithm provides a mathematically simple and computationally efficient method for the
unsupervised learning of image components, even in conditions where these elementary features overlap considerably. To test the
proposed algorithm, a novel artificial task is introduced which is similar to the frequently-used bars problem but employs squares
rather than bars to increase the degree of overlap between components. Using this task, we investigate how the proposed method
performs on the parsing of artificial images composed of overlapping features, given the correct representation of the individual
components; and secondly, we investigate how well it can learn the elementary components from artificial training images. We
compare the performance of the proposed algorithm with its predecessors including variations on these algorithms that have
produced state-of-the-art performance on the bars problem. The proposed algorithm is more successful than its predecessors in
dealing with overlap and occlusion in the artificial task that has been used to assess performance.

Copyright © 2009 M. W. Spratling et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Images are often composed of a relatively small set of
elementary features or components. These components may
overlap with, or partially occlude, other components in a
visual scene. Vision systems attempting to recognise objects
as a combination of such elementary features need to be
capable of two things. Firstly, parsing complex images into
elementary components, even if these are partially occluded
due to overlap. Secondly, extracting a meaningful and rela-
tively sparse representation set (i.e., learning the elementary
components) from cluttered and complex images. In this
paper we present a novel neural network algorithm that is
capable of both accurately parsing images into elementary
components and reliably learning image components, even
when these components are heavily overlapping. The pro-
posed algorithm is mathematically simple, computationally
efficient, and biologically plausible.

Nonnegative matrix factorisation (NMF) is an exist-
ing method that has been specifically proposed for the
unsupervised learning of image components [1–7]. Without
additional constraints on the factorisation, NMF fails to deal
successfully with occlusion even in simple, artificial, tasks
where overlap occurs [8]. It has been suggested previously
[9] that NMF can be interpreted as a divisory form of
feedback inhibition, as used in the preintegration lateral
inhibition/dendritic inhibition model [10–12] and negative
feedback networks [13–18]. This mathematical similarity
between NMF and negative feedback networks will be
described fully in Section 2. One difference between these
algorithms is that NMF operates in batch mode, while neg-
ative feedback networks are online learning algorithms. In
Section 2.2.1 we develop an online implementation of NMF
which serves to explicitly illustrate the analogy between NMF
and negative feedback networks. However, this new imple-
mentation of NMF suffers from the same deficiencies as the

mailto:michael.spratling@kcl.ac.uk

2 Computational Intelligence and Neuroscience

original NMF algorithm when dealing with overlap between
input components. We therefore propose modifications to
the sequential version of NMF to overcome these problems
(Section 2.3). The resulting algorithm shares features of
both NMF and negative feedback networks. It can also be
interpreted as a neural implementation of Bayesian inference
(Section 2.4). In comparisons of the proposed algorithm
with its predecessors we show that it has significantly better
performance in both parsing (Section 3.2) and learning
(Section 3.3) overlapping image components for a novel arti-
ficial task (the “squares problem.”) Furthermore, Section 3.4
demonstrates that the proposed algorithm outperforms, or
has equal performance to, a number of variations on these
previous algorithms including ones that have produced state-
of-the-art performance on a similar artificial task (the “bars
problem.”) Results are also provided (in Section 3.5) for
learning components from real image data.

2. Methods

All of the algorithms described below can be interpreted as
neural networks with an architecture like that illustrated in
Figure 1. This architecture can be understood both as a gen-
erative model (one in which the output activation produces,
via a set of feedback connections, a reconstruction of the
input stimulus) or as a recognition model (one in which the
inputs are mapped, via a set of feedforward weights, onto a
pattern of neural activations which “represent” the stimulus)
[19]. From both these perspectives a vector x denotes the
inputs to the network, and y represents the outputs of the
network. However, the meaning given to the values of e
varies. In generative terms, each element of e represents
the residual error between an input and the reconstruction
of the input generated, via the feedback connections, from
the outputs of the network. In recognition terms, these
feedback connections can be interpreted as providing a form
of lateral inhibition that targets the inputs to a population
of competing nodes, each element of e thus represents the
corresponding input value following inhibition. These dif-
ferent perspectives do not specify changes to the underlying
mathematical model. Rather, the same model can simply be
interpreted in different ways. We will therefore use the terms
“reconstruction error” and “inhibited inputs” and the terms
“feedback” and “lateral” interchangeably.

2.1. Negative Feedback Networks. Competition between
nodes in a neural network is an essential feature of many
unsupervised learning algorithms. It is used to make the
synaptic weights of individual nodes more distinct, and
hence to enable nodes to be selective for different input
stimuli. Lateral inhibition, in which nodes inhibit the
outputs of other nodes, is one mechanisms that is commonly
used to provide competition in unsupervised neural network
algorithms (see [12], for references). However, an alternative
mechanism is to use inhibition that targets the inputs to a
population of competing nodes. In such a network [10–18]
activation is fed back from the output nodes to subtractively
inhibit the inputs to those nodes, as illustrated in Figure 1.

y1 y2

e1 e2

x1 x2

w21

w21

Figure 1: A simple two-node, two-input, neural network illustrat-
ing the architecture employed by all the algorithms described in
this article. Nodes are shown as large circles, excitatory synapses
as arrows and inhibitory synapses as small filled circles. Reciprocal
feedforward and feedback connections have identical strengths.

Two different algorithms of this type are described in what
follows.

2.1.1. Fyfe’s Negative Feedback Network. In the negative
feedback network algorithm proposed by Fyfe and his
colleagues [13, 14, 16], for a network with m inputs and n
nodes, the network activity is calculated as

y =Wx, (1)

e = x−WTy, (2)

where y = [y1, . . . , yn]T is a vector of output activations,
x = [x1, . . . , xm]T is a vector of input activations, W =
[w1, . . . , wn]T is an n by m matrix of weight values, each
row of which contains the weights received by a single node,
and e is the inhibited value of the input (or, equivalently,
the reconstruction error). For each new input pattern, the
values of y and e are calculated without iteration. Therefore,
inhibition has no effect on the response of the network, and
is only used to affect the synaptic weights via the following
learning rule:

W←−W + βyeT , (3)

where β is a parameter controlling the learning rate. In order
to learn the elementary components of images it is necessary
to prevent the occurrence of negative values, by clipping
negative weights at zero, that is, by setting wji = 0 if wji < 0
[13, 14, 16].

There is no competition in this architecture. Inhibition
only serves to affect learning (and hence the selectivities
of the nodes in the long term), but does not affect the
output of the nodes in the short term in response to the
current stimulus. This lack of competition results in the
network failing to correctly represent the input it receives
even if nodes have correctly learnt weights that are selective to
patterns within the stimulus. This problem will be illustrated
in Section 3.2.

2.1.2. Harpur’s Negative Feedback Network. The negative
feedback network proposed by Harpur et al. [17, 18, 20] does

Computational Intelligence and Neuroscience 3

allow the competition to affect the output response of the
network, and hence to affect the selectivities of the nodes
in the short term. Network activity is determined using the
following equations:

e = x −WTy, (4)

y ←− y + μWe. (5)

For each new input image, the output values (y) are
initialised to zero, and then the above equations are iterated
to find the final values for y and e. At each iteration, negative
values of y are clipped by making them equal to zero. The
parameter μ is a scale factor controlling the rate at which
the output activations change during this iterative process.
It should be noted that if μ is too large this can cause
certain values within y to become large in a single step.
This will subsequently cause the elements in e which provide
the inputs to the highly active nodes to become small, or
negative, resulting in the corresponding node activations
becoming small at the next step. The output activities will
thus oscillate between high and low values and never reach a
steady state. To avoid such instability it is necessary to use
small positive values of μ which means that y is updated
slowly and many iterations are required to allow convergence
to the steady-state values.

The learning rule, proposed in Harpur and Prager [20],
is identical to that used by Fyfe’s algorithm:

W←−W + βyeT . (6)

Following learning, weights are clipped to be in the range
[0, 1].

2.2. Nonnegative Matrix Factorisation. Nonnegative matrix
factorisation is a method that seeks to find factors, WT and
Y, of a nonnegative matrix X under the constraint that both
factors contain only elements with nonnegative values, such
that

X ≈WTY. (7)

It has been proposed that this method is particularly suitable
for finding the parts-based decompositions of images [1–
7], since from the physical properties of image formation it
is known that image components are nonnegative and that
these components are never subtracted in order to generate
images. In this case X = [x1, . . . , xp] is an m by p matrix
of training images each column of which contains the pixel
values of an image, WT is an m by n matrix of weight
values the columns of which represent components (or basis
vectors) into which the images can be decomposed, and
Y = [y1, . . . , yp] is an n by p matrix describing the activation
of each component in the corresponding training image. An
individual training image (xk) can therefore be reconstructed
such that xk ≈WTyk.

Several different algorithms have been proposed for
finding the factors WT and Y under nonnegativity con-
straints. One such algorithm [21] minimises the Kullback-
Leibler divergence between the training images (X) and the

reconstructed images (WTY). In this algorithm, the update
rules for the node activations and weights are

Y←− Y⊗ (W
{

X� (WTY
)})� W̃, (8)

WT ←−WT ⊗ ({X� (WTY
)}

YT
)� Ỹ, (9)

where W̃ is an n by p matrix each column of which
contains the sum of the weights corresponding to each basis

vector (i.e., each column equals [
∑m

i=1 w1i, . . . ,
∑m

i=1 wni]
T

),
Ỹ is an m by n matrix each row of which is equal to the
activation of each component summed over all the training
images (i.e., each row equals [

∑p
k=1 y1k, . . . ,

∑p
k=1 ynk]), and

� and ⊗ indicate element-wise division and multiplication,
respectively.

2.2.1. Sequential NMF. In this section, we develop a
sequential implementation of the NMF algorithm. This
new implementation serves two purposes. Firstly, it helps
to demonstrate the similarity between NMF and negative
feedback networks. Secondly, it provides a link between NMF
and the new algorithm we propose in Section 2.3.

In analogy with the term e used in the negative feedback
networks, we introduce the term E = X�(WTY). E is anm by
p matrix the elements of which can be considered to repre-
sent the residual error between the input (X) and the top-
down reconstruction of the input (WTY), or equivalently,
the inhibited input to a population of competing nodes.
Substituting E into (8) and (9) and taking the transpose of
each side of the equation for updating the weights, allows the
NMF update rules to be rewritten as

Y←− Y⊗ (WE)� W̃,

W←−W⊗ (YET
)� ỸT .

(10)

In contrast to the negative feedback neural networks,
NMF uses a batch, rather than a sequential, update proce-
dure. Hence Y, X, and E are matrices of activations, input
images, and reconstruction errors for all training data, rather
than vectors for a single training image (i.e., y, x, and e) as
used in the negative feedback networks. However, the output
activations generated by NMF for any one training image are
independent of the responses to other images. Hence, for a
single training image the output activations are given by

y ←− y ⊗ (We)� w̃, (11)

where w̃ is a single column of W̃ and e is as defined in (12).
Each element of vector w̃ represents the sum of the weights
forming each basis vector (or equivalently the total synaptic
weight received by one output node).

e = x � (WTy
)
. (12)

An outstanding question is how are the values of y calcu-
lated? In the batch version of NMF, the activation values
are randomly initialised before the first epoch of training
and are subsequently updated each epoch using the values

4 Computational Intelligence and Neuroscience

calculated in the previous update as the initial values for the
next update. The final response of the network is therefore
only generated after many epochs, when all the stimuli have
been presented to the network multiple times. In a sequential
algorithm, the response to the current stimulus is required
immediately, and the response that was generated previously
to the same stimulus is unknown. Hence, a sequential version
of NMF will necessarily vary from the batch version in terms
of how the values of y are calculated.

In order to generate a response to each stimulus as it is
presented to the network the method employed by Harpur’s
negative feedback network can be used. For each new
input pattern, the output values (y) need to be initialised,
and then the above equations iterated to find the final
values for y and e. Several methods suggest themselves
for initialising y when each new image is presented. One
option would be to randomly initialise the activations.
However, this may result in many false parsings due to nodes
that provide the correct representation being randomly
assigned a small initial activation which prevents them
from becoming strongly active. Another option would be
to set y = (Wx) � w̃. However, doing this directly
is difficult to justify biologically, as it would require the
output node activations to be calculated directly from
the inputs, by-passing the error-detecting nodes, on each
occasion when a new image was presented. However, the
same result could be obtained by initialising the output
activations to zero, and modifying the activation functions
as follows:

e = x � (ε + WTy
)
, (13)

y ←− (ε + y)⊗ (We)� w̃. (14)

The parameter ε is a small constant (i.e., 1 × 10−10)
that has a negligible effect on the calculation of e and y
except when the values of y are approximately zero, or
equivalently, when the input has been blank (i.e., xi = 0 ∀i)
causing the output activations to become zero. If this is
the case, then at the first iteration after a new stimulus is
presented, the residual error becomes e = x � ε (from
(13)). The output of the network is then calculated as
y = (ε + 0) ⊗ (W(x � ε)) � w̃ = Wx � w̃ (from (14)).
The parameter ε is also useful to prevent division-by-zero
errors in the calculation of e. The stability of the original
NMF algorithm is also improved by using a small constant
to prevent division-by-zero errors in both (8) and (9).
This modification is actually essential for the batch NMF
algorithm to be applied successfully to the artificial task
considered in Section 3.

The synaptic weight updates in NMF are a function of
all the training images. However, we can derive an equivalent
learning rule that can be applied to single training images
presented in sequence. The weight update rule can be
rewritten as

W←−W⊗ (ỸT + Y
(

ET − 1
))� ỸT . (15)

Hence,

W←−W⊗ (1 +
(

Y
(

ET − 1
)� ỸT

))
,

W←−W⊗
(

1 +
p∑

k=1

(
yk
(

eTk − 1
)� ỸT

)
)

,
(16)

where yk and ek are the node activations and reconstruction
errors for a single training image k. If the weights are updated
sequentially using the following rule:

Wk =Wk−1 ⊗
(
1 + yk−1

(
eTk−1 − 1

)� ỸT
)
, (17)

where Wk denotes the weight values after training on the kth
image. Then Wk → W as k → p, assuming that we can
ignore all higher order terms of the form y1y2(eT1 − 1)(eT2 −
1)� Ỹ2T , y1y2y3(eT1 −1)(eT2 −1)(eT3 −1)� Ỹ3T , and so forth.
This is justified since the activation values will be fractional
and the Ỹ values are likely to be large.

In an online learning algorithm the values of Ỹ (the
activation of each node summed over all the training images)
are unknown. It would be possible to estimate these values
by averaging the output activations over a large number of
training examples. However, for simplicity we replace Ỹ by
a single constant (β), that is the same for all nodes. The
weight update used in NMF can then be approximated by the
following learning rule applied to the node activations found
(using (13) and (14)) in response to each training image:

W←−W⊗ (1 + βy
(

eT − 1
))

, (18)

where β is a positive constant which controls the learning
rate. In simulations, it was found that the weight values
tend to drift upwards. This can be prevented, and learning
performance improved by clipping weights at a value of one,
as is done in Harpur’s algorithm. The replacement of Ỹ
and the clipping of the weights means that the sequential
NMF algorithm we have derived is not a particularly
close approximation to the original batch NMF algorithm.
However, the main purpose of this section is to make the
similarity explicit between NMF and negative feedback
networks and to provide a bridge to the algorithm proposed
in the next section.

The sequential version of NMF described above has
the same goal as the original NMF algorithm: minimising
the error between the input stimulus (x) and the image
that is reconstructed from the node outputs (WTy). The
values of e indicate the degree of mismatch between the
top-down reconstruction of the input and the actual input.
When a value within e is greater than unity, indicating
that a particular element of the input is underrepresented
in the reconstruction, the responses of all output nodes
receiving nonzero weights from the underrepresented error-
detecting node are increased (via (14)) and the values of
weights connecting the underrepresented error-detecting
node with active output nodes are also increased (via (18)).
Both these changes will lead to an increase in the strength

Computational Intelligence and Neuroscience 5

with which that element is represented in the reconstructed
image, and hence reduce the value of that element of e
towards one (via (13)). Similarly, when a value within e is
less than unity, indicating that a particular element of the
input is overrepresented in the reconstruction, the responses
of all output nodes receiving nonzero weights from the
overrepresented error-detecting node are reduced (via (14))
and the values of weights connecting the overrepresented
error-detecting node with active output nodes are also
reduced (via (18)). Both these changes will lead to a decrease
in the strength with which that element is represented in
the reconstructed image, and hence increase the value of
that element of e towards one (via (13)). When the value
of e is equal to unity, the reconstruction of that element
is perfect and the weights stop changing due to the term
(eT − 1) in (18). For inputs that are not active in the input
image, the corresponding elements of e will be zero and the
corresponding weights (for active nodes) will stop changing
once they have reached a value of zero.

It can be seen that when divergence-based implemen-
tation of NMF is written in terms of e, and converted
from a batch to a sequential algorithm, that it has strong
similarity to the negative feedback networks discussed in
Section 2.1. Specifically, (13) is similar to (2) and (4) except
that it implements a form of divisive rather than subtractive
feedback. Similarly, (14) is similar to (1) and (5) except
that the activation values are determined by a multiplicative
rather than an additive update rule. The learning rule (18)
is also similar to the rule used by the negative feedback
networks (3) and (6), except that weight changes are
proportional to the current value of the weight, and the
value of e is compared to a threshold of unity. This latter
difference is due to the values of e resulting from divisive
rather than subtractive feedback: for divisive feedback perfect
reconstruction of the input image results in an error value of
one, whereas for subtractive feedback perfect reconstruction
leads to error values of zero.

2.3. Divisive Input Modulation. Negative feedback networks
apply subtractive inhibition to the inputs. In contrast,
nonnegative matrix factorisation (in which the objective
is to minimise the Kullback-Leibler divergence) can be
interpreted, as shown in the previous section, as a form of
divisive modulation applied to the inputs. We say “divisive
modulation” of the inputs, rather than divisive inhibition, as
the values of e generated by (13) will often be larger than
the corresponding x value: the divisor of the division is not
guaranteed to be larger than the dividend, and hence the
inputs to the network could be magnified as well as inhibited.

In contrast to Fyfe’s implementation of negative feed-
back, the divisive modulation of sequential NMF provides
competition between the nodes in the network. Further-
more, unlike Harpur’s implementation of negative feedback,
divisive modulation is more stable (it does not lead to ele-
ments of y oscillating between large and small values at each
iteration). We also show (in Section 3.2) that it generates
better parsings of overlapping patterns. However, as has
previously been observed with NMF in batch form when

minimising the Kullback-Leibler divergence [8], and as will
be illustrated in Section 3.3, the sequential NMF algorithm is
poor at learning image components when overlap between
components occurs in the training images. This section
proposes improvements to the sequential NMF algorithm
that results in a method for the unsupervised learning of
image components that has improved performance on the
tests considered in Section 3. We call this new algorithm
Divisive Input Modulation (DIM).

Consider a single output node that receives equal
strength weights from two error-detecting nodes
(Figure 2(a)). When the inputs represented by the error-
detecting nodes are active, then it would be expected that as
the strengths of the weights increase, so would the response
of the output node. However, as illustrated in Figure 2(b),
the opposite happens with sequential NMF. This occurs
because as the weights are increased the output node is able
to more strongly inhibit the input it receives and hence
the activation of the output is decreased. This keeps the
reconstructed input equal to the actual input, and hence
the values of e are equal to one. Thus, in sequential NMF,
as a node becomes more strongly tuned to an input pattern
its response decreases, while a node that receives only weak
weights from an input pattern produces a strong response to
that stimulus.

To make the variation in output response with weight
strength more intuitively correct, the algorithm being pro-
posed here calculates the response of the network as

e = x � (ε + ŴTy
)
, (19)

y ←− (ε + y)⊗We, (20)

where Ŵ = [ŵ1, . . . , ŵn]T is a matrix representing the same
synaptic weight values as W but such that the rows of Ŵ
are normalised to have a maximum value of one. This is
mathematically equivalent to calculating the residual errors
using

e = x � (ε + WT
(

y � ŵ
))

, (21)

where ŵ is a vector, each element of which represents the
maximum synaptic weight received by the corresponding
output node.

The effect of the proposed change in the calculation
of the residual errors is to normalise the strength of
the feedback/lateral weights, so that the maximum weight
originating from each output node has a value of one. Such
normalisation of inhibitory lateral weights was previously
found to be advantageous for improving the competition
between nodes competing to receive inputs [11, 12]. A
justification for this modification, in terms of probabilities,
is provided in Section 2.4. The second proposed change
removes the normalisation of the output node responses,
and hence makes these responses sensitive to the strength
of the input weights (compare (20) with (14)). As can be
seen in Figure 2(c), using the proposed method makes the
response of the output node proportional to the strength of
the weights. These changes also make the e values sensitive
to the strength of the weights, and this enables the learning

6 Computational Intelligence and Neuroscience

y1

e1 e2

x1 x2

w12w11

(a)

1 1

4

1 1

2

1 1

1

1 1

0.5

(b) nmfseq

2 2

0.5

1 1

1

0.5 0.5

2

0.25 0.25

4

(c) dim

Figure 2: (a) A simple neural network of the type used by all the algorithms described in this article (the symbols are the same as those
used in Figure 1). This network has one output node which receives equal strength weights from two error-detecting nodes (i.e., w11 = w12).
Each error-detecting node receives equal strength input from two-image pixels (i.e., x1 = x2 = 1). Each subfigure in (b) and (c) shows
the steady-state activation strength of the output node and the two error-detecting nodes in this simple network calculated using (b) the
sequential NMF algorithm, and (c) the divisive input modulation algorithm. The steady-state responses are calculated for different weight
values (indicated by the width of each connection which is proportional to its strength). From top to bottom in (b) and (c) the weights (i.e.,
w11 and w12) are equal to 0.25, 0.5, 1, and 2. Note that there is no stochastic element in the calculation of the neural responses generated by
these algorithms, so identical results will be generated each time the network is simulated with these weight values.

rule to normalise the total strength of the weights received
by a node, as described below. The aforementioned changes
represent a significant departure from the original NMF
algorithm, and hence we have elected to give the proposed
algorithm a distinct name.

The proposed learning rule is identical to that proposed
for sequential NMF, that is,

W←−W⊗ (1 + βy
(

eT − 1
))
. (22)

Following learning, weights are clipped at zero to ensure that
they are nonnegative. As with the sequential NMF algorithm,
the synaptic weights are adjusted in order to minimise the
error between the input and the top-down reconstruction of
the input. The learning rule increases the weights between
underrepresented error-detecting nodes and active output
nodes, while it decreases the weights of overrepresented
error-detecting nodes and active output nodes. A weight
stops changing value when the top-down reconstruction is
perfect (i.e., when ŴTy = x) or when the weight is zero.

A second advantage of the proposed changes to the equa-
tions for calculating the node activation is that the values of
e are sensitive to the scale of the weights. Hence, nodes with
strong weights produce strong feedback that results in small
values of e, whereas nodes with weak weights produce weak
feedback that results in large values of e (see Figure 2(c)).
The learning rule acts to drive the reconstruction error values
towards one, which means that nodes with strong weights
will have them reduced and nodes with weak weights will

have them increased. Hence, learning results in the sum of
the synaptic weights received by each output node being
normalised to a value of one. Such normalisation is attractive
from the point of view of biological plausibility, as synaptic
weights cannot increase without bound. In contrast, the
weights in sequential NMF are unbounded and tend to drift
upwards throughout learning. As described in the previous
section, clipping the weights at a value of one was found to
be necessary.

2.4. Bayesian Interpretation of DIM. By substituting (19) into
(20), the rule for updating the response of the DIM network
is given by

y ←− (ε + y)⊗W
[

x � (ε + ŴTy
)]
. (23)

If we consider a single node (j) and assume that this node
reaches a steady-state value that is significantly greater than
zero (and hence that the value of ε is insignificant), then the
following condition is true:

W j
[

x � (ŴTy
)] = 1. (24)

If we further assume that no other active node sends feedback
to a particular input (i), then the relationship between this
input to the network and a single active node is given by

wjixi
ŵ ji y j

= 1, (25)

Computational Intelligence and Neuroscience 7

Table 1: Summary of the algorithms tested in this article.

Acronym Description Definition

fyfe Fyfe’s algorithm for negative feedback Equations (1), (2), and (3)

harpur Harpur’s algorithm for negative feedback Equations (4), (5), and (6)

nmfdiv Nonnegative matrix factorisation with divergence objective Equations (8) and (9)

nmfseq Sequential nonnegative matrix factorisation Equations (13), (14), and (18)

dim Divisive input modulation Equations (19), (20), and (22)

that is,

wji =
ŵ ji y j
xi

. (26)

Bayes’ theorem states that

P(H | D) = P(D | H)P(H)
P(D)

, (27)

where H is the hypothesis and D the data. If we equate P(H)
(the prior) with yj (the node activity), P(D) (the evidence)
with xi (the input activation), P(H | D) (the posterior) with
wji (the feedforward weight), and P(D | H) (the likelihood)
with ŵ ji (the feedback weight), then it can be seen that
the relationship between the input activity and steady-state
node activity is consistent with Bayes’ theorem. Furthermore,
the competition between nodes in the DIM network can
be considered to perform “explaining away” [22]. If a node
wins the competition to represent a particular input, then
it inhibits other nodes from representing that input. Hence,
if one hypothesis explains a particular piece of data, then
support for alternative hypotheses is reduced. However, in
ambiguous situations multiple hypotheses to explain a single
input can each be concurrently active. The DIM network can
also be considered to perform “analysis by synthesis” [23].
Hypotheses are activated by bottom-up, stimulus-driven,
inputs. These hypotheses are compared to the image data
and are accepted or rejected (through the competition that
occurs between hypotheses) based on their ability to explain
the input.

If we consider the network weights to represent con-
ditional probabilities, then the choice to normalise the
feedback weights by the maximum weight value received by
each node (see previous section) makes intuitive sense. If
a node represents a particular object as a conjunction of
c inputs (lower-level feature detectors), and each of these
inputs is equally weighted, then the learning rule will cause
each of the feedforward weights to become equal to 1/c, so
that the sum of the feedforward weights is equal to one. If
one of these inputs is fully active, it provides 1/c support
for the hypothesis that the object is present in the image. In
the reverse direction, if the node representing the object was
fully active, then the normalised feedback weights predict
that each input feature should be present in the image with a
probability of one. As a concrete example, consider a node
that represents the category “chair.” If this node receives
inputs from three-feature detectors for “seat,” “legs,” and
“arms” and each of these features is weighted equally (i.e., the

feedforward weights are [1/3, 1/3, 1/3]) then the presence of
a seat in an image will increase the probability that the image
contains a chair by 1/3. However, if the network hypothesises
that the image contains a chair (with probability 1), then the
probability that the image contains a seat is 1. If only half of
all chairs contain arms then the feedforward weights learnt
by the network would be [0.4, 0.4, 0.2], and the presence
of arms in the image would provide less support for the
hypothesis that the image contains a chair than the other two
features. Similarly, if the network hypothesises that the image
contains a chair, then the probability that the image contains
a seat is still 1, but the probability that the image contains
arms is half. If the feedback weights were not normalised,
the hypothesis that the image contained a chair would cause
the presence of a “seat” and “legs” to be predicted with a
probability of 0.4, and the presence of “arms” to have a
probability of 0.2. While normalising the feedback weights
may not be as rigorous as learning the inverse model, it
provides a better first approximation to the statistics of image
formation than not normalising the feedback weights.

3. Results

The performance of each of the algorithms described in
Section 2 were compared using a simple artificial task
(described in Section 3.1). For convenience these algorithms
will be referred to using the abbreviations listed in Table 1.
The first set of experiments (Section 3.2) tests the ability
of different algorithms to detect the component parts from
which different stimuli are composed. In these experiments
each network is given predefined weights and no learning
occurs. These experiments thus test the ability of the
activation functions to generate correct parsings of stimuli
based on predefined knowledge of the possible constituents.
The second set of experiments (Section 3.3) tests the ability
of the different algorithms to learn the component parts
from which a set of artificial training images are composed.
These experiments are repeated in Section 3.4 in order to
compare the performance of DIM with a wider range of
algorithms, including two that have previously been shown
to perform extremely well on a similar artificial task. Finally,
the behaviour of the proposed algorithm on real image data
is explored in Section 3.5.

3.1. The Squares Problem. The bars problem (and its vari-
ations) is a benchmark task for assessing the ability of
algorithms to learn elementary image components [14–
16, 19, 20, 24, 25]. In the standard version of this task,

8 Computational Intelligence and Neuroscience

(a)

(b)

Figure 3: Typical examples of six-by-six pixel artificial images generated using three-by-three (i.e., s = 3) pixel squares components and (a)
p = [0.1, 0.1], c = [1, 1], (b) p = [0.02, 0.2], c = [0.1, 1].

training images are 8 by 8 pixels in size and are made up of
image components that are one-pixel wide and eight-pixel-
long horizontal and vertical bars. The proportion of overlap
between different image components is therefore quite small
being zero for parallel bars and 1/8 for perpendicular bars.
However, even with this limited degree of occlusion, nmfdiv
is unable to reliably learn all the image features [8].

To test the proposed algorithm we introduce a task sim-
ilar to the bars problem, but one which is more challenging
due to there being more significant overlap between image
components. Each artificial image was created by selecting,
at random, elements from a fixed set of elementary image
components. These components were all whole s-by-s pixel
squares. Prior to generating an image set, each individual
component was assigned a probability controlling the fre-
quency with which it appeared in that set of images. These
probabilities were selected from a uniform distribution with
a range [p1, p2]. Each image was then created using the
following procedure:

(1) one square was chosen at random based on the
probabilities assigned to each component. All other
squares were independently selected to be present in
the image also based on the probabilities assigned to
each component. This procedure ensures that each
image consists of one or more square shapes and
often contains multiple, overlapping, and squares;

(2) all squares present in the image were randomly
assigned a “contrast” and a unique “depth.” Contrast
values were randomly selected from a uniform distri-
bution with a range [c1, c2]. Hinton and Ghahramani
[25] proposed a similar variation on the bars problem
in which components had randomly assigned inten-
sities;

(3) pixels in the image were given a gratscale value
corresponding to the contrast of the foremost square
at that pixel location, or pixels were given a greyscale
value of zero if no square occurred at that location.

Typical examples of artificial images generated using this
method are shown in Figure 3. The procedure described
above defines a family of “squares problems.” A particular
task from this set is defined by the parameters: s (specifying
the size of the components used), p (defining the range of
probabilities that are assigned to individual components),
and c (defining the range of contrast values applied to

squares in each image). Another possible parameter is the
size of the image, but in all variations on the squares problem
used in this article the image size is fixed at six-by-six
pixels. Another parameter that varied between experiments
was n the number of nodes (or equivalently basis vectors)
employed by the algorithm being tested.

The degree of overlap between components is controlled
by s. Values of two, three, and four were used for this
parameter in the tasks described here. For s = 2 the
proportion of overlap between components is either 0, 1/4,
or 1/2. For s = 3 the proportion of overlap between
components is either 0, 1/9, 2/9, 1/3, 4/9, or 2/3. For s =
4 the proportion of overlap between components is either
1/4, 3/8, 1/2, 9/16, or 3/4. Hence, in each case there is greater
overlap between features in the squares problem than in the
bars problem.

With an artificial task, like the squares problem, the
underlying image components of the training and testing
images are known. This allows algorithms to be quantita-
tively tested by comparing the components that have been
represented with the known features from which the images
were created. To determine which components have been
represented by an algorithm, both the responses generated
to test images and the weights learnt from training images
can be analysed, as detailed in what follows.

3.1.1. Testing Responses. The accuracy with which each algo-
rithm could represent images was determined by analysing
the responses generated by the network to test images
and comparing the components represented by the active
nodes with the components from which each test image
was actually created. For the purposes of this analysis, any
square that was selected to be in an image, but which was
completely occluded by other squares, was not counted as
being present in that image. Each network was tested with
a set of 1000 test images. At the very minimum, in order
to be able to distinguish those components that are present
in an image from those that are absent it is necessary
for nodes that represent the components making up an
image to have greater activity than all other nodes (and for
nodes representing components not present in the image to
generate a weaker response than all the nodes representing
active components). More formally, if y̌t is the minimum
activity across all the nodes representing squares in the
image, and ŷ f is the maximum activity across all the nodes
representing squares not in the image, then for a correct

Computational Intelligence and Neuroscience 9

representation of that image we require y > ŷ f for all nodes
representing image components present in the image, and
y ≤ y̌t for all nodes representing image components absent
from the stimulus. It follows that the number of responses
which are false negatives is given by the number of nodes
which represent a components present in the image but
which are not active (i.e., for which y ≤ ŷ f). The number of
responses which are false positives is given by the number of
nodes that represent components not in the image but which
are active (i.e., for which y > y̌t).

In tests on image parsing (Section 3.2) the networks
were hard wired to represent each image component.
Hence, it was known which nodes represent which image
components and this information was used to perform the
above analysis. For tests in which image components were
learnt (Sections 3.3 and 3.4), it was necessary to determine
which node represented which components (in order to
determine which nodes should and should not be active in
response to the components known to make up each test
image). Hence, prior to carrying out the above analysis the
selectivities of each node were calculated. Each node was
assumed to represent that component for which it had the
highest selectivity, with the additional constraint that each
component was allocated to a distinct node. Selectivity was
measured as the difference in the mean response of a node
to all the test images that contained a component and the
mean response to all the other test patterns (which did not
contain that component). Since allocating a single node to
represent multiple components would automatically result
in responses unable to distinguish patterns, we also required
that each component was allocated to a distinct node. Hence,
if the above procedure resulted in more than one component
being allocated to a single node, the component for which
the node had the highest selectivity was allocated to that
node, and the nodes with the next highest selectivities were
allocated to representing the remaining components. This
process was repeated until all components were allocated to
distinct nodes.

3.1.2. Testing Weights. The accuracy with which each algo-
rithm could learn weights selective to image components was
tested by comparing the weights formed following training
with the image features from which the training images were
created. A node was considered to represented an image
component if the following criteria were met: (1) the sum of
the synaptic weights corresponding to that image component
was at least three times greater than the sum of all other
weights received by the node; (2) each individual weight
corresponding to the image component was greater than any
weight received by the node from an input not forming part
of the component; (3) each individual weight corresponding
to the image component was greater than the mean of all
the weights received by the node. The first criteria ensures
that a node is strongly selective for a particular individual
component. The second criteria ensures that the node does
not represent pixels that do not form part of the component.
The third criteria ensures that a node represents all pixels that
form part of that component. By applying these criteria for

all image components to each node, the number of features
represented by distinct nodes in the network was determined.

Note that testing weights is complementary to testing
responses, and these two tests may give very different results.
For example, it may be possible for nodes to represent only
certain pixels that form each component, but to still reliably
respond to the presence of each component. In this case
the response analysis might yield a low error rate while the
weight analysis would suggest that few components were
represented. On the other hand, it might be possible for
multiple nodes to learn very similar weights representing
all the pixels of a single component. The competition
between these nodes might cause the same component to be
represented by a different node in different contexts. In this
case the response analysis would suggest poor performance,
while the weight analysis would indicate the component was
accurately represented. Hence, both a low parsing error rate
and a high percentage of components represented by the
weights are required to indicate the success of a learning
algorithm.

3.2. Parsing Images into Elementary Components. An image
usually consists of a number of different objects, parts,
or features and these components can occur in different
configurations to form many distinct images. Identifying
the underlying components which are combined to form an
image is thus essential for generating an accurate representa-
tion of a visual scene and is necessary for performing object
recognition. If the underlying image components are known
and a neural network is given predefined weights so that all
possible components are represented by distinct nodes, then
the ability of the network to parse an image can be assessed
(as described in Section 3.1.1) by comparing the activity
generated in response to a test image with that expected to
be generated in response to the components known to be
present in the test image.

Figure 4 shows the percentage of false negatives and false
positives generated by each algorithm for experiments using
two-by-two, three-by-three, and four-by-four pixel square
components. In each case, all components appeared in the
test images with equal frequency (p = [0.1, 0.1]) and all
components were presented in every image with the same
contrast (c = [1, 1]). For each test the number of nodes
in the network was made equal to the number of image
components in each task. It can be seen that algorithms dim,
nmfseq, and nmfdiv all produce accurate parsings of the
images with only a very small proportion of errors in the
representations generated. Across all three tests dim, nmfseq,
and nmfdiv generate parsings that are at least 99.6% correct.
The results are very similar, due to the similar mechanism
of divisive input modulation used in these three algorithms.
In comparison, algorithm harpur produces poorer results
across all three tasks with total errors of up to 4.9%. The lack
of competition in algorithm fyfe results in this algorithm
producing the worst performance in all the tasks, with up
to 8.2% errors. Note that all the errors for fyfe are false
negatives, this is due to nodes representing components
not present in the image being allowed (due to the lack of

10 Computational Intelligence and Neuroscience

0

2

4

6

8

Pa
rs

in
g

er
ro

rs
(%

)

f
y
f
e

h
a
r
p
u
r

n
m
f

n
m
f
s
e
q

d
i
m

Algorithm

(a)

0

2

4

6

8

Pa
rs

in
g

er
ro

rs
(%

)

f
y
f
e

h
a
r
p
u
r

n
m
f

n
m
f
s
e
q

d
i
m

Algorithm

(b)

0

2

4

6

8

Pa
rs

in
g

er
ro

rs
(%

)

f
y
f
e

h
a
r
p
u
r

n
m
f

n
m
f
s
e
q

d
i
m

Algorithm

(c)

Figure 4: Errors in parsing the overlapping squares tasks with (a) s = 2, (b) s = 3, and (c) s = 4; p = [0.1, 0.1], and c = [1, 1] in each
case. Each bar shows the proportion of errors generated across 1000 test images. Each bar is subdivided into the proportion of false negatives
(lighter, lower, section) and the proportion of false positives (darker, upper, section).

competition) to generate a response equal in strength to the
smallest response generated to a component that is present.

Figure 5 illustrates parsings produced by each algorithm
for the three-by-three squares task. Algorithms dim, nmfseq,
and nmfdiv correctly represent the components present
(and only those components) in each test image. In contrast,
both algorithms harpur and fyfe represent more com-
ponents than are actually present in the images. For Fyfe’s
algorithm this is to be expected, as there is no competition
between the nodes. For Harpur’s algorithm it demonstrates
that the competition is not particularly successful in deter-
mining which nodes represent components that are actually
present in the image.

3.3. Learning Elementary Image Components. The previous
section explored the ability of different mechanisms of
competition to identify the elementary features from which
an artificial image was composed. Networks were given
predefined synaptic weights, and hence, knowledge of the
component features was built into each network. In this
section, the ability of each algorithm to learn elementary
image components is tested. Each network is trained using
a randomly generated sequence of artificial images each of
which is generated from a predefined set of image com-
ponents. Training images were created using the procedure
described in Section 3.1. Hence, images contained multiple
overlapping square components. Nine versions of the squares
task were used in total, with three variations of the task being
performed for each of the three different component sizes
used (s = 2, s = 3, and s = 4). In the first variation, all
the components had the same probability of occurring in the
training images (p = [0.1, 0.1]), each component had an
equal contrast (c = [1, 1]), and each network had exactly
the same number of nodes as there were components in
the training data. In the second variation, the training data
was generated identically to the first variation, but networks
contained a fixed, excess, number of nodes. Forty-eight
nodes were used, this was an arbitrary figure chosen to ensure
that there was a large excess of nodes in all experiments.
In the third variation of the task, each component had a

different probability of occurring in the training images (p =
[0.02, 0.2]), in each image each component was randomly
assigned a contrast (c = [0.1, 1]), and 48 nodes were used.

Each algorithm was given random initial weight values
and was trained using a set of 1000 training images. Ten
trials were performed for each combination of algorithm
and task. Each trial used a different, randomly selected, set
of training images and different, randomly generated, initial
weight values. Parameter values that gave the best results
were found by trial and error, and were kept constant across
variations in the task (see Table 2). Parameter values were
fixed to assess the ability of each algorithm to robustly learn
image components across a number of variations in the
task. In order to succeed at all the variations in the squares
task tested here, an algorithm needed to cope with changes
to the size of components, the frequency of appearance of
components, the greyscale values of components, and the
number of nodes used to represent those components (i.e.,
to changes in parameters s, p, c, and n).

Following training the synaptic weights were fixed and
the response of each network to 1000 randomly generated
test images was recorded. Test patterns were generated using
the same procedure as used to generate the training images
with p = [0.1, 0.1] and c = [1, 1]. The proportion of
responses that were false negatives and false positives were
determined using the procedure described in Section 3.1.1.
These results, averaged over ten trials, are shown in the left
column of Figure 6. In addition to testing how well each
algorithm could parse images following training, the weights
learnt by each algorithm were also assessed as described
in Section 3.1.2. The average number of components suc-
cessfully represented by the weight values learnt by each
algorithm are shown in the right column of Figure 6.

It can be seen that across all the variations in the
task, algorithm dim produced the best overall results; the
weights learnt corresponded to the image components and
the subsequent parsing errors were small. The performance
of dim was unaffected by changing parameters s, p, c, or
n, although excess nodes generally improved performance
slightly. Similarly, the results produced by algorithms fyfe,
harpur, nmfdiv, and nmfseq were unaffected by variations

Computational Intelligence and Neuroscience 11

1

1 2

1 6

1 2 6

(a) Test images

1 2 3 5 6 7 9 10

1 2 3 5 6 7 9 10

1 2 3 5 6 7

1 2 3 5 6 9

(b) fyfe

1 2 4 6 14

1 6 8

1

1

2 4

14

(c) harpur

1

1 2

1 6

1 2 6

(d) nmfdiv

1

1 2

1 6

1 2 6

(e) nmfseq

1

1 2

1 6

1 2 6

(f) dim

Figure 5: Node activations generated in response to input images containing overlapping 3 × 3 pixel square components. (a) Test images.
Numbers indicate which components are present in each test image. (b)–(f) Images reconstructed from the response of each network.
Numbers indicate which components are represented by strongly active nodes in each network (nodes that have an output activation greater
than the mean of all node activations). Each network was given predefined weights so that distinct nodes represented 3× 3 pixel squares at
all possible locations.

Table 2: Details of the training procedure used for each of the algorithms tested. In all cases the parameter values listed were those found
to produce the best results. Parameter values were kept constant across variations in the task. All algorithms except nmfdiv use an online
learning procedure. Hence, each weight update occurs after an individual training image has been processed. This is described as a training
cycle. In contrast, nmfdiv uses a batch learning method. Hence, each weight update is influenced by all training images. This is described
as a training epoch. Hence, with a set of 1000 training images (as used in these experiments) an epoch is equivalent to 1000 training cycles
for the online learning algorithms. The third column specifies the number of iterations used to determine the steady-state activations values.
Weights were initialised using random values selected from a Gaussian distribution with the mean and standard deviation indicated. In each
case initial weights with values less than zero were made equal to zero.

Algorithm Training time Iterations Weight initialisation Parameter values

fyfe 200 000 cycles n/a mean =
1
8

, std =
1

32
β = 0.0001

harpur 20 000 cycles 100 mean =
1
8

, std =
1

32
β = 0.1, μ = 0.025

nmfdiv 2 000 epochs n/a mean =
1
2

, std =
1
8

n/a

nmfseq 20 000 cycles 50 mean =
1
4

, std =
1

16
β = 0.05

dim 20 000 cycles 50 mean =
1

16
, std =

1
64

β = 0.05

in parameters p and c, suggesting that none of the algorithms
tested had a strong prior expectation (explicit or implicit
to the algorithm) for the frequency of appearance, or the
greyscale, of image components. However, in contrast to dim,
the number of nodes in the network had a large effect on the
results produced by algorithms harpur and nmfdiv. When
an excess of nodes was used, these algorithms produced
very poor results, suggesting that these algorithms require
prior knowledge of the number of components. In general,

it is not known in advance how many components need
to be represented. Hence, a practical algorithm needs to be
able to correctly learn image components with an excess of
nodes. Furthermore, in contrast to dim, the performance
of algorithms fyfe, harpur, nmfdiv, and nmfseq was
affected by the size of the image components. The analysis
of the weights shows that the performance of algorithm
nmfseq improved as s increased, whereas, the performance
of fyfe, harpur, and nmfdiv deteriorated as s increased

12 Computational Intelligence and Neuroscience

0

6

12

18

24

30

36

42
Pa

rs
in

g
er

ro
rs

(%
)

f
y
f
e

h
a
r
p
u
r

n
m
f
d
i
v

n
m
f
s
e
q

d
i
m

Algorithm
0

5

10

15

20

25

C
om

p
on

en
ts

re
pr

es
en

te
d

f
y
f
e

h
a
r
p
u
r

n
m
f
d
i
v

n
m
f
s
e
q

d
i
m

Algorithm

(a)

0

6

12

18

24

30

36

42

Pa
rs

in
g

er
ro

rs
(%

)

f
y
f
e

h
a
r
p
u
r

n
m
f
d
i
v

n
m
f
s
e
q

d
i
m

Algorithm
0

4

8

12

16

C
om

p
on

en
ts

re
pr

es
en

te
d

f
y
f
e

h
a
r
p
u
r

n
m
f
d
i
v

n
m
f
s
e
q

d
i
m

Algorithm

(b)

0

6

12

18

24

30

36

42

Pa
rs

in
g

er
ro

rs
(%

)

f
y
f
e

h
a
r
p
u
r

n
m
f
d
i
v

n
m
f
s
e
q

d
i
m

Algorithm
0

3

6

9

C
om

p
on

en
ts

re
pr

es
en

te
d

f
y
f
e

h
a
r
p
u
r

n
m
f
d
i
v

n
m
f
s
e
q

d
i
m

Algorithm

(c)

Figure 6: Performance of each algorithm when trained on the overlapping squares task with (a) s = 2, (b) s = 3, and (c) s = 4. Results are
shown for three different versions of each task; foreground bars show results when n equals the number of image components, p = [0.1, 0.1],
and c = [1, 1]; middle bars show results for n = 48, p = [0.1, 0.1], and c = [1, 1]; background bars show results for n = 48, p = [0.02, 0.2],
and c = [0.1, 1]. Results are averaged over 10 trials for each condition. Plots in the left-hand column show the mean number of errors
generated in the response of each network to 1000 test images. Each bar is subdivided into the proportion of false negatives (lighter, lower,
section) and the proportion of false positives (darker, upper, section). Plots in the right-hand column show the mean number of components
correctly represented by the synaptic weights learnt by each algorithm. Error bars show best and worst performance, across the 10 trials.

(i.e., as the overlap between image components became
larger). As noted in Section 2.2.1 following (18), the learning
rule implemented in the sequential NMF algorithm is not
a very close approximation to that of the original batch
NMF algorithm. Hence, while the results for parsing are very
similar, the learning results for nmfdiv and nmfseq differ
significantly.

3.4. Benchmarking. The previous sections have compared
the performance of the proposed algorithm with those
previous algorithms from which it derives. It has been
shown that dim is more successful than its predecessors in

learning the squares problem. However, to be of general
interest it is necessary to show that the performance of
dim is competitive with other algorithms which are known
to be able to learn overlapping image components. In this
section the experiments reported in Section 3.3 are repeated
with a number of alternative algorithms; enhanced versions
of the three algorithms from which dim originates, and
algorithms that have previously been shown to produce
state-of-the-art performance on a similar set of tasks (i.e.,
the bars problem).

Charles et al. [15] presents a modified version of algo-
rithm fyfe, which it is claimed produces better performance
on the bars problem (although no quantitative results are

Computational Intelligence and Neuroscience 13

provided). It is also claimed that this modified algorithm
can learn to represent individual bars even when the training
images contain many coactive bars (e.g., using images that
contain seven coactive bars). However, in this case the
training images were created using the additional constraint
that all bars had the same orientation. Hence, there is zero
overlap between the components in this data. This modified
algorithm (which we will call fyfe2) replaces (1) with

y = {Wx}+ + n, (28)

where {·}+ denotes that the positive half-wave rectified value
of the node activations are taken, and n is a vector of noise
values added to these nonnegative node activations. These
noise values are taken from a Gaussian distribution with zero
mean and a standard deviation of ν. Also, in contrast to
algorithm fyfe, the weights are allowed to take both positive
and negative values.

Harpur [17] proposes a large range of possible variations
on algorithm harpur. These differ in the constraints placed
on the weights, constraints placed on the node activations
and the learning rule employed. One variation that is
particularly successful in learning the squares task is an
alternative learning rule proposed in Harpur and Prager [18].
This replaces (6) with

W←−W + βyΘ
(

xT
)
, (29)

where Θ(xT) performs a thresholding function on the
elements of xT (i.e., Θ(xT) = [x1 − θ, . . . , xm − θ]).

A large number of variations on NMF have been
proposed [1–7, 9, 26, 27]. The nmfsc algorithm [3] has
previously been found to produce good performance on
the bars problem, even for modified versions of this task
where the overlap between bars is increased [8]. The nmfsc
algorithm allows optional constraints to be imposed on the
sparseness of either the basis vectors, the activations, or
both. The constraint on the sparseness of the basis vectors
(sW) can range from 0 (which would produce completely
distributed basis vectors) to a value of 1 (which would
produce completely sparse basis vectors). This parameter
affects the sparseness of the rows of W to ensure that
each node learns to represent a component with a similar
prespecified fraction of active pixels. The constraint on the
sparseness of the activations (sY) is also in the range [0, 1]
and is applied to the rows of Y. Hence, ensuring that each
component is present in a similar prespecified fraction of the
training images.

The preintegration lateral inhibition or dendritic inhi-
bition algorithm (di) has been shown to outperform a
wide range of other algorithms on the bars problem [8,
12, 28]. The similarity of the squares task to the bars
task suggests that the dendritic inhibition algorithm will
provide a good benchmark for assessing the proposed
algorithm. Algorithm di also has strong similarity to the
other algorithms discussed in this article, as it employs a
mechanisms of competition through which nodes within a
population suppress the inputs to neighbouring nodes. It
may therefore also be considered to be a predecessor of dim.

The parameter values, that gave the best results for these
additional algorithms were found by trial and error, and were
kept constant across all the variations in the squares task.
These values are listed in Table 3. Results for experiments
identical to those described in Section 3.3 are shown in
Figure 7. It can be seen that dim produced results that are
very comparable to those of the di algorithm and that
these results were far superior to those of the other algo-
rithms tested. Algorithm fyfe2 produced results that were
only marginally better than fyfe, with performance still
deteriorating with increasing overlap. Algorithm harpur2
produced results that were significantly better than harpur.
One improvement was that the algorithm performed well
when trained using excess nodes. However, performance
was poor on the version of the squares problem in which
components had an unequal probability of appearance and
varying contrast. This is likely to be due to the fixed threshold
applied to x in the modified learning rule. The performance
of the nmfsc algorithm depended critically on the partic-
ular sparseness parameters that were chosen, particularly
parameter sW which determines the sparseness of the weights
learnt by each node. With sW = 0.5 this algorithm produced
excellent performance learning intermediate sized squares
(i.e., for s = 3) but poor performance for s = 2 and s = 4.
Good results for squares tasks with other size components
could be achieved by varying parameter sW but no single
parameter value could produce good results across all the
values of s used in these experiments. Hence, while an appro-
priate choice of sparseness constraint improves performance
over algorithm nmfdiv, an inappropriate choice prevents
the identification of factors that have a different size to that
specified by the sparseness parameter chosen. Furthermore,
when components have a variety of sizes (as was the case in
these experiments) no sparseness constraint exists that will
allow all those components to be successfully learnt.

3.5. Image Data. It has become common practise to test
NMF algorithms using the CBCL Face Database. (CBCL
Face Database #1, MIT Center For Biological and Compu-
tation Learning, http://cbcl.mit.edu/software-datasets/Face-
Data2.html.) The weight vectors learnt by algorithm dim
when applied to this task are shown in Figure 8(e). Parameter
values were identical to those used to learn the squares prob-
lem. The preprocessing of the images was identical to that
performed in [4]. It can be seen that the proposed algorithm
learns components that are holistic, partially localised (e.g.,
right and left halves of a face, cheeks plus nose, etc.), and
localised (chin, lips, eyebrows, etc.). Algorithm fyfe also
learns components that are localised and partially localised
(Figure 8(a)). In contrast, nmfdiv learns basis vectors that
correspond to localised image parts (Figure 8(b)) as found
in previous work [1, 3, 4]. While algorithms nmfsc (using
the same sparseness constraints used to learn the squares
task) and nmfseq learn both holistic and semilocalised image
components (see Figures 8(c) and 8(d)). Algorithm harpur
fails to learn any components due to all node activations
oscillating between large and small values at each iteration.
Due to this unstable behaviour all node activations are zero

http://cbcl.mit.edu/software-datasets/FaceData2.html
http://cbcl.mit.edu/software-datasets/FaceData2.html

14 Computational Intelligence and Neuroscience

Table 3: Details of the training procedure used for each of the benchmarking algorithms tested. In all cases the parameters values listed were
those found to produce the best results. Parameter values were kept constant across variations in the task. All algorithms except nmfsc use
an online learning procedure and hence training time is measured in cycles, whereas for nmfsc training time is measured in epochs. See the
caption of Table 2 for further details.

Algorithm Training time Iterations Weight initialisation Parameter values

fyfe2 200 000 cycles n/a mean =
1
4

, std =
1

32
β = 0.01, ν = 0.1

harpur2 20 000 cycles 50 mean =
1

32
, std =

1
8

β = 0.0025, μ = 0.05, θ = 0.5

nmfsc 2 000 epochs n/a mean =
1
2

, std =
1
8

sW = 0.5, sY = none

di 20 000 cycles 25 mean =
1

36
, std = 0.001 β+ = 0.25, β− = 0.25

dim 20 000 cycles 50 mean =
1

16
, std =

1
64

β = 0.05

0

6

12

18

24

30

36

42

Pa
rs

in
g

er
ro

rs
(%

)

f
y
f
e
2

h
a
r
p
u
r
2

n
m
f
s
c

d
i

d
i
m

Algorithm
0

5

10

15

20

25

C
om

p
on

en
ts

re
pr

es
en

te
d

f
y
f
e
2

h
a
r
p
u
r
2

n
m
f
s
c

d
i

d
i
m

Algorithm

(a)

0

6

12

18

24

30

36

42

Pa
rs

in
g

er
ro

rs
(%

)

f
y
f
e
2

h
a
r
p
u
r
2

n
m
f
s
c

d
i

d
i
m

Algorithm
0

4

8

12

16

C
om

p
on

en
ts

re
pr

es
en

te
d

f
y
f
e
2

h
a
r
p
u
r
2

n
m
f
s
c

d
i

d
i
m

Algorithm

(b)

0

6

12

18

24

30

36

42

Pa
rs

in
g

er
ro

rs
(%

)

f
y
f
e
2

h
a
r
p
u
r
2

n
m
f
s
c

d
i

d
i
m

Algorithm
0

3

6

9

C
om

p
on

en
ts

re
pr

es
en

te
d

f
y
f
e
2

h
a
r
p
u
r
2

n
m
f
s
c

d
i

d
i
m

Algorithm

(c)

Figure 7: Performance of the benchmarking algorithms when trained on the overlapping squares task with (a) s = 2, (b) s = 3, and (c)
s = 4. See caption of Figure 6 for details. Note that the results for algorithm dim are identical to those shown in Figure 6 but are reproduced
here for ease of comparison.

Computational Intelligence and Neuroscience 15

(a) fyfe (b) nmfdiv

(c) nmfsc (d) nmfseq

(e) dim

0.5

1

1.5

2

2.5

3

3.5

4

R
ec

on
st

ru
ct

io
n

er
ro

r

0 5 10 15 20
Training time

fyfe
harpur
nmfdiv

nmfsc
nmfseq
dim

(f)

Figure 8: (a)–(e) Example basis vectors learnt by each algorithm when trained on the CBCL Face Database, with n = 48. (f) The change
during the course of training of the mean Euclidean distance between the input and the reconstructed input. Results show mean of 10 trials
performed using each algorithm. The best and worst performance over these 10 trials is shown by the error bars (which are very small in
each case). Note that the total training time used for each algorithm (and hence the meaning of the value “20” on the x-axis of this graph)
was 200 epochs for fyfe, 2000 epochs for algorithms nmfdiv and nmfsc, and 20 epochs for all the other algorithms. Training times are
therefore not all directly comparable: at any particular time fyfe has seen 10 times more data and been updated 10 times more than dim,
while nmfdiv and nmfsc have seen 100 times more data but been updated 24 times less than dim.

at the end of the 100 iterations performed to find the steady-
state node activations in response to each training pattern,
and hence, the weights never change from the original
random ones.

For this test case, what constitutes a meaningful represen-
tation is unknown. However, we can gauge how accurately

each algorithm represents the training data by calculating
the Euclidean distance between the input image and the
input reconstructed from the node activations. Figure 8(f)
shows the mean reconstruction error, averaged over all 2429
training images, at various times during the training of each
algorithm. Identical parameters to those used for learning the

16 Computational Intelligence and Neuroscience

squares data have been used in each case, and each algorithm
has been trained with 48 nodes or basis vectors. The only
difference was that the training times for the online learning
algorithms were increased by a factor of 2.429 due to the
training set containing 2429 images rather than the 1000
images used previously. This keeps the relative number of
training epochs for each algorithm constant. It can be seen
that the reconstruction error for dim is initially the highest.
This is due to dim being sensitive to the scale of the weights.
However after training, dim is able to reconstruct the images
with an accuracy approaching the batch NMF algorithms.
Note that harpur fails to learn due to all node activations
oscillating between zero and large values at each iteration,
and that the reconstruction error for nmfdiv and nmfsc is
flat as the weights learnt by these algorithms have already
converged to their final values by 200 epochs (corresponding
to a training time of 2 in Figure 8(f)).

4. Discussion

Fyfe’s negative feedback algorithm employs subtractive inhi-
bition of the network inputs in order to affect learning.
The feedback inhibition does not directly affect output
activations, but only has an indirect effect through sub-
sequent synaptic weight changes. There is thus no direct
competition between nodes for the right to be active in
response to a stimulus. It has been shown that various
versions of this algorithm are capable of learning weights
that represent individual image components in tasks (such
as the bars problem) where image components have only a
small overlap [13–16]. When there is little overlap between
the representations learnt by each node, it is also possible
for the activation of the network to show distinct responses
for different stimuli. However, when image components
have strong overlap, the lack of competition between the
nodes means that the network fails to accurately represent
the input it receives even if nodes have correctly learnt
weights that are selective to patterns within the stimulus.
This is illustrated in Section 3.2 where it is shown that input
patterns generate responses from many nodes other than
those that represent the stimuli forming the input, even
when the synaptic weights have been hard wired to provide a
perfect representation of each individual image component.
Hence, the lack of competition in Fyfe’s algorithm results
in the network being unable to express the knowledge that
has been encoded in its synaptic weights. Unsurprisingly,
Fyfe’s algorithm is also poor at learning image components
that overlap (see Sections 3.3 and 3.4). This is also likely
to be due to the nonspecific responses generated to input
patterns being fed into the activity-dependent learning
rule.

The failure of Fyfe’s algorithm to provide competition
between nodes is rectified in Harpur’s negative feedback
network. This is achieved by allowing the inhibited inputs
to affect output responses. This provides a mechanism for
competition between the nodes in the network which enables
the components forming an image to be identified; there
is selective activation of those nodes representing stimuli

present in the input. However, the results in Section 3.2
show that the competition is not always sufficiently selective,
enabling nodes that represent stimuli not present in the input
to be active. Furthermore, by using subtractive inhibition
Harpur’s algorithm can become unstable. Subtraction can
result in the inhibited inputs all becoming zero or negative,
this can in turn lead to all outputs becoming zero. This
will then lead to no inhibition being applied to the inputs
at the next iteration and subsequently output activations
becoming large. Oscillations can therefore occur during the
iterative process used to determine the network activation.
Such instability resulted in Harpur’s algorithm failing to
learn image components of real images in Section 3.5.

Using divisive, rather than subtractive, feedback can
avoid instability: division can only result in inputs becoming
small, rather than disappearing entirely. In addition, the
results in Section 3.2 show that divisive input modulation
(as employed in NMF and DIM) results in more selective
parsings. Competition in nmfdiv, nmfseq, and dim is math-
ematically very similar, and hence these algorithms produce
almost identical results when hard wired with identical
synaptic weights. However, these algorithms produce very
different results when applied to learning image components.

The learning process in NMF attempts to minimise the
error between the input to the network and the input that is
reconstructed from the outputs of the network. Minimising
the reconstruction error causes nodes to learn parts of
input patterns that are not already represented by other
nodes. The result is that nodes tend to learn nonoverlapping
portions of the elementary image components rather than
whole components. These random pieces of stimuli are
not meaningful representations of the image data. In order
to learn the features from which the training images are
composed, NMF would require either that each component
occupied a distinct spatial location or that the superposition
of image components resulted in a linear combination of
sources [8]. However, in reality objects or object parts do
not occupy unique and distinct locations nor does the
superposition of objects or object parts usually result in
a linear combination of sources but, due to occlusion,
generally results in a nonlinear combination. It is possible
to overcome the problem caused by overlap by imposing
additional constraints on the objective function, as in the
nmfsc algorithm [3]. However, these constraints themselves
prevent NMF from identifying image components that
violate the imposed constraint (see Section 3.4).

The proposed algorithm (DIM) also attempts to min-
imise the error between the input image and the image
reconstructed from the node outputs. However, it succeeds in
learning complete image features rather than random parts
of image features. The principal reason for this is the change
in the activation function. As described in Section 2.3,
and illustrated in Figure 2(b), NMF employs an activation
function that behaves counterintuitively. As a node becomes
more strongly tuned to a particular input pattern, its
response decreases rather than increases. Another problem
with this activation function is illustrated in Figure 9(b).
Two output nodes representing partially overlapping input
features (pixels 1 and 2, and pixels 2 and 3) both respond

Computational Intelligence and Neuroscience 17

y1 y2 y3

e1 e2 e3

x1 x2 x3

(a)

1.1 0.83 1.1

0.58 2.4 0.58

1.1 0.8 1.1

0.37 2 0.37

(b) nmfseq

1.3 0.67 1.3

0.74 0 0.74

0.67 0.33 0.67

1.5 0 1.5

(c) dim

Figure 9: (a) A simple neural network of the type used by all the algorithms described in this article (the symbols are the same as those
used in Figure 1). This network has three output nodes which receive input from three error-detecting nodes. All three error-detecting nodes
receive equal strength input from three image pixels (i.e., x1 = x2 = x3 = 1). The first output node has weights that are selective to the first
two inputs (i.e., w11 = w12 = a, where a > 0 while w13 = 0 and is thus missing from the diagram), and the third output node represents the
last two inputs (i.e., w31 = 0 while w32 = w33 = a, where a > 0). The middle output node has weak weights (equal to 0.25) connecting it
to all three error-detecting nodes. Each subfigure in (b) and (c) shows the steady-state activation strength of the three output nodes and the
three error-detecting nodes in this simple network calculated using (b) the sequential NMF algorithm, and (c) the divisive input modulation
algorithm. The steady-state responses are calculated for different values of a (the positive weights targeting the first and third output nodes).
In the top row of (b) and (c) a equals 0.5, and in the bottom row of (b) and (c) a equals 1 (the width of each connection in these subplots is
proportional to its strength). Note that there is no stochastic element in the calculation of the neural responses generated by these algorithms,
so identical results will be generated each time the network is simulated with these weight values.

when these features are present in the image simultaneously.
However, a third node that is not strongly tuned to either
feature will be even more active, and hence will adjust its
weights to learn the nonoverlapping parts of both input
components (i.e., the inputs for which the values of e
are greater than one). This problem is not solved by the
nodes learning to become better representations of the image
features, since as the weights increase, the response decreases
and hence the untuned node is even more strongly activated
relative to the tuned nodes. As illustrated in Figure 9(c), this
problem does not occur with the activation rule proposed
in Section 2.3. Here, the nodes that strongly represent the
image features are the ones that become active and these
nodes succeed in suppressing the activation of the untuned
node.

In tasks where there is significant overlap between image
components, and excess nodes in the network (i.e., the four-
by-four squares problem with n = 48), there is still a
tendency for DIM to learn parts of image components rather
than whole components. Initially, representations are learnt
correctly, but multiple nodes represent the same component.
After further training these competing nodes divide the
components into multiple subparts. Various methods have
been found to improve stability: increasing the number of
iterations performed by the algorithm; gradually reducing
the learning rate (i.e., the value of the β) throughout training;
modifying the learning rule to cause weights to gradually
decay towards zero unless this effect is counteracted by
a node being active sufficiently frequently to increase its
weights; or not reinitialising the values of y when each new
training image is presented to the network. However, none
of the these techniques have been used to generate the results

presented here, and this issue of stability is far less severe
with the proposed algorithm than with the other algorithms
tested. In general, the proposed algorithm accurately learns
to represent the elementary components from which images
are composed, even when those components have consid-
erable overlap. Furthermore, DIM is capable of accurately
representing the components present in an image following
learning. Hence, the divisive input modulation algorithm
performs extremely well on the tasks reported here. Indeed
its performance on the squares task is comparable to the
dendritic inhibition algorithm that has previously been
shown to outperform a wide range of other methods on
the bars problem [8, 12, 28]. However, the computational
complexity of the dendritic inhibition algorithm is far in
access of DIM.

By employing an online, rather than a batch, learning
procedure DIM has greater biological plausibility than
NMF. The proposed activation rules have a similar level
of biological plausibility to the other algorithms discussed.
Divisive input modulation could either be implemented in
cortical circuits via divisive feedback inhibition originating
in one cortical layer and targeting the outputs of neurons in
the preceding cortical layer, or via divisive lateral inhibition
targeting the dendrites of neurons within the same cortical
layer [11]. The proposed learning rule is also biologically
plausible as it employs only information that is local to each
synapse (the pre- and postsynaptic activity and the current
synaptic weight value). It also has the added advantage of
automatically normalising the sum of the weights received by
each node. Hence, synaptic weights cannot increase without
bound and no separate normalisation procedure is required
as is the case with many other algorithms.

18 Computational Intelligence and Neuroscience

5. Conclusion

It has been shown that nonnegative matrix factorisation
and negative feedback neural networks are mathematically
similar. Both NMF and negative feedback networks attempt
to adjust synaptic weights and neural responses in order to
minimise the error between the input stimulus and the input
that is reconstructed from the node outputs. However, the
mechanism for calculating this reconstruction error differs
with NMF using a divisive mechanism and negative feedback
networks using a subtractive mechanism. By recognising
the correspondence between these existing algorithms we
have derived a new neural network algorithm that combines
aspects of both NMF and negative feedback networks. The
new algorithm is similar to Harpur’s negative feedback
network in that it performs online learning and uses an
iterative procedure to calculate the neural activations. It
is also similar to NMF (implemented using the Kullback-
Leibler divergence as the objective function) in that it
employs an equivalent learning rule and uses a divisive rather
than subtractive form of feedback. However, the proposed
algorithm improves upon both these existing methods by
being capable of successfully learning meaningful elementary
image components even in the presence of considerable
occlusion, and on the tasks considered here, it significantly
outperforms a number of existing methods when applied
to learning overlapping image components. The proposed
algorithm can be interpreted as a neural implementation
of Bayesian inference and combines mathematical simplicity
and biological plausibility with reliable learning and recogni-
tion characteristics.

Acknowledgment

This work was funded by EPSRC Research Grant numbers
GR/S81339/01 and EP/D062225/1.

References

[1] T. Feng, S. Z. Li, H.-Y. Shum, and H. Zhang, “Local non-
negative matrix factorization as a visual representation,” in
Proceedings of the 2nd International Conference on Development
and Learning (ICDL ’02), pp. 178–186, Cambridge, Mass,
USA, June 2002.

[2] P. O. Hoyer, “Non-negative sparse coding,” in Proceedings
of the 12th IEEE Workshop on Neural Networks for Signal
Processing (NNSP ’02), pp. 557–565, Martigny, Switzerland,
September 2002.

[3] P. O. Hoyer, “Non-negative matrix factorization with sparse-
ness constraints,” The Journal of Machine Learning Research,
vol. 5, pp. 1457–1469, 2004.

[4] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, no. 6755,
pp. 788–791, 1999.

[5] S. Z. Li, X. W. Hou, H. J. Zhang, and Q. S. Cheng, “Learning
spatially localized, parts-based representation,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR ’01), vol. 1, pp. 207–212,
Kauai, Hawaii, USA, December 2001.

[6] W. Liu and N. Zheng, “Non-negative matrix factorization
based methods for object recognition,” Pattern Recognition
Letters, vol. 25, no. 8, pp. 893–897, 2004.

[7] W. Liu, N. Zheng, and X. Lu, “Non-negative matrix factor-
ization for visual coding,” in Proceedings of IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’03), vol. 3, pp. 293–296, Hong Kong, April 2003.

[8] M. W. Spratling, “Learning image components for object
recognition,” Journal of Machine Learning Research, vol. 7, pp.
793–815, 2006.

[9] R. Kompass, “A generalized divergence measure for nonnega-
tive matrix factorization,” Neural Computation, vol. 19, no. 3,
pp. 780–791, 2007.

[10] M. W. Spratling, “Pre-synaptic lateral inhibition provides
a better architecture for self-organizing neural networks,”
Network: Computation in Neural Systems, vol. 10, no. 4, pp.
285–301, 1999.

[11] M. W. Spratling and M. H. Johnson, “Dendritic inhibition
enhances neural coding properties,” Cerebral Cortex, vol. 11,
no. 12, pp. 1144–1149, 2001.

[12] M. W. Spratling and M. H. Johnson, “Preintegration lateral
inhibition enhances unsupervised learning,” Neural Computa-
tion, vol. 14, no. 9, pp. 2157–2179, 2002.

[13] D. Charles and C. Fyfe, “Discovering independent sources
with an adapted PCA neural network,” in Proceedings of
the 2nd International ICSC Symposium on Soft Computing
(SOCO ’97), D. W. Pearson, Ed., NAISO Academic Press,
Nı̂mes, France, September 1997.

[14] D. Charles and C. Fyfe, “Modelling multiple-cause structure
using rectification constraints,” Network: Computation in
Neural Systems, vol. 9, no. 2, pp. 167–182, 1998.

[15] D. Charles, C. Fyfe, D. McDonald, and J. Koetsier, “Unsu-
pervised neural networks for the identification of minimum
overcomplete basis in visual data,” Neurocomputing, vol. 47,
pp. 119–143, 2002.

[16] C. Fyfe, “A neural network for PCA and beyond,” Neural
Processing Letters, vol. 6, no. 1-2, pp. 33–41, 1997.

[17] G. F. Harpur, Low entropy coding with unsupervised neural
networks, Ph. D. thesis, Department of Engineering, University
of Cambridge, Cambridge, UK, 1997.

[18] G. F. Harpur and R. W. Prager, “A fast method for activating
competitive self-organising neural networks,” in Proceedings
of the International Symposium on Artificial Neural Networks
(ISANN ’94), pp. 412–418, Taipei, Taiwan, December 1994.

[19] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The “wake-
sleep” algorithm for unsupervised neural networks,” Science,
vol. 268, no. 5214, pp. 1158–1161, 1995.

[20] G. F. Harpur and R. W. Prager, “Development of low entropy
coding in a recurrent network,” Network: Computation in
Neural Systems, vol. 7, no. 2, pp. 277–284, 1996.

[21] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in Advances in Neural Information
Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp,
Eds., pp. 556–562, MIT Press, Cambridge, Mass, USA, 2001.

[22] D. Kersten, P. Mamassian, and A. Yuille, “Object perception as
Bayesian inference,” Annual Review of Psychology, vol. 55, no.
1, pp. 271–304, 2004.

[23] A. Yuille and D. Kersten, “Vision as Bayesian inference:
analysis by synthesis?” Trends in Cognitive Sciences, vol. 10, no.
7, pp. 301–308, 2006.

[24] P. Földiák, “Forming sparse representations by local anti-
Hebbian learning,” Biological Cybernetics, vol. 64, no. 2, pp.
165–170, 1990.

Computational Intelligence and Neuroscience 19

[25] G. E. Hinton and Z. Ghahramani, “Generative models for
discovering sparse distributed representations,” Philosophical
Transactions of the Royal Society B, vol. 352, no. 1358, pp.
1177–1190, 1997.

[26] A. Cichocki and R. Zdunek, “Multilayer nonnegative matrix
factorization using projected gradient approaches,” Interna-
tional Journal of Neural Systems, vol. 17, no. 6, pp. 431–446,
2007.

[27] D. Soukup and I. Bajla, “Robust object recognition under
partial occlusions using NMF,” Computational Intelligence and
Neuroscience, vol. 2008, Article ID 857453, 14 pages, 2008.

[28] M. W. Spratling and M. H. Johnson, “Exploring the functional
significance of dendritic inhibition in cortical pyramidal cells,”
Neurocomputing, vol. 52–54, pp. 389–395, 2003.

	Introduction
	Methods
	Negative Feedback Networks
	Fyfe's Negative Feedback Network
	Harpur's Negative Feedback Network

	Nonnegative Matrix Factorisation
	Sequential NMF

	Divisive Input Modulation
	Bayesian Interpretation of DIM

	Results
	The Squares Problem
	Testing Responses
	Testing Weights

	Parsing Images into Elementary Components
	Learning Elementary Image Components
	Benchmarking
	Image Data

	Discussion
	Conclusion
	Acknowledgment
	References

