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ABSTRACT

Identifying features that effectively represent the
energetic contribution of an individual interface
residue to the interactions between proteins
remains problematic. Here, we present several
new features and show that they are more effective
than conventional features. By combining the pro-
posed features with conventional features, we
develop a predictive model for interaction hot
spots. Initially, 54 multifaceted features, composed
of different levels of information including struc-
ture, sequence and molecular interaction informa-
tion, are quantified. Then, to identify the best
subset of features for predicting hot spots, feature
selection is performed using a decision tree. Based
on the selected features, a predictive model for hot
spots is created using support vector machine
(SVM) and tested on an independent test set. Our
model shows better overall predictive accuracy
than previous methods such as the alanine scan-
ning methods Robetta and FOLDEF, and the
knowledge-based method KFC. Subsequent analy-
sis yields several findings about hot spots. As
expected, hot spots have a larger relative surface
area burial and are more hydrophobic than other
residues. Unexpectedly, however, residue conser-
vation displays a rather complicated tendency
depending on the types of protein complexes, indi-
cating that this feature is not good for identifying
hot spots. Of the selected features, the weighted
atomic packing density, relative surface area burial
and weighted hydrophobicity are the top 3, with
the weighted atomic packing density proving to
be the most effective feature for predicting
hot spots. Notably, we find that hot spots are
closely related to n–related interactions, especially
n � � � n interactions.

INTRODUCTION

For cellular function, proteins interact with other mole-
cules, with the nature of these interactions depending on
the physiological conditions. Several techniques have been
adopted to obtain a global view of the physical interac-
tions between proteins (e.g. yeast-two-hybrid and tandem
affinity purifications) (1,2). Systematic analyses (3–15) of
a variety of protein–protein interaction interfaces have
shown that there are no general rules that clearly describe
such interfaces. Studies of these interfaces have produced
variable results, partly because they have examined differ-
ent types of proteins; hence, when comparing findings for
different proteins, it is important to consider the types
of proteins (16,17).

The question of which residues are energetically more
important in protein–protein interaction interfaces is a
long-standing issue whose resolution would have signifi-
cant implications for practical applications, such as ratio-
nal drug design and protein engineering. Biophysical
characterization of protein–protein interaction interfaces
has been achieved through alanine-scanning mutagenesis
(18–20). Despite the large sizes of these binding interfaces,
individual single side chains can contribute a large fraction
of the binding free energy (21,22). A database of alanine
mutations is now accessible through the Internet for sys-
tematic analysis (23). The ‘O-ring model’ has been sug-
gested to explain the relationship between the change in
free energy associated with binding, ��G, and solvent
accessibility in the complexes (24).

To complement the low-throughput of wet-experiments
and to enhance the understanding of protein stability,
computational prediction methods have been proposed
(25–28). Most such studies have used thermodynamic
simulation to estimate the free energy of association.
Although these methods include energy terms, which are
important for protein stability, there is still a large discrep-
ancy between predicted values and experimentally mea-
sured free energy changes. Recently, a knowledge-based
model was introduced to predict binding ‘hot spots’
(29,30), but the prediction accuracy was relatively low.
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In addition, the biological meaning of each feature has not
been investigated.

Efforts have been made to identify correlations between
binding hot spots and protein structure and sequence
information (31–34). These studies disclosed that structur-
ally conserved residues are strongly correlated with exper-
imentally identified hot spots and that hot spots are
distributed within the interface rather than compactly
clustered. Moreover, the identification of similar residue
hot spots in various protein families may suggest that
affinity and specificity are not necessarily coupled.

Although, since Bogan’s initial study (24), several stu-
dies have examined hot spots, systematic analysis of the
structural features is limited to the solvent accessibility
and surface area burial between the unbound and bound
states (�ASA). In addition, only qualitative analyses have
been performed, and statistical analysis has not been
applied. The qualitative nature of the analyses performed
to date mainly derives from the difficulty of identifying
features that distinguish hot spots from other residues in
interaction interfaces.

Here, we apply a feature-based approach to modeling
protein–protein interaction hot spots. We create several
new features quantified by a new measure, and show
that the proposed features are more effective than the con-
ventional features. By combining our new features with
the conventional features, we develop a predictive model
for interaction hot spots. Initially, 54 multifaceted fea-
tures, composed of different levels of information, includ-
ing structure, sequence and molecular interaction data, are
quantified. Then, feature selection is performed using a
decision tree to identify the best subset of features to pre-
dict hot spots. For this process, 265 alanine-mutated inter-
face residues in 17 complexes are collected and categorized
either as hot spots or energetically unimportant residues,
based on a definition of hot spots. We used two definitions
for hot spots, ��G� 1.0 kcal/mol or ��G� 2.0 kcal/
mol. Using ��G� 1.0 kcal/mol to define hot spots, the
interface residues are divided into 119 hot spots and 146
energetically unimportant residues (i.e. the T1 training
set, see Materials and methods section). When
��G� 2.0 kcal/mol is used for hot spots, the interface
residues are grouped into 65 hot spots and 200 energeti-
cally unimportant residues (i.e. the T2 training set, see
Materials and methods section). With these two training
sets, predictive models for hot spots are created with sup-
port vector machine (SVM), and tested with 10-fold cross-
validation. Apart from these data, an independent test set,
composed of 127 alanine-mutated interface residues in 18
complexes, is also constructed from the Binding Interface
Database (BID; http://tsailab.org/BID/) (35) to further
validate our predictive models. Comparison of our
models with other methods such as alanine scanning meth-
ods [Robetta (27), FOLDEF (28)] and knowledge-based
methods (K-FADE, K-CON) (29,30) disclosed that our
SVM models give better predictive performance than
other methods.

Feature selection can preserve the original semantics of
the input features, allowing us to directly interpret the
biological and statistical meanings of the features selected
to train the models. Of the selected features, the top 3

based on discriminating power are the weighted atomic
packing density, relative surface area burial and weighted
hydrophobicity, which are located in the upper levels of
the decision tree. All of these features are newly proposed
here. Especially, the weighted atomic packing density,
which reflects the contribution of an individual interface
residue to the whole interface area (36), proves to be the
most effective feature to discriminate hot spots from the
other residues in an interface. Other structural features,
such as the relative surface burial, solvent accessibility
and surface area burial (�ASA), are also investigated.
Evolutionary information (conservation), chemical prop-
erties (weighted hydrophobicity) and molecular interac-
tion information are also exhaustively analyzed.

MATERIALS AND METHODS

Our research flow consists of six steps: ‘Data collection’,
‘Feature generation’, ‘Data representation’, ‘Feature selec-
tion’, ‘Model evaluation’ and ‘Interpretation of the bio-
logical meaning’. The experimental procedure and data
are quite similar to those in works by Darnell et al.
(29,30), first adopting knowledge-based approach to pre-
dict interaction hot spots. We also evaluate model perfor-
mance in terms of the widely used F1-score, which is well
described in their paper (29). However, we add feature
selection and feature interpretation process to the proce-
dure to reduce input dimension while preserving the orig-
inal semantics of the input features, allowing us to
interpret biological and statistical meaning of each
selected feature. In addition, the types of features differ
markedly from those of her studies. While KFC use the
atomic contacts, canonical hydrogen bonds, salt bridges
and shape specificity as a feature set, we select atomic
density, solvent accessibility, hydrophobicity, noncanoni-
cal hydrogen bonds, p-related interactions and sequence
conservation as the constituent features. Moreover, we
interpret the role of each feature through the statistical
analysis. The details of each step are described below.

Data collection

Two training sets (T1, T2) for cross-validation. A data
set of 265 alanine-mutated interface residues derived from
17 protein–protein complexes (Table 1) was obtained from
ASEdb (23) and the published data of Kortemme and
Baker (27). Proteins are considered as nonhomologous
when the sequence identity is <35% and the SSAP
(Secondary Structure Alignment Program) (37) score is
� 80. The sequence identity and SSAP score can be
obtained using the CATH [Class (C), Architecture (A),
Topology (T) and Homologous superfamily (H)] (38)
query system. If homologous pairs are included, the sites
of recognition differ between the two proteins. The ��G
values are listed in the Supplementary Data (Table S1).
The atomic coordinates of the protein chains are obtained
from the Protein Data Bank (PDB) (39). When residues
with ��G� 1.0 kcal/mol are defined as hot spots, the
interface residues are divided into 119 hot spots and 146
energetically unimportant residues. This training set is
designated as T1 in the sense that a broader hot spot
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definition is used. When the residues with ��G� 2.0 kcal/
mol are defined as hot spots, the interface residues are
grouped into 65 hot spots and 200 energetically unimpor-
tant residues. This set, which was generated using the con-
ventional hot spot definition, is designated as T2.

An independent test set. An independent test set is con-
structed from the BID (35) to further validate our SVM
model. The member proteins in the independent test set
are nonhomologous to those of the training set, as manu-
ally confirmed using the SCOP database (40). In the BID
database, the alanine mutation data are listed as either
‘strong’, ‘intermediate’, ‘weak’ or ‘insignificant’. In our
study, only ‘strong’ mutations are considered as hot
spots; the other mutations are regarded as energetically
unimportant residues. This test set consists of 18 com-
plexes containing 127 alanine-mutated data, of which 39
residues are hot spots (Supplementary Tables S2 and S3).

Feature generation

Based on previous studies on hot spots, we generate an
initial feature set with several features, such as residue
conservation, �ASA and packing density, that are
known to be positively correlated with hot spots.
However, those features are insufficient to predict hot
spots with high accuracy. Therefore, we augment this ini-
tial set with new features created using a new measure.
In addition, we add interaction information, known to
be crucial to the stability of protein–protein interactions,
to the initial set. In total, 54 multifaceted features are
generated, which are composed of different levels of infor-
mation, including structure, sequence and molecular inter-
action information. The features associated with protein
structure consist of density-related features and solvent
accessibility-related features. As a sequence feature, we
only select the conservation score. Molecular interaction
information is composed of canonical hydrogen bonds,

noncanonical hydrogen bonds, electrostatic interactions
and p-related interactions. These features are divided
into subcategories according to whether they describe
a property of a specific residue or a property of a residue’s
microenvironment. The following section describes the
collection of these features, along with the details of
how they were quantified.

Definition of an interface residue. The solvent accessible
surface area (ASA) of a residue is calculated using
Areaimol in the CCP4 Suite (41) with a probe sphere of
radius 1.4 Å. �ASA represents the surface area burial
upon complex formation (16). An interface residue is
defined as a residue with �ASA� 1 Å2. When calculating
�ASA, water molecules in the PDB files are removed in
advance.

Definition of atom contact (Ca). Contact between two
atoms of the i-th and j-th residues, respectively, is defined
as in Equation (1). This equation stipulates that if two
atoms are located within a certain cutoff distance, then
they are in contact. The cutoff distance between atoms is
defined as 5.0 Å (42,43). When deciding whether two
atoms are in contact, covalently bonded neighbors are
not considered (i.e. for residue i, residues i� 1 and i+1
are excluded).

Cað�; �Þ ¼

0 if ji� jj � 1; i; j 2 interface residues

1 if ji� jj > 1
T

d�;� � 5:0A;
� 2 i-th residue; � 2 j-th residue 1

8<
:

Here, d�;� is the distance between atoms a and b.

Definition of residue contact (Cr). Contact between two
residues (e.g. the i-th and j-th residues) is defined as in
Equation (2), which implies that if there is at least one
atom contact between two residues, then we consider
that there is one residue contact.

Crði; jÞ ¼
0 if ji� jj � 1; i; j 2 interface residues

1 if ji� jj > 1 \
P

�¼1

P
�¼1 Cað�; �Þ � 1

(
2

Normalized atom contacts (NCa). The normalized atom
contact at the i-th residue [NCaðiÞ] between the i-th and
j-th residues is computed by summing all atom contacts
between the two residues and dividing by the number of
atoms in the i-th residue [NaðiÞ], as represented in
Equation (3).

NCaðiÞ ¼

P
j¼1f

P
�¼1

P
�¼1 Cað�; �Þg

NaðiÞ
;

� 2 i-th residue; � 2 j-th residue

3

Normalized residue contacts (NCr). The normalized resi-
due contact at the i-th residue [NCrðiÞ] between the i-th
and j-th residues is calculated by summing all residue con-
tacts, as described by Equation (4)

NCrðiÞ ¼

P
j¼1 Crði; jÞ

NaðiÞ
; i; j 2 interface residues 4

Table 1. The 17 protein–protein complexes analyzed

PDB id First molecule Second molecule

1a4y RNase inhibitor Angiogenin
1a22 Human growth hormone Human growth hormone

binding protein
1ahw Immunoglobulin Fab5G9 Tissue factor
1brs Barnase Barstar
1bxi Colicin E9 Immunity Im9 Colicin E9 DNase
1cbw BPTI Trypsin inhibitor Chymotrypsin
1dan Blood coagulation factor VIIA Tissue factor
1dvf Idiotopic antibody FV D1.3 Anti-idiotopic antibody

FV E5.2
1f47 Cell division protein ZIPA Cell division protein FTSZ
1fc2 Fc fragment Fragment B of protein A
1fcc Fc (IGG1) Protein G
1gc1 Envelope protein GP120 CD4
1jrh Antibody A6 Interferon-gamma receptor
1nmb N9 Neuramidase Fab NC10
1vfb Mouse monoclonal

antibody D1.3
Hen egg lysozyme

2ptc BPTI Trypsin
3hfm Hen Egg Lysozyme lg FAB fragment

HyHEL-10
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Definition of the weighting factor (FwÞ. Most studies of
protein–protein interactions treat interface residues
equally without considering their relative contributions
to the total interface area. We believe that this approach
may give distorted information about interface residues.
In fact the concept of assigning different weights to resi-
dues based on their importance in determining system
properties has already been used when calculating mean
sequence entropy to discriminate oligomerization states of
proteins (36). In the present study, this concept is extended
to other properties as a weighting factor when quantifying
several structural features. The weighting factor, which
weights the contribution of each residue according to its
relative contribution to the total interface area, is
expressed as follows [Equation (5)]:

FwðiÞ ¼
4ASAiP
j¼14ASAj

; j ¼ interface residues 5

Simple density. Simple density consists of the simple atom
density and simple residue density. The simple atom den-
sity is defined as the normalized number of atom contacts
(NCa), and the simple residue density is defined as the
normalized number of residue contacts (NCr).

Weighted density. The weighed density is composed of the
weighted atomic packing density (Wad) and weighted res-
idue density (Wrd). The weighted atomic packing density
for the i-th residue [WadðiÞ] is obtained by weighting the
normalized number of atom contacts [NCaðiÞ] using the
fraction of ASA buried upon complexation that is due
to residue i, as follows [Equation (6)]:

WadðiÞ ¼ NCaðiÞ � FwðiÞ 6

Similarly, if we substitute NCaðiÞ for NCrðiÞ, we obtain the
weighted residue density for the i-th residue WrdðiÞ
[Equation (7)]:

WrdðiÞ ¼ NCrðiÞ � FwðiÞ 7

The differences in weighted density between the bound
and monomer states are also computed, which are denoted
by 4WadðiÞ and 4WrdðiÞ.

Simple hydrophobicity. To calculate the hydrophobicity,
we use the Fauchere and Pliska scale (44) (Supplementary
Table S4). The simple hydrophobicity of the i-th residue is
defined as follows [Equation (8)]:

ShpðiÞ ¼
X
j¼1

hpj;

hpj is a hydrophobic parameter of the j-th residue;

j 2 residues of Crði; jÞ ¼ 1 8

Weighted hydrophobicity. The weighted hydrophobicity
for the i-th residue [WhpðiÞ] is obtained by weighting the
simple hydrophobicity [ShpðiÞ] as follows [Equation (9)]:

WhpðiÞ ¼ ShpðiÞ � FwðiÞ 9

Relative surface area burial (SBr). When dealing with
structural properties related to hot spots, most previous
studies have focused on conventional concepts such as

solvent accessibility and surface area burial (�ASA).
Although these absolute values are useful to describe hot
spots, they have only a limited capacity to distinguish hot
spots from other interface residues. For example, consider
the following two cases: (i) an interface residue having
100 Å2 solvent accessibility in the monomer, which is
fully buried (0 Å2 solvent accessibility) after binding asso-
ciation; (ii) an interface residue having 200 Å2 solvent
accessibility in the monomer, which has 100 Å2 solvent
accessibility after binding association. In both cases, the
surface area burial (�ASA) is 100 Å2; However, the rela-
tive surface burial in comparison with the solvent accessi-
bility in the monomer differs markedly between the two
cases (50% versus 100%). To compensate for this effect,
we introduce the concept of relative surface burial. The
relative surface burial (SBr) between the monomer and
bound states is calculated as follows:

SBrðiÞ ¼
4ASAi

Solvent accessibility of the i-th residue
in a monomer

10

Residue conservation. To calculate the conservation score,
multiple alignment is performed using ClustalW. The con-
servation score for an interface residue is obtained based
on the von Neumann entropy (VNE), which is a modified
Shannon entropy (SE) (45). The SE for a multiple align-
ment position is defined as follows:
SE ¼ ��pðxÞ log20 pðxÞ 11

where p(x) is the relative frequency of each amino acid x in
a specific alignment position. The base of 20 ensures that
all values are bounded between zero and one. When com-
puting the relative frequency, symbols such as ‘X’, ‘Z’, ‘B’,
and ‘-’, are ignored. The VNE is represented by the
following extension of the SE:

VNE ¼ �Trðw log20 wÞ 12

where w is a weighted probability matrix of amino acids in
an alignment position, described as follows:

w ¼ diag½ðp1; p2, . . . ; p20Þ � Similarity matrix� 13

The BLOSUM50 similarity matrix is applied; this matrix
is reported to be the most favorable one for conservation
analysis (45).

Molecular interactions of an interface residue. Eighteen
molecular interaction types, which we have defined pre-
viously (17), are analyzed on the basis of their occurrences
in each interface residue. Canonical hydrogen bonds,
noncanonical hydrogen bonds, ion–ion interactions and
p–ring system-related interactions are included in this
interaction set (46–49).

Molecular interactions within a residue’s
microenvironment. To obtain information on the interac-
tions within the microenvironment surrounding a residue,
the basic concept of which is from the work of Bagley and
Altman on FEATURE (50), we analyzed 18 molecular
interaction types within a spherical volume with a radius
of 5 Å centered at the residue’s center of mass.
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Other features. Other conventional features such as
�ASA and solvent accessibility are also included in this
study. In addition, we analyze the sum of the molecular
interactions and the sum of the molecular interactions of a
residue’s microenvironment.

Data representation

The features are quantified as a feature vector based on
the propensities of each feature. The propensities are nor-
malized with the mean and standard deviation of the
sample set. The vector representation of the features of
an interface residue makes it possible to use classification
techniques.

Feature selection

In contrast to other dimensionality reduction techniques
such as those based on projection (e.g. principal compo-
nent analysis) or compression (e.g. information theory),
feature selection techniques do not alter the original rep-
resentation of the input variables. Feature selection tech-
niques thus preserve the original semantics of the
variables, thereby enhancing the ability to interpret the
experimental results (51). With the aid of feature selection,
we can avoid overfitting, improve model performance and
provide faster and more cost-effective models. In the pres-
ent study, feature selection is performed using a decision
tree, that shows the best subset of features for discrimi-
nating hot spots from other residues.
A decision tree (52) is a tree whose internal nodes are

tests on input patterns and whose leaf nodes are categories
of patterns. A decision tree assigns a class number to an
input pattern by filtering the pattern down through the
tests in the tree. Each test has mutually exclusive and
exhaustive outcomes.
Two decision trees based on the corresponding train-

ing sets (T1, T2) are created using the Treefit function
in MATLAB. From these trees, two novel feature
sets are developed to create the corresponding SVM
models.

Evaluation with SVM

SVM (53) is a classifier based on the similarities between
an input pattern and a subset of the training samples.
Because it uses a set of training samples called support
vectors rather than the whole data set, it shows low com-
plexity and robust output in systems with erroneous data.
Due to these characteristics, SVM can be an appropriate
candidate for dealing with hot spot data.
To evaluate the selected feature sets, two SVM models

are created and tested with 10-fold cross-validation for
the training sets (T2, T1). Then, to further validate our
models, classification is performed using an independent
test set. In this analysis, a Gaussian kernel is used as the
kernel function.

Cross-validation

Because it is unclear whether the residues within the same
binding interface are independent, a 17-fold ‘leave one
protein complex out’ cross-validation is adopted to

estimate the performance of our model; this method fol-
lows the approach reported by Darnell et al. (29). For
each of the 17 protein complexes, we select one protein
complex as a test sample, and train our model using the
remaining 16 complexes. Then, we test our model using
that selected protein complex. While this 17-fold ‘leave
one protein complex out’ cross-validation can provide a
solution to the inherent dependencies between residues in
the same interface, it may cause another problem, known
as data size imbalance. The data sizes of the different
interfaces are severely unbalanced, which may lead to
overfitting. Therefore, we also adopt a 10-fold cross-vali-
dation to estimate the performance of our model. The
data are randomized before assigning folds, and subdi-
vided into 10 equal partitions. Then, for each of the 10
partitioned groups, we select one as a test sample, train
our model using the remaining nine groups, and test the
model using the selected group. Both approaches have
merits and demerits, and show statistically similar results.
In this study, we present the results obtained using 10-fold
cross-validation.

Statistical analysis

Mann–Whitney U-test. Statistical analysis along with bio-
logical knowledge is used to examine the role of each
selected feature. The Mann–Whitney U test (54) is used
for the statistical analysis because our sample data
do not show a normal distribution, as determined
using the Lilliefors test (55), an extension of the
Kolmogorov–Smirnov test. The Mann–Whitney U-test is
a nonparametric test for assessing whether two samples of
observations come from the same distribution. It makes
minimal assumptions about the underlying distribution.

We have samples of observations from each of two
populations: hot spots (H) and other residues (O) These
populations comprise nH and nO residues, respectively
(nH=119, nO=146 in T1, and nH=65, nO=200 in
T2). We wish to test the hypothesis that the distribution
of measurements in population H is the same as that in
population O. The Mann–Whitney U-test is based on
ranking the nH+ nO observations of the combined
sample. Each observation has a rank. All sequences of
ties are assigned an average rank. The Mann–Whitney
U-test statistic is the sum of the ranks for observations
from one of the samples. We compute the sum of the
ranks for the hot spot population (H), denoted as wH,
and use WH to represent the corresponding random vari-
able. In our analysis, wH is in the upper tail; hence
P-value= 2pr(wH�WH), is obtained using MATLAB.

Paired t-test. To compare the performances of models,
the two-tailed, paired t-test is adopted. First, we compute
the F1-score of our model for each of 10 partitioned
groups in the 10-fold cross-validation process. Then,
using the corresponding partitions, we also calculate
F1-scores of the other models. Using all 10 paired
F1-score sets, we test the statistical significance by exam-
ining P-values, obtained using MATLAB. A significance
level of 0.05 is used to indicate statistical significance.
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RESULTS AND DISCUSSION

The performance of each model is expressed by four mea-
sures: sensitivity (i.e. recall), specificity, positively pre-
dicted value (i.e. precision) and negatively predicted
value. We also compare the performance of each model
in terms of the F1-score, which is the harmonic mean of
the precision and recall. The F1-score is widely used to
handle unbalanced data such as our hot spot data. For a
model to be practically meaningful, the F1-score must
exceed the fraction of the residues in the data set that
are hot spots. The T2 training set consists of 65 hot
spots and 200 other residues; hence the F1-score for any
model should be >0.25. In the same way, in the case of the
T1 training set, composed of 119 hot spots and 146 other
residues, the F1-score should be >0.45. For the indepen-
dent test set, which consists of 127 mutated data, of which
39 are hot spots, the F1-score should be 0.31. As will be
shown below, all of the F1-scores of our models are much
greater than the above mentioned values, implying that
our models are very useful for predicting hot spots.
Furthermore, our models show a superior capacity
to predict hot spots, compared with previous models
such as Robetta (26), FOLDEF (28) and KFC (29).
In the following sections, we describe these results in
greater detail.

Two novel feature sets

At the initial stage, a total of 54 multifaceted features are
designed and quantified. Decision tree analysis is applied
to choose the best subset of features from the initial fea-
ture set. Decision tree analysis for the two training sets
(i.e. T1 or T2), discloses that hot spots can be modeled
with only 12 features according to their corresponding
training sets, although their constituent features differ
slightly depending on the training set. The results are
shown in Figure 1. These results are also confirmed by
statistical analysis. In both feature sets, newly proposed
features such as the weighted atomic packing density
(Wad), relative surface area burial (SBr) and weighted
hydrophobicity (Whp), are located in the upper level of
nodes in the decision tree. This implies that these features
are better than other features in discriminating hot spots
from other residues. Especially, the weighted atomic pack-
ing density shows the best discrimination power. By them-
selves, interaction features make a minor contribution to
distinguishing hot spots from other residues. When com-
bined with other features, however, interaction features
assist in classification. The constituent members of the
two novel feature sets are listed in the Supplementary
Data (Table S5 and S6, respectively).

Cross-validation with the training sets

Based on the two novel feature sets from T2 and T1,
corresponding SVM models are developed and tested
with 10-fold cross-validation. Our SVM model is named
as MINERVA, an acronym of MINE Residue VAlue. In
addition, using the same training sets, three previous
methods are also examined, and compared with our
SVM models. The classification confusion matrices are

listed in Table 2. When T2 is used as a training set, our
model shows the best predictive performance (recall ¼
0.58, precision ¼ 0.73 and F1 ¼ 0.65). These findings indi-
cate that 73% of predicted hot spots are identified as true
hot spots (precision), and 58% of the true hot spots are
correctly predicted (recall). KFC, which shows the best
performance among the previous methods, correctly pre-
dicts hot spots with recall ¼ 0.55, precision ¼ 0.58 and F1
¼ 0.56. The F1-score of our model is higher than that of
KFC (�F1 ¼ 0.09), a difference that is statistically signif-
icant (P ¼ 0:01, paired t-test). This indicates that the pre-
dictive performance of our model generated from training
set T2 is significantly better than those of the other meth-
ods. These results are listed in Table 3.
When T1 is used as the training set, our model predicts

hot spots with recall ¼ 0.59, precision ¼ 0.74 and F1 ¼
0.66. For this training set, Robetta shows the best perfor-
mance among the previous methods. KFC is only
designed to predict hot spots with ��G� 2 kcal/mol;
hence, it is not included in the analysis for the T1 training
set. Robetta predicts hot spots performance with recall ¼
0.62, precision¼ 0.66 and F1¼ 0.64. Although the
F1-score of our model is higher than that of Robetta
(�F1 ¼ 0.02), the difference is not statistically significant
(P ¼ 0:70). This indicates that our model shows compara-
ble performance with Robetta. These results establish that
our feature-based approach is very useful for predicting
hot spots with high confidence, irrespective of the defini-
tion of hot spots.

Evaluation with the independent test set

The superior performance of our models is more obvious
in the analysis of the independent test set from BID. The
F1-scores of our models are 0.52 and 0.57, respectively,
for the hot spot definitions of ��G� 1 kcal/mol and
��G� 2 kcal/mol, respectively, while those of the previ-
ous methods are in the range of 0.34�0.40. Because
Robetta shows the best predictive performance among
the previous methods, we compare our models with
Robetta. The F1-scores of our models are much higher
than those of Robetta (�F1-scores of 0.12 and 0.17;
P ¼ 0:004 and 0.0005, respectively, paired t-test). These
findings indicate that our models give significantly better
predictive performance compared with other methods.
The details of our experimental results are listed in
Table 4.

Weighted density and hot spots

In both of the selected feature sets, the top 3 features
showing better discriminating power (i.e. located in the
upper level nodes in the decision tree) are the weighted
atomic packing density (Wad), relative surface area
burial (SBr) and weighted hydrophobicity (Whp). In
particular, the weighted atomic packing density (Wad) is
located at the top node in the decision tree. This feature is
created using a newly suggested measure that reflects
the extent of the contribution of an individual interface
residue to the whole interface area.
The weighted atomic packing density (Wad) in the

bound state is compared with the coordination number,

Nucleic Acids Research, 2009, Vol. 37, No. 8 2677



a conventional measure (42), in a histogram (Figure 2).
The average weighted atom densities of hot spots differ
from those of unimportant residues, regardless of the
��G cutoff values, whereas the average coordination

numbers of the two groups are very similar (see Table
S7 in the Supplementary Data). These findings are sup-
ported by the results of a nonparametric statistical analy-
sis, the Mann–Whitney U-test. In agreement with the
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Figure 1. Decision tree analyses for the two training sets, T1 (a) and T2 (b). The trees show that hot spots can be modeled using only 12 features
according to their corresponding training sets, although the constituent members of the T1- and T2-derived sets differ slightly. In both feature sets,
newly proposed features such as the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are located in the
upper level of nodes in the decision tree.
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histogram data, the coordination number does not differ
significantly between the two groups, whereas the
weighted atomic packing density does show statistically
significant difference (Table 5). The P-values for the dif-
ference in Wad are on the order of 10�11–10�12, irrespec-
tive of the ��G cutoff value. This indicates that the newly
suggested concept of the weighted atomic packing density
is more efficient than the simple coordination number for
distinguishing hot spots from unimportant residues. Our
findings that the coordination number does not differ
between hot spots and other residues is at odds with pre-
vious findings showing that the average coordination

number of structurally conserved residues differs from
that of the rest of the interface (42). Several factors
could potentially explain this discrepancy. In our study,
experimentally measured hot spots and other residues are
directly compared. In the previous study, in contrast,
structurally conserved residues are used in the analysis
instead of experimentally measured data, based on the
fact that there is a correlation between the propensities
of structurally conserved residues and the experimental
enrichment of hot spots. However, structurally conserved
residues at a protein–protein interaction interface may
contribute to structural stability rather than act as hot
spots for binding association; hence we cannot say that
there is a one-to-one mapping between a hot spot and a
structurally conserved residue.
The distribution of the weighted atomic packing density

in the unbound form of the protein is also analyzed. Here,
the ‘unbound form’ indicates a protein that is crystallized
as a single monomer in the PDB. In addition, the distri-
bution of the difference of the weighted atomic packing
density between before and after binding association
(�Wad) is also investigated. To achieve this, we select 12
proteins containing 132 mutation data, which are crystal-
lized in both the unbound and bound forms in the PDB
(39). Structural comparisons between the unbound and
bound forms, are performed using CE (56) to examine
the conformational changes that occur as a result of bind-
ing. On the basis of such comparisons, we conclude that
the proteins in our data set do not undergo conforma-
tional changes when they associate (Table 6). For these
12 proteins, we calculate the weighted atom densities in
the unbound and bound forms, and use statistical analysis
to compare the findings for hot spots and other residues.
The average packing densities of the unbound and bound
forms are compared, based on the energetically different
types of residues (Figure 3).
In the bound form of each of 12 proteins, the region

around each hot spot is denser than regions that do not
contain a hot spot. A similar phenomenon is also observed

Table 2. The classification confusion matrices based on the correspond-

ing training sets (T1,T2)

Condition

T1-training set T2-training set

Td Fe Total T F Total

MINERVAa Pb 70 24 94 38 14 52
Nc 49 122 171 27 186 213
Total 119 146 265 65 200 265

Robetta P 74 38 112 32 20 52
N 45 108 153 33 180 213
Total 119 146 265 65 200 265

FOLDEF P 57 20 77 19 15 34
N 62 126 188 46 185 231
Total 119 146 265 65 200 265

KFC P naf na na 36 26 62
N na na na 29 174 203
Total na na na 65 200 265

aMINERVA, an acronym of MINE Residue VAlue, is the name of our
model.
bPositive.
cNegative.
dTrue.
eNegative.
fKFC is only designed to predict hot spots with ��G� 2 kcal/mol, so
it is not included in the analysis for the T1 set.
Each column represents the gold standard, and each row represents the
class predicted by the model.

Table 4. Evaluation of the hot spot prediction for each model with the

independent test set

Robetta KFC FOLDEF MINERVA2e MINERVA1f

SNa 0.33 0.31 0.26 0.44 0.62
SPb 0.87 0.85 0.88 0.90 0.76
PPVc 0.52 0.48 0.48 0.65 0.53
NPVd 0.73 0.74 0.73 0.78 0.82
F1 Score 0.40 0.37 0.34 0.52 0.57
�F1 �� – – 0.12 0.17
P-value �� – – 4.31� 10�3 4.55� 10�4

aSensitivity (or recall).
bSpecificity.
cPositively predicted value (or precision).
dNegatively predicted value.
eThe performance of our model trained with the 2 kcal/mol training
set, T2.
fThe performance of our model trained with the 1 kcal/mol training
set, T1.
MINERVA. an acronym of MINE Residue VAlue, is the name of our
model.

Table 3. Evaluation of the hot spot prediction with T2 using 10-fold

cross-validation

KFC Robetta FOLDEF MINERVA2e

SNa 0.55 0.49 0.32 0.58
SPb 0.85 0.90 0.93 0.89
PPVc 0.58 0.62 0.59 0.73
NPVd 0.88 0.84 0.81 0.87
F1 Score 0.56 0.55 0.41 0.65
�F1 �� – – 0.09
P–value �� – – 0.01

aSensitivity (Recall).
bSpecificity.
cPositively predicted value (Precision).
dNegatively predicted value.
eThe performance of our model using the 2 kcal/mol training set, T2.
fMINERVA, an acronym of MINE Residue VAlue, is the name of our
model.
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even in the unbound form. Furthermore, when we analyze
the difference in weighted atom packing density between
before and after binding association, we find that the dif-
ference of the distribution between hot spots and other

residues is statistically significant (Table 7). This implies
that unbound proteins already have a densely structured
organization, and these hot spots are good targets for the
interacting partner proteins. These results are in good

Figure 2. (a) Weighted atomic packing density in the bound state. (b) Coordination number in the bound state. The weighted atomic packing density
is compared with the coordination number using a histogram. The average value of the weighted atomic packing density for hot spots is quite
different from that for other residues, irrespective of the ��G cutoff value. In contrast, the coordination number does not differ between hot spots
and other residues. This result is supported by statistical analysis (Table 5).
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agreement with those of previous works (33,57,58).
Nussinov’s group found that hot spots strongly tend to
be complementary pockets that have structures suited
to binding with structures in the unbound state (33,57).
In a study of anchor residues, Rajamani et al. (58) argued
that such residues enable binding pathways that avoid
kinetically costly structural rearrangements at the core
of the binding interface, thereby creating a relatively
smooth recognition process.

The interactions between densely packed hot spots are
investigated using 3hfm, which is a complex of the pro-
teins HyHEL-10 and lysozyme. The mean and standard
deviation of the weighted atomic packing density (Wad) of
the interacting hot spots are 17.34 and 8.27, respectively.
In contrast, the corresponding values for the energetically
unimportant residues in the interface are 8.55 and 4.80,
respectively. These findings clearly show a substantial dif-
ference between the two groups of interface residues.
These results are presented in the Supplementary Data
(Supplementary Table S8). D32, Y33 and Y53 in chain
H (HyHEL-10), interact with L75, K97, D101 in chain
Y (lysozyme). Y50 and Y58 in chain H interact with
Y96 in chain L (HyHEL-10) and R21 in chain Y. Y20
and K96 in chain Y (lysozyme) interact with N31, N32,
Y50 and Q53 in chain L (HyHEL-10). These interactions
are plotted using a solid 3D representation in Figure 4.
In this illustration, the blue spheres represent the hot spots
in chain L (HyHEL-10) and the yellow spheres indicate
the hot spots in chain H (HyHEL-10). The green spheres
are the hot spots in chain Y (Hen egg lysozyme), and the
white sticks represent the energetically unimportant resi-
dues. The visualizations clearly show that the hot spots
with high packing density, interact with each other, and
that the energetically unimportant residues are mainly
located at the outside of the interface, in good agreement
with previous studies (24,60). Similar interaction patterns
are also observed in the interfaces between protein pairs
(data not shown). These results provide an explanation for
why the weighted atomic packing density is located at the
topmost node in the decision tree.

Relative surface area burial (SBr) and hot spots

The relative surface area burial (SBr) is also found to be a
good feature in the feature selection process, and when
combined with other features such as �ASA and the

solvent accessibility, SBr improves the predictive perfor-
mance. The Mann–Whitney U-test is used to compare the
relative surface area burial (SBr) of hot spots and other
residues. The P-values for this comparison are 3.71� 10�9

for data set T1 and 4.11� 10�12 for data set T2, implying
that the distribution of relative surface area burial (SBr)
differs significantly between hot spots and other residues.
Therefore, SBr is selected as one of the top three features
showing good discriminating power.
Although solvent accessibility and �ASA are not

among the top three features, these parameters are still
major features for distinguishing hot spots from other
residues. When ��G� 1.0 kcal/mol is used to define hot
spots, there is a statistically significant difference in solvent
accessibility between hot spots and the energetically
unimportant residues (P ¼ 4:74� 10�6, Mann–Whitney
U-test). When we use ��G� 2.0 kcal/mol as the hot
spot definition, the statistical pattern remains unchanged
(P ¼ 1:31� 10�7, Mann–Whitney U-test). Comparison of
�ASA values using the Mann–Whitney U-test again
shows that the distributions of hot spots and energetically
unimportant residues differ significantly. These results are
summarized in the Supplementary Data (Table S9).
We now consider the locations of hot spots in an inter-

face. Tryptophan, leucine, isoleucine and valine are
mainly located at the center of the interface, with solvent
accessibilities �10 Å2. In particular, tryptophan shows the
highest propensity to be hot spots, owing to its large size
and aromatic nature (61). Lysines are mainly located in
regions with solvent accessibility �20 Å2, although several
such residues are found in regions with solvent accessibil-
ity �70 Å2. This is an unexpected result because lysine is

Table 6. Structural comparison between the unbound and bound states

for various proteins using combinatorial extension

Bound statea Unbound stateb RMSD(Å)c Seq.

PDB
id

Chain
id

PDB
id

Chain
id

identity
(%)

Angiogenin 1a4y B 1un3 A 0.76 99.1
hGH 1a22 A 1hgu –d 2.68 68.4
Tissue factore 1ahw C 1tfh A 1.39 100.0
Barnase 1brs A 1bnf A 1.12 98.1
Barstar 1brs D 1a19 A 0.44 98.9
BPTI 1cbw D 1bpt –d 0.39 98.2
Tissue factore 1dan T 1tfh A 0.63 100.0
RNase inhibitor 1dfj I 2bnh –d 1.50 100.0
CD4 1gc1 C 1cdj A 1.09 100.0
Hen egg
lysozymee

1vfb C 1lyz –d 1.11 100.0

Trypsin 2ptc I 1bpt –d 0.36 98.2
Lysozymee 3hfm Y 1lyz –d 0.67 100.0

aA protein is in the bound state.
bThese 12 proteins are used for statistical analysis to prove that hot
spots already have densely structured organization in the unbound state
cRoot mean squared error.
d‘–’ represents that chain id is not presented in the PDB.
e1ahw C and 1dan T are the same proteins but have different binding
sites, and in the same way, 1vfb C, and 3hfm Y have different binding
sites.

Table 5. Weighted atomic packing density versus Coordination number

Density
type

��G cutoff
value (kcal/mol)

Mann–Whitney
U-test, P-values

Hot spotsc/
Othersd

Wad
a 1.0 3.32� 10�11 119/146

Wad 2.0 2.22� 10�12 65/200
CNb 1.0 0.10 119/146
CN 2.0 0.02 65/200

aWeighted atomic packing density in the bound state.
bCoordination number in the bound state, defined as the number of Ca

within 6.5 Å around each residue (42).
cNumber of hot spots.
dNumber of energetically unimportant residues.
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Figure 3. (a) The weighted atomic packing density of the hot spots in the unbound state is much higher than the weighted atomic packing density
in the rest of the interface. (b) The hot spots are much denser than other residues in the bound state, irrespective of the ��G cutoff value.
(c) The difference in weighted atomic packing density between before and after binding association (�WAD) is large.
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hydrophilic, and hence is likely to be located in the outside
of the interface. Arginine, aspartic acid and glutamic acid
are mainly located between the center and the edge of the
interface, with solvent accessibility �80 Å2. Tyrosine is
broadly distributed, appearing even in regions with sol-
vent accessibilities in excess of 100 Å2. Arginine is
mainly observed between 35 Å2 and 75 Å2. These observa-
tions show that, to some extent, residues that are more
accessible to the solvent can be hot spots. Asparagine,
glutamine, serine and threonine exhibit ambiguous behav-
ior. In the case of serine and threonine, the absolute size of

the hot spot data is very small. The energetically unim-
portant residues are broadly distributed regardless of their
solvent accessibility. Systematic analysis of hot spots thus
discloses that the distinctive amino acids of hot spots are
tryptophan, arginine and tyrosine.

Weighted hydrophobicity and hot spots

The weighted hydrophobicity, calculated according to
Equation (9), is another of the newly suggested feature
to appear among the top three features in the decision
tree. Comparison of the distributions of the weighted
hydrophobicity between hot spots and energetically unim-
portant residues reveals statistically significant differences
between hot spots and other residues (P ¼ 8:53� 10�8

and 3:96� 10�9 according to the ��G cutoff values, as
shown in Table S10 of the Supplementary Data).
As expected, hot spot residues are more hydrophobic
than energetically unimportant residues, although the
hydrophobicity fluctuates severely throughout the inter-
face (Table 1).
In Figure 5, the relative ratio between hot spots and

other residues is plotted according to the weighted hydro-
phobicity. There is a clear correlation between hydropho-
bicity and the fraction of residues that are hot spots.

Conservation and hot spots

In general, hot spots would be expected to be more con-
served than other residues. Surprisingly, however, our
analysis of conservation scores calculated using VNE

Figure 3. Continued.

Table 7. P-values for comparisons of distributions of weighted atom

densities for energetically different residue types

Density
type

��G cutoff
value (kcal/mol)

Mann–Whitney
U-test, P values

Hot spotsd/
Otherse

Wb
ad

a 2.0 4.24� 10�11 25/107
1.0 3.93� 10�11 49/83

Wu
ad

b 2.0 5.79� 10�13 25/107
1.0 2.21� 10�8 49/83

�Wad
c 2.0 1.88� 10�8 25/107

1.0 3.34� 10�4 49/83

aWb
ad : weighted atomic packing density in the bound form.

bWu
ad : weighted atomic packing density in the unbound form.

c�Wad : the difference in weighted atom packing density between before
and after binding association.
dNumber of hot spots in the data set.
eNumber of energetically unimportant residues in the data set.
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indicates that hot spot residues are not more conserved
than other residues. Specifically, the P-values of the differ-
ences in conservation score between hot spots and other
residues are in the range of 0.05–0.79, as shown in Table 8.
It may be that antibody–antigen complexes are inappro-
priate candidates for such evolutionary analysis, because
antibodies must mutate and diversify to recognize a vari-
ety of antigens. When antibody–antigen complexes are
excluded from the analysis, we indeed find that hot spots
are more conserved than other residues (P-values in the
range of 10�3–10�4). These results are in good agreement
with previous studies showing that the interface core is
more conserved than the rim (60), and that residue con-
servation is rarely sufficient for complete and accurate pre-
diction of protein interfaces (45).

Molecular interaction information and hot spots

In this study, two general types of interaction information
are analyzed: molecular interaction information of an
interface residue; and molecular interaction information
within a residue’s microenvironment. Eighteen molecular
interactions are considered, composed of canonical hydro-
gen bonds, noncanonical hydrogen bonds, electrostatic
interactions and p–ring system-related interactions, all of
which are known to be energetically important interac-
tions (17). p–Ring system-related interactions of an inter-
face residue make up the majority of the constituents
selected for the feature sets, in good agreement with pre-
vious studies indicating that hot spots are often composed
of aromatic residues such as tryptophan (W), tyrosine (Y),

histidine (H) and phenylalanine (F) (32). Especially, �� � ��
interaction is selected as one of the major features in both
training sets, T1 and T2. A number of studies have
demonstrated that �� � �� interactions play an important
role in molecular recognition (46,62). In T2, there are a
total of 70 aromatic residues, and 24 of which are hot
spots and 46 of which are energetically unimportant resi-
dues. Of the 24 aromatic residue, 21 hot spots have at least
one �� � �� interaction, reaching 87.5% of hot spots, and
the remaining three hot spots have �� � �Cation interac-
tions. Of the 46 energetically unimportant residues, only
16 have �� � �� interactions. These results show that �� � ��
interactions are a characteristic feature of hot spot resi-
dues. These findings are supported by the statistical ana-
lysis, in which the P-value for the difference between hot
spots and other residues is 5.95� 10�9.

The molecular interaction information is located in
a lower level of nodes in the decision tree; hence, the
structural features dominate the bonding/electrostatic
interactions.

CONCLUSIONS

In the study of protein–protein interactions, experimental
identification of binding hot spots is time-consuming and
labor-intensive effort; thus, the development of predictive
models can be very helpful. A good predictive model
requires features that effectively represent the energetic
contributions of individual interface residues to the bind-
ing association. A number of studies have sought to

Figure 4. The interactions between densely packed hot spots in 3hfm. D32, Y33 and Y53 in chain H (HyHEL-10), interact with L75, K97, D101 in
chain Y (lysozyme). Y53 and Y58 in chain H interact with Y96 in chain L (HyHEL-10) and R21 in chain Y. Y20 and K96 in chain Y interact with
N31, N32, Y50 and Q53 in chain L. The blue spheres represent the densely packed hot spots in chain L (HyHEL-10), and the yellow spheres indicate
the highly packed hot spots in chain H (HyHEL-10). The green spheres are the highly packed hot spots in chain Y (Hen egg lysozyme), and the
white sticks represent the energetically unimportant residues. The images are created by program PyMol (59).
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identify such features; however, the features previously
identified as being positively correlated with hot spots
are still insufficient to accurately predict hot spots.
Therefore, feature-based approaches have been proceeded
with very limited scope.

In the present study, we propose several new features
quantified by a new measure, and show that these features
are more effective than conventional features. By combin-
ing the proposed and the conventional features, we
develop two predictive SVM models for predicting inter-
action hot spots. The performance of our models is first
evaluated through 10-fold cross-validation with two

training sets from 265 alanine-mutated interfaces residues,
and then further validation is performed with an indepen-
dent test set from the BID. Our models clearly show better
overall predictive performance than previous methods, a
finding supported by statistical analysis. In the indepen-
dent test set, the F1-scores of our models are 0.52 and 0.57
for training sets T2 and T1, respectively. When these
results are compared with those of Robetta (F1¼ 0.40),
which shows the best performance among the previous
methods, our models exhibit a statistically significant
increase in overall predictive accuracy for hot spots
(P ¼ 4:31� 10�3 and 4:55� 10�4, respectively).
The present results imply that the energetic properties of

the interface residues are well reflected in our selected
features. Statistical analysis shows that in the bound
state, the density distribution of hot spots differs signifi-
cantly from that of other residues. Even in the unbound
state, this phenomenon is maintained. This implies that
unbound proteins already contain densely structured
regions suitable for interaction with partner proteins,
and that these structured hot spots can be good targets
for interacting partners. This phenomenon is difficult to
discern using the coordination number (the simple fre-
quency of C� atoms around hot spots) as a density mea-
sure, even though this parameter is known to be positively
correlated with hot spots. The coordination number dis-
tribution of hot spots does not differ significantly from
that of other residues. The regions around these densely
packed hot spots are more hydrophobic than the other
regions, and the hot spots have larger relative surface
area burial compared with other residues. Unexpectedly,
hot spot residues are not more conserved than other resi-
dues. However, when antibody–antigen complexes are
excluded from the analysis, the hot spots are more con-
served than other residues. This is reasonable if we con-
sider that antibodies must mutate their sequences for
recognizing a variety of antigens, and hence may not be
appropriate candidates for evolutionary analysis.
Unlike previous models, we incorporate molecular

interaction information into our models, allowing us to
analyze the relationship between molecular interactions
and hot spots. Interestingly, our models show that hot
spots are closely related to the p-related interactions, espe-
cially �� � �� interactions.
The question of which residues are energetically more

important in protein–protein interaction interfaces is a
long-standing issue. Although a number of studies have
addressed this question, the identification of hot spot resi-
dues remains a difficult task. Studies solely based on

Figure 5. (a) ��G 1.0 kcal/mol cutoff value. (b) ��G 2.0 kcal/mol
cutoff value. Relative ratio between hot spot residues and energetically
unimportant residues as a function of the weighted hydrophobicity.
As the hydrophobicity increases, the fraction of residues that are hot
spots increases.

Table 8. P-values from comparisons of distributions of conservation score for energetically different types of residues

��G cutoff value (kcal/mol) Including antibody–antigens Excluding antibody–antigens

Mann–Whitney U-test Hot spotsb/Othersc Mann–Whitney U-test Hot spots/Others

VNE 1.0 0.79 119/146 5.10� 10�3 56/105
2.0 0.05 65/200 5.36� 10�4 32/129

aNumber of hot spots.
bNumber of energetically unimportant residues.
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structural features are confined to examining the solvent
accessibility or surface area burial between the unbound
and bound states, and studies based on thermodynamics
still show large discrepancies between predicted and exper-
imentally measured free energy changes, although they are
very useful in understanding the stability and folding pro-
cesses of proteins. Accordingly, new features that well
describe the different energetic contributions to binding
interactions are still greatly needed. The new features pro-
posed in this work should assist in understanding the
binding process, and in predicting hot spots with high
accuracy. In the near future, we will make available a
web-based interface through which our models can be
run to predict hot spots.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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