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ABSTRACT

Rapid and reliable virus subtype identification is crit-
ical for accurate diagnosis of human infections,
effective response to epidemic outbreaks and
global-scale surveillance of highly pathogenic viral
subtypes such as avian influenza H5N1. The polymer-
ase chain reaction (PCR) has become the method of
choice for virus subtype identification. However,
designing subtype-specific PCR primer pairs is a
very challenging task: on one hand, selected primer
pairs must result in robust amplification in the pres-
ence of a significant degree of sequence heteroge-
neity within subtypes, on the other, they must
discriminate between the subtype of interest and
closely related subtypes. In this article, we present
a new tool, called PrimerHunter, that can be used to
select highly sensitive and specific primers for virus
subtyping. Our tool takes as input sets of both tar-
get and nontarget sequences. Primers are selected
such that they efficiently amplify any one of the target
sequences, and none of the nontarget sequences.
PrimerHunter ensures the desired amplification
properties by using accurate estimates of melting
temperature with mismatches, computed based on
the nearest neighbor model via an efficient fractional
programming algorithm. Validation experiments
with three avian influenza HA subtypes confirm that
primers selected by PrimerHunter have high sensitiv-
ity and specificity for target sequences.

INTRODUCTION

RNA viruses, such as avian influenza, hepatitis C virus
and human immunodeficiency virus are characterized by
a extensive genetic heterogeneity, primarily due to the lack

of proofreading mechanisms in their RNA polymerase. As
a result, most RNA viruses can be subdivided into distinct
taxonomic subunits referred to as genotypes or subtypes.
For example, over 100 avian influenza subtypes have been
identified in wild birds as the result of independent assort-
ment of 16 subtypes of the RNA segment encoding the
hemagglutinin (HA) protein with nine subtypes of the seg-
ment encoding for neuraminidase (NA). Rapid virus sub-
type identification is critical for accurate diagnosis of
human infections, effective response to epidemic out-
breaks and global-scale surveillance of highly pathogenic
subtypes such as avian influenza H5N1 (1).
The polymerase chain reaction (PCR) has become the

method of choice for virus subtype identification, largely
replacing traditional immunological assays due to its high
sensitivity and specificity, fast response time and afford-
able cost (2). However, designing subtype-specific PCR
primer pairs is a very challenging task (3): on one hand,
selected primer pairs must result in robust amplification in
the presence of a significant degree of sequence heteroge-
neity within subtypes, on the other, they must discriminate
between the subtype of interest and closely related
subtypes.
Unfortunately, existing primer design tools are not well

suited for designing PCR primers for subtype identifica-
tion. Commonly used packages such as Primer3 (4,5) seek
to amplify a single known target nucleic acid sequence,
and cannot guarantee amplification sensitivity in the pres-
ence of high sequence heterogeneity within a subtype.
A widely used approach to primer design for virus identi-
fication relies on first constructing a ‘consensus gestalt’
from a multiple alignment of target virus sequences (6).
After masking regions that also appear in the genome of
related viruses, remaining ‘unique’ regions are mined for
primers using standard tools such as Primer3. This
approach can be quite successful at finding species-specific
primers, since virus genomes often include highly con-
served genes and noncoding regions that serve critical
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roles in replication, transcription and packaging.
However, the approach has limited applicability when
the goal is to discriminate between virus subtypes, since
most highly conserved regions are shared by all subtypes.
The same limitation applies to several suffix-tree-based
algorithms (7–9) that search for long substrings that
appear exactly or with a small number of mutations
in all (or a large percentage) of the sequences of a
given target set, and in none of the sequences of a given
nontarget set.
Another common approach to ensuring amplification

of heterogenous sets of nucleic acid sequences is the use
of primers with degenerate bases. Several methods have
been proposed for selecting degenerate primers, including
various greedy algorithms (10–12) and heuristics based on
multiple alignments of nucleic acid (13) and protein
sequences (14). Unfortunately, all these methods ignore
primer specificity (i.e. preventing amplification of related
virus subtypes) which prevents their use for direct viral
subtyping assays.
A comparison of the main features provided by a selec-

tion of most relevant existing primer and probe selection
tools (4,8,9,13–19) is presented in Table 1. As it can be
seen from the table, most existing tools miss key features
that make them inappropriate for use in designing PCR
primers for virus subtyping. Of the surveyed methods,
only OligoSpawn (16) and SLICSel (17) were successful
at finding subtype-specific probes when run on a large set
of avian influenza HA sequences. The other methods were
either not available, could not handle multiple target/
nontarget sequences or simply did not find any subtype-
specific primers or probes.
In this article, we present a new tool, called

PrimerHunter, that can be used for selecting highly sensi-
tive and specific primers for virus subtyping and is likely
to find applications in other contexts that require discri-
minative probes/primers. As in (8,9,16), our tool takes as
input sets of both target and nontarget sequences. To guar-
antee high sensitivity, primers are selected such that they
efficiently amplify any one of the target sequences repre-
senting different isolates of the subtype of interest. High
specificity is ensured by requiring that none of the non-
target sequences be amplified by selected primers; nontar-
gets typically being sequences representing isolates of

closely related virus subtypes. Unlike previous methods,
which restrict the primer search space to the set of sub-
strings shared by all target sequences or to highly con-
served regions in a multiple alignment, PrimerHunter
achieves a higher design success rate by generating an
exhaustive set of candidate primers from the target
sequences and using accurate melting temperature compu-
tations to ensure the desired amplification/nonamplifica-
tion properties. Melting temperature computation is
performed based on the state-of-the-art nearest neighbor
model of (20). Of critical importance in selective target
amplification is accurate prediction of primer-template
hybridization with mismatches. Melting temperature
with mismatches is efficiently computed in PrimerHunter
by using the fractional programming approach of (21),
modified to incorporate the salt correction model of (20).

PrimerHunter has been used to design specific primer
pairs for all avian influenza HA and NA subtypes from
complete sequences of North American origin in the
NCBI flu database (22). Validation experiments confirm
that primers selected by PrimerHunter are both specific
and robust in the PCR amplification of target sequences.
The PrimerHunter web server, as well as the open
source code released under the GNU General Public
License, are available at http://dna.engr.uconn.edu/
software/PrimerHunter/.

MATERIALS AND METHODS

Problem formulation

Unless stated otherwise, we assume that all sequences are
over the DNA alphabet, fA;C;G;Tg, and are given in
50–30 orientation. For a sequence s, we denote by jsj its
length, and by s(l, i) the subsequence of length l ending at
position i, i.e. sðl; iÞ ¼ si�lþ1 . . . si�1si. We denote by
Tðp; t; iÞ the melting temperature of the duplex formed
by a primer p and the Watson–Crick complement of
tðjpj; iÞ. In order to ensure sensitive amplification of
target sequences, we require for each selected primer p
to have at least one position i within each target t such
that Tðp; t; iÞ is greater than or equal to a user-specified
threshold Tmin

target. Since mismatches at the 30-end of the
primer can significantly reduce amplification efficiency
(23), we additionally require that the 30-end of p match

Table 1. Features comparison between primer and probe selection tools most similar to PrimerHunter

Design tool Multiple targets Nontargets TM Model Salt correction Output

Primer3 (4) No Yes (DB) NN Yes Multiple primer pairs
Insignia (9) Yes (DB) Yes (DB) None No Multiple signatures
QPrimer (15) No (DB) No NN No Multiple primers
DePict (14) Yes (MSA) No None No Best primer
PROBEMer (8) Yes Yes NN No Multiple probes
Greene SCPrimer (13) Yes (MSA) No NN Yes Multiple primer pairs
OligoSpawn (16) Yes Yes NN No Multiple probes
SLICSel (17) Yes Yes NN Yes Multiple probes
Primaclade (18) Yes (MSA) No NN No Multiple primers
OligoArray (19) Yes Yes (DB) NN No Multiple probes
PrimerHunter (this article) Yes Yes NN w/mismatches Yes Multiple primer pairs

DB: user can select targets from a preconstructed database; MSA: input must be provided as a multiple sequence alignment; NN: nearest neighbor
model.
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perfectly tðjpj; iÞ at a set of bases specified using a 0–1
perfect match mask M. For example, a mask
M ¼ 30-1101-50 specifies that the first, second and fourth
30 most bases of the primer must be matched exactly. For a
primer p and a target sequence t, we denote by Iðp; t;MÞ
the set of positions i of t at which the 30 end of p matches
tðjpj; iÞ according to M. Thus, in order to ensure sensitive
PCR amplification of target sequences, we require that a
selected primer p have, for every target t, at least one posi-
tion i 2 Iðp; t;MÞ for which Tðp; t; iÞ � Tmin

target.
To avoid nonspecific amplification, we further require

for each selected primer to have a melting temperature
Tðp; t; iÞ below a user-specified threshold Tmax

nontarget at
every position i of every nontarget sequence t. The prob-
lem of selecting target-specific forward PCR primers is
therefore formulated as follows:

Discriminative primer selection problem

Given: sets TARGETS and NONTARGETS of 50–30 DNA
sequences, perfect match mask M, melting temperature
thresholds Tmin

target and Tmax
nontarget and constraints on primer

length, GC content, self-complementarity, etc.
Find: primers p satisfying given constraints on primer

length, GC content, self-complementarity, etc., such that:

� For every t 2 TARGETS, there exists i 2 Iðp; t;MÞ
such that Tðp; t; iÞ � Tmin

target, and
� For every t 2 NONTARGETS, Tðp; t; iÞ � Tmax

nontarget for
every i 2 fjpj, . . . ; jtjg.

Melting temperature calculation

PrimerHunter estimates the melting temperature of
primer-target and primer-nontarget duplexes using the
nearest neighbor model of (20), which is considered to
be the most accurate melting temperature model to date
(24). However, unlike most other primer design packages,
which only require estimates of the melting temperature
between a primer and its perfectly complementary tem-
plate, PrimerHunter critically relies on accurate estimates
of the melting temperature for noncomplementary
duplexes. This requires finding the optimum thermody-
namic alignments for all evaluated duplexes, i.e. the align-
ments with minimum Gibbs free energy. As in (21),
optimum alignments are computed using the fractional
programming algorithm of (25). In this section, we
describe our modification of the algorithm to incorporate
SantaLucia’s correction for the concentration of salt
cations in the PCR mix (20). As shown below, incorpor-
ating this correction yields significantly improved esti-
mates compared to (21).

In SantaLucia’s nearest neighbor model (20), the melt-
ing temperature of a specific alignment x between a 50–30

primer p with concentration cp and a 30–50 template t with
concentration ct is given by

TMðxÞ ¼
�HðxÞ

�SðxÞ þ 0:368�N=2� lnðNaþÞ þ R� lnðCÞ
;

1

where �HðxÞ and �SðxÞ are enthalpy and entropy changes
for the annealing reaction resulting in a duplex with
Watson–Crick pairings given by alignment x, N is the
total number of phosphates in the duplex, R is the gas
constant, C is the total DNA concentration calculated as
cp � ct=2 if cp > ct and ðcp=2Þ if cp ¼ ct (20) and Naþ is
the concentration of salt cations. For a given alignment x,
the enthalpy and entropy changes �HðxÞ and �SðxÞ are
computed by summing experimentally estimated contribu-
tions of constitutive dimer duplexes (including internal
mismatches and gaps), with additional terms for duplex
initiation/termination and (when applicable) symmetry
correction.
The melting temperature between p and t is given by the

most stable alignment x, i.e. it is taken to be the maximum
TM(x) over all possible alignments x. This maximum can
be found using Dinkelbach’s fractional programming
algorithm (25), which relies on a simple iterative proce-
dure to maximize the ratio between two functions when
linear combinations of the two functions can be maxi-
mized efficiently. More specifically, given a finite set S
and two functions f; g : S! R with g> 0, the maximum
ratio t� ¼ maxx2Sð fðxÞ=gðxÞÞ can be approximated arbi-
trarily close via the following algorithm:

(1) Choose t1 � t�; i 1
(2) Find xi 2 S maximizing FðxÞ :¼ fðxÞ � tigðxÞ
(3) If FðxiÞ � " for some tolerance " > 0, output ti
(4) Else, set tiþ1 fðxiÞ=gðxiÞ and i iþ 1, and then go

to step 2

As shown by Dinkelbach, this algorithm produces
values t1 < t2 < t3 < . . . converging to t*. When using
Dinkelbach’s algorithm to maximize equation (1) over
the set of alignments x, the function to be maximized in
Step 2 is ��GðxÞ ¼ ti½�SðxÞ þ ð0:368Þ �N=2� lnðNaþÞþ
R� lnðCÞ� ��HðxÞ. Since ��GðxÞ is additively decompo-
sable, the alignment x maximizing it can be found effi-
ciently by a standard dynamic programming algorithm,
similar to (21). As shown in (21), the algorithm typically
converges in a small number of iterations.

Algorithm

PrimerHunter works in two stages: in the first stage, for-
ward and reverse primers are selected according to the
problem formulation given above, while in the second
stage, feasible primer pairs are formed using the primers
selected in first stage.
The first stage starts with a preprocessing step that

builds a hash table storing all occurrences in the target
sequences of ‘seed’ nucleotide patterns consistent with
the given mask M. This is done by aligning the mask M
at every position i of every target sequence t, and storing
in the hash table an occurrence of the seed pattern created
by extracting from tðjMj; iÞ the nucleotides that appear at
positions aligned with the 1’s of M. For example, if
M ¼ 30-1101-50 and tð4; iÞ ¼ 50-GATC-30, we store in the
hash table an occurrence of seed GTC at position i of t.
Once the hash table is constructed, candidate primers

are generated by taking substrings with lengths within a
user-specified interval [lm , lM] from one or more of the
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target sequences. Similar to the Primer3 package (4),
PrimerHunter filters the list of primer candidates by enfor-
cing user-specified bounds on GC Content, 30-end GC
clamp, maximum number of consecutive mononucleotide
repeats and self-complementarity. For each surviving can-
didate p, PrimerHunter uses the hash table to recover for
each target t the list Iðp; t;MÞ of positions at which
p matches t according to M. It then computes the
melting temperature of p with the Watson–Crick comple-
ment of t at each of these positions, retaining p only if
maxi2Iðp;t;MÞ Tðp; t; iÞ � Tmin

target. Finally, PrimerHunter
computes the maximum melting temperature between
p and the Watson–Crick complements of nontarget
sequences, retaining p only if maxi2fjpj,...;jtjg
Tðp; t; iÞ � Tmax

nontarget for every nontarget sequence t.
The above process is repeated on the reverse comple-

ments of target and nontarget sequences to generate
reverse primers. Then, in the second stage of the algo-
rithm, the lists of selected forward and reverse primers
are used to create feasible primer pairs by enforcing the
following constraints:

(a) Product length: for each target sequence, the total
product length must fall between user-specified
bounds.

(b) Melting temperature similarity: for every target
sequence, the difference between the maximum and
the minimum melting temperature of the two primers
must not exceed a user defined value.

(c) Primer dimers: a criteria similar to that used for
preventing primer self-complementarity is used to
avoid hybridization between the two primers of the
pair; the test is identical to that implemented in
Primer3 (4).

Algorithm extensions

Since degenerate bases at specific primer positions yield
perfect matches at these positions regardless of target
variability, the use of degenerate primers is an effective
technique for ensuring robust amplification of heteroge-
nous targets. However, degenerate primer design is a dif-
ficult problem due to the large space from which
degenerate primers can be selected (10–12). To overcome
this difficulty, we adopted a simple pattern-based approach
to degenerate primer design, based on the observation that
most of a virus’ sequence is coding for proteins and that
the vast majority of sequence heterogeneity is observed at
synonymous positions. PrimerHunter uses a user-specified
degeneracy mask, specifying the positions at which fully
degenerate nucleotides should be incorporated in candi-
date primers. Formally, the degeneracy mask is a vector
D of integers 1 or 4 in 30–50 orientation. In each position
i where Di ¼ 4, a degenerate base N will be included in
every primer. For example, if D ¼ 30-114114-50, every
primer will end with the pattern 50-NxxNxx-30. A degen-
eracy mask may be used in conjunction with a comple-
mentary perfect match mask (M ¼ 30-110110-50 for
the above D), although this is not required. The only
required change to the primer selection algorithm is in
the computation of melting temperatures: the range of

melting temperatures for a degenerate primer is obtained
by computing the melting temperatures against the given
template for all compatible nondegenerate primers.

For target sets exhibiting a very high degree of hetero-
geneity, or for overly stringent design constraints, it may
be impossible to find specific primer pairs that amplify all
targets. When detecting this situation, PrimerHunter auto-
matically seeks and reports a small set of primer pairs
that collectively amplify all targets. The set of pairs is
constructed using the classic greedy set cover algorithm
(26,27), where the elements to be covered are target
sequences and the sets correspond to pairs of compatible
primers that amplify at least one of the target sequences
and none of the nontargets. From the well-known approx-
imation guarantee in (26,27), it follows that the greedy
algorithm yields a number of primer pairs within a
factor of 1þ lnmt of optimum for mt target sequences.

When multiple primer pairs are needed to cover all tar-
gets, the number of primer pairs can be further reduced
by relaxing the constraint that forward and reverse primer
candidates must amplify all targets. As in (8), this is
achieved in PrimerHunter by specifying a minimum per-
centage of target sequences to which selected primers must
hybridize. Similarly, the nontargets filtering can be
relaxed, allowing selected primers to hybridize to a small
percentage of nontargets. However, to maintain specifi-
city, primer pairs that feasibly amplify one of the nontar-
get sequences are discarded before running the greedy set
cover algorithm.

HA fragment cloning and quantitative PCR

In order to assess the specificity and selectivity of designed
primers, HA-coding region fragments from isolates of
H3, H5 and H7 avian influenza viruses were cloned into
pTOPO (Invitrogen). The subtype identity of each cloned
fragment was confirmed by sequencing and confirmed
plasmids were diluted and used as on-target and off-
target templates for quantitative PCR (Q-PCR) using
selected primer pairs.

Q-PCR was performed on an Applied Biosystems 7500
using ABI SYBR green master mix. PCR conditions were
as follows: 1 cycle, 95�C� 10min; 40 cycles, 95�C� 15 sec,
40�C� 15 sec, 60�C� 1min. Following amplification and
detection, melt curves from 60–95�C were performed to
confirm specificity of the amplicons.

RESULTS

Accuracy of melting temperature predictions

We compared the accuracy of estimates obtained based
on equation (1) to those obtained as in (21) by using
a simplified formula that does not include the salt correc-
tion term 0:368 � N=2 � lnðNaþÞ in the denominator.
Figure 1 shows the mean and standard deviation of the
difference between the melting temperature determined
experimentally and that predicted by the two models for
a set of 812 duplexes of perfectly complementary oligonu-
cleotides with lengths between 9 and 30 bp, GC content
between 8% and 80% and salt concentrations between
0.069M and 1.02M (24,28). The data has been stratified
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in four categories of salt concentration, with ranges given
in Table 2. Table 2 also includes the mean squared error
(MSE) for each model and each salt concentration cate-
gory. The results show that predictions given by (1) have
much lower MSE values for all salt concentration cate-
gories except 1–1.02M. Although the two models result
in identical predictions at 1M concentration, for salt con-
centrations >1M applying the salt correction produces
slightly worse estimates. The difference between the two
models is statistically significant: within each salt concen-
tration category the null hypothesis that prediction errors
of the two models have the same mean is rejected by the
Wilcoxon signed-rank test with a P-value <10�16.

Since duplexes involving primers with atypical length or
GC content could potentially skew the results, we repeated
the above comparison by considering only duplexes con-
sisting of primers with length between 20 and 25 bp and
GC content between 25% and 75%, which are typical
values used in primer design and the default ranges for
PrimerHunter. The results shown in Supplementary
Figure 1 and Table 2 show that the predictions given by
equation (1) remain more accurate than predictions based
on (21) for salt concentrations below 1M even when

disregarding primers with extreme GC content or length.
In all categories, the null hypothesis that prediction errors
of the two models have the same mean is still rejected by
the Wilcoxon signed-rank test, with a P-value <10�14.
Unfortunately, experimental data on melting tempera-

ture of duplexes with mismatches is much more limited.
We could collect only 110 duplexes with one mismatch
and 28 duplexes with two mismatches from (29–32).
Duplexes with one mismatch have lengths between 9 and
16 bp and GC content between 21% and 78%, while
duplexes with two mismatches have lengths between 12
and 14 bp and GC content between 50% and 75%.
Except for 12 duplexes with 1 mismatch, the melting tem-
perature of all these duplexes was experimentally calcu-
lated at 1M of salt concentration. Since both prediction
models produce exactly the same answer for a salt concen-
tration of 1M, we did not have enough information to
compare them for duplexes with mismatches. Table 3
gives the mean and standard deviation for the prediction
errors made by the SantaLucia model equation (1).
The results suggest that, although less accurate than in
the case of perfectly complementary duplexes, melting
temperature estimates for duplexes with mismatches
still provide good approximations. (We have also imple-
mented the salt correction model of (28), but found the
SantaLucia model to be slightly more accurate.)

Design success rate

Primer Hunter has been implemented in C++ on a stan-
dard Linux platform. We designed primer pairs for 14 HA
subtypes using the complete avian influenza HA sequences
from North America available in the NCBI flu database
(22) as of March 2008 (a total of 574 HA sequences).
Figure 2 shows the unrooted phylogenetic tree generated
using the TREEVIEW program (33) from a multiple
alignment of a subset of these sequences constructed
using ClustalW (34).
When designing primers for each subtype Hi we used

all available HA sequences classified as Hi as targets, and
all NCBI HA sequences labeled with different subtypes
as nontargets. Primer selection was performed using the
following parameters:

(1) Primer length between 20 and 25
(2) Amplicon length between 75 and 200
(3) GC content between 25% and 75%
(4) Maximum mononucleotide repeat of 5

Table 2. MSE for residuals calculated as the difference (in degrees Celsius) between experimental melting temperatures and predictions obtained by

fractional programming without salt correction (21) and with salt corrections performed using the SantaLucia model equation (1)

Salt Conc. Primer length 9–30 Primer length 20–25
(M) GC content 8%–80% GC content 25%–75%

Number of
duplexes

MSE w/o
salt correction

MSE with
salt correction

Number of
duplexes

MSE w/o
salt correction

MSE with
salt correction

0.069–0.15 351 150.03 2.30 158 148.91 2.25
0.22 152 47.44 2.71 72 43.14 3.18
0.62–0.621 152 8.98 2.52 72 6.90 1.38
1–1.02 157 4.75 4.97 74 2.61 2.76
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Figure 1. Average and standard deviation of the difference (in degrees
Celsius) between experimental melting temperatures and predictions
obtained by fractional programming without salt correction (21) and
with salt corrections performed using the SantaLucia model equation
(1) for 812 duplexes of perfectly complementary oligonucleotides with
lengths between 9 and 30 bp and GC content between 8% and 80%.
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(5) 30-end perfect match mask M=11
(6) No required 30 GC clamp
(7) Primer concentration of 0.8mM
(8) Salt concentration of 50mM
(9) Tmin

target ¼ Tmax
nontarget ¼ 40�C

We also attempted to design primer pairs for the nine
known NA subtypes based on the 668 avian Influenza
NA sequences available in (22), using the same set of
parameters as for HA subtypes. An initial PrimerHunter
run resulted in primer pairs selected for all subtypes except
N4 and N1. Upon inspection of the phylogenetic tree
(Supplementary Figure 2) we detected an N1 sequence
(GI:115278096) that was mislabeled as N4. After correct-
ing the label of the sequence, PrimerHunter was able to
select discriminative primer pairs for all NA subtypes
(Supplementary Table 1).

The numbers of identified primer pairs using these
parameters are summarized in Table 4. For comparison,
we also include in Table 4 the number of probes reported
by OligoSpawn (16) and SLICSel (17). These were the
only methods among those listed in Table 1 that were
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Figure 2. Phylogenetic tree of avian influenza HA sequences of North American origin from the NCBI flu database (five complete sequences selected
at random for each subtype).

Table 3. Average and standard deviation for the difference (in degrees

Celsius) between experimental melting temperature and predictions

made by the SantaLucia model equation (1) on duplexes with one

and two mismatches

Number of
mismatches

Length
range

GC content
range

Number of
duplexes

Average
difference

Standard
deviation

1 9–16 21%–78% 110 0.56 2.06
2 12–14 50%–75% 28 �1.25 2.70
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available and could run successfully on the HA dataset.
OligoSpawn and SLICSel were run using similar settings
as PrimerHunter for the common parameters. Using these
settings, all three methods were able to identify discrimi-
native primers/probes for each subtype represented in the
NCBI flu database. The number of discriminative primers
found by PrimerHunter is consistently larger than the
number of probes found by OligoSpawn and SLICSel.
PrimerHunter identified at least a few tens of forward
and reverse primers for each subtype. With an amplicon
length constrained to be between 75 and 200 bp,
PrimerHunter was able to always identify feasible primer
pairs, i.e. pairs of primers predicted to amplify all target
sequences and none of the nontarget sequences when using
an annealing temperature of 40�C in the PCR reaction.
Typically, for identified primers minimum primer-target
melting temperature is significantly >408C, and maximum
primer-nontarget melting temperature is significantly
<408C (Supplementary Data). The large number of feasi-
ble primers enables further optimizations such as selecting
most discriminative primers (based on the difference
between minimum primer-target TM and maximum
primer-nontarget TM) and TM matching the primers
within selected primer pairs.

Primer validation

A total of nine randomly selected primer pairs specific
to H3, H5 and H7 subtypes (three pairs per subtype, see
the Supplementary Data) were ordered from Integrated
DNA Technologies (IDT). In a first experiment, triplicate
Q-PCR reactions were performed for each primer pair
with 1:103 dilutions of each of the three plasmid types as
template. Triplicate reactions with no template (no tem-
plate controls, or NTC) were also performed. Figure 3
gives the amplification curves for a typical experiment
where three on-target and six off-target Q-PCR reactions
were performed with one of the H3-specific primer pairs.
For each reaction, the threshold cycle Ct is defined as the
PCR cycle in which the fluorescent signal intensity passes
the self-calibrated detection threshold. When no

detectable fluorescent signal is present (e.g. in a NTC reac-
tion), Ct is set to 40.
For each reaction, �Ct is computed as the difference

between the respective threshold cycle and the average
threshold cycle of the three NTC reactions. The minimum,
maximum and average �Ct values for all nine primer
pairs and both on- and off-target templates are given in
Figure 4. The results show a large difference (15 cycles or
more) between the average on- and off-target �Ct values.
To assess the discriminative power over a range of tem-

plate concentrations, three primer pairs (one specific to
each of the three cloned subtypes) were used in triplicate
Q-PCR reactions performed using each of the on- and
off-target plasmids at 10 different dilutions. As can be
seen from these graphs, PrimerHunter primer pairs
showed template-specific amplification over 5 to 7 orders

Table 4. Primers found for each subtype of avian influenza HA and comparison with number of probes generated by related tools

Subtype Number
of targets

Number of
Nontargets

Avg. percentage
of diss.

Number
of FP

Number
of RP

Number
of PP

Number of
probes SlicSel

Number of
probes OligoSpawn

H1 48 526 8.4 51 52 70 20 2
H2 41 533 9.1 42 43 187 14 2
H3 72 502 11.1 41 61 135 7 1
H4 67 507 7.4 265 225 3724 18 2
H5 69 505 9.1 68 66 160 17 1
H6 100 474 15.4 36 27 3 4 3
H7 55 519 8.9 77 81 260 2 1
H8 9 565 6.3 489 482 14415 100 1
H9 23 551 8.7 140 152 1222 58 1
H10 16 558 6.8 243 302 3712 35 1
H11 45 529 5.9 267 262 4117 32 1
H12 15 559 7.1 472 494 12895 52 1
H13 10 564 14.4 41 33 98 1 2
H16 4 570 9.5 367 352 7629 68 1

The dissimilarity within a subtype is calculated as the average pairwise Hamming distance in the multiple sequence alignment expressed as percentage
of the average sequence length. (FP: forward primers; RP: reverse primers; PP: primer pairs)

Figure 3. Amplification curves using an H5-specific primer pair and
H3, H5, H7 plasmids or no template (three replicates each).

Nucleic Acids Research, 2009, Vol. 37, No. 8 2489



of magnitude. Figure 5 shows �Ct values of these reac-
tions plotted against approximate plasmid copy numbers.

DISCUSSION

PrimerHunter is a new tool to design primers for subtype
identification using PCR. Compared to existing tools
based on exact matches or multiple sequence alignment,
PrimerHunter achieves a higher design success rate by
relying on accurate melting temperature computations
allowing for mismatches based on the nearest neighbor
model of (20) and the fractional programming approach
of (21). Using this approach, PrimerHunter can design
primers that will selectively amplify target sequences
from a complex background of related targets.
We demonstrate the performance of PrimerHunter by

designing thousands of primer pairs specific to 14 HA and
9 NA avian influenza subtypes. For the HA subtypes, the
number of primers found by PrimerHunter is consistently
larger than the number of probes found by two probe
design tools with closely related functionality (16,17).
The number of discriminative primers and primer pairs
found for a subtype is positively correlated with the
amount of variability within the subtype and negatively
correlated with the average similarity to closely related
subtypes. Indeed, for pairs of subtypes such as (H3, H4),
(H7, H10), (H8, H12) and (H13, H16) which are nearest
neighbors in the NA phylogenetic tree in Figure 2, the
subtype with lower within-subtype dissimilarity (included
in Table 4) always yields a larger number of primer pairs.
For our design parameters, the number of suitable primer
pairs varies from three for the highly variable H6 subtype,
which has an average within-subtype dissimilarity of
15.4%, to 14 415 for the H8 subtype, which has an average
within-subtype dissimilarity of 6.3%. Degenerate primers
were not needed by PrimerHunter when designing primer
pairs based on avian influenza originating from North
America. We expect that degenerate primers will become
useful when designing discriminative primer pairs based

on world-wide subtype isolates, and we plan to experiment
with degenerate primers in the future.

In order to assess the specificity of these primers we
tested three primer pairs designed to amplify HA frag-
ments from H3, H5 and H7. To avoid the possibility of
contaminated or nonclonal primary viral samples, frag-
ments of the HA gene from one isolate of each subtype
were cloned into a plasmid vector. This allowed us to test
both the specificity of the PrimerHunter primers on
defined on- and off-target sequences, and to assess the
performance of the primers over a very large range of
template concentrations. We found that in each of these
experiments, PrimerHunter primers selectively amplified

Figure 5. �Ct for triplicate Q-PCR reactions performed with H3-, H5-
and H7-specific primer pairs at 10 different dilutions of on- and off-
target templates. Lines connect triplicate means at each dilution. The
legend in each graph indicates the color for the primer (numerator) and
target (denominator) combination.
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the targeted HA subtype over 5–7 orders of magnitude of
target concentrations and that the target sequence was
first detected at 104- to 106-fold lower concentrations
than nontarget templates. When template concentrations
of both targets are raised to detectable levels, the target is
typically amplified to concentrations >215-fold greater
than the off-target sequence.

In a typical field or clinical assay, target and off-target
nucleic acid sequences are likely to be present at low con-
centrations. In the case of retroviruses such as influenza,
the target nucleic acid will be viral RNA and any PCR
assay will perforce be preceded by a reverse transcription
(RT) step resulting in a linear DNA template. While
the sensitivity of such an assay will be heavily dependent
upon the efficiency of the RT step, we have shown that
PrimerHunter primers are functional and specific under a
wide range of template concentrations and thus are likely
to be robust under a variety of experimental conditions
including viral subtyping by RT–PCR in the clinic and in
the field (35–38).

The PrimerHunter web server, as well as the open
source code released under the GNU General Public
License, are available at http://dna.engr.uconn.edu/soft
ware/PrimerHunter/. By default, PrimerHunter seeks
to select primer pairs predicted to amplify all target
sequences and none of the nontarget sequences under spe-
cified reaction conditions. When targets exhibit extremely
large dissimilarity and such primer pairs cannot be found,
PrimerHunter automatically seeks and reports a small set
of primer pairs that collectively amplify all targets and
none of the nontargets. If the number of primer pairs
required to cover all targets is large, the pairs may need
to be portioned into multiple multiplex PCR reactions due
to limitations on the number of primers that can be used
in a single reaction.

Complete classification of unknown viral samples into
subtypes can be achieved by using PrimerHunter to design
a specific primer pair (or set of primers) for each subtype,
then running n parallel PCR reactions where n is the
number of subtypes. The number of PCR reactions can
be further reduced by designing primer pairs specific to
sets of subtypes (e.g. superclades in the phylogenetic
tree). By employing such nonspecific primer pairs and
group testing methods similar to those in (39) the
number of reactions can potentially be reduced to log n,
and we plan to explore such methods in future work.

We also plan to explore the potential application of
PrimerHunter to designing PCR assays for identification
and subtyping of pathogens other than influenza, includ-
ing bacteria, parasites and fungi. Another potential appli-
cation for PrimerHunter is designing specific probes
for gene expression and genome enrichment microarrays.
For large eukaryotic genomes, these applications would
require very large numbers of melting temperature com-
putations which can be feasibly performed by parallelizing
the testing of candidate primers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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