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ABSTRACT

Over the past decade, a class of small RNA
molecules called microRNAs (miRNAs) has been
shown to regulate gene expression at the post-
transcription stage. While early work focused on
the identification of miRNAs using a combination
of experimental and computational techniques,
subsequent studies have focused on identification
of miRNA-target mRNA pairs as each miRNA can
have hundreds of mRNA targets. The experimental
validation of some miRNAs as oncogenic has pro-
vided further motivation for research in this area.
In this article we propose an odds-ratio (OR) statis-
tic for identification of regulatory miRNAs. It is
based on integrative analysis of matched miRNA
and mRNA time-course microarray data. The
OR-statistic was used for (i) identification of
miRNAs with regulatory potential, (ii) identification
of miRNA-target mRNA pairs and (iii) identification
of time lags between changes in miRNA expression
and those of its target mRNAs. We applied the
OR-statistic to a cancer data set and identified a
small set of miRNAs that were negatively correlated
to mRNAs. A literature survey revealed that some of
the miRNAs that were predicted to be regulatory,
were indeed oncogenic or tumor suppressors.
Finally, some of the predicted miRNA targets have
been shown to be experimentally valid.

INTRODUCTION

MicroRNAs (miRNAs) are short non-coding RNAs,
approximately 20 nucleotides long, that control gene
expression by either repressing the translation of mRNA
into proteins or directing the cleavage of mRNA in nema-
todes and higher organisms including humans. miRNAs
play an important role in various biological processes e.g.

the miRNAs lin-4 and let-7 have been shown to regulate
the larval development in Caenorhabditis elegans (1,2).
Though some human miRNAs have been shown to be
oncogenic or tumor suppressors (3—7), the functions of
most human miRNAs are currently unknown. Perhaps
one of the reasons for this is the fact that a single
miRNA targets possibly hundreds of mRNAs thereby
making it hard to determine a miRNA’s function without
first accurately identifying its target mRNAs. The target
identification process commonly involves two steps—(i)
identification of miRNA—mRNA pairs using prediction
models (8,9) and (ii) experimental validation of the rele-
vant miRNA—mRNA pairs. In addition to target identifi-
cation, miRNA research has focused on microarray
analysis for experimental validation of oncogenic
miRNAs (3—7), comparison of miRNA normalization
techniques (10) and identification of coexpressed
miRNAs (11).

To identify miRNAs that regulate mRNAs, one needs
to co-analyze the changes in miRNA and mRNA expres-
sions. Once the expression profiles of miRNAs and
mRNAs have been obtained using microarray experi-
ments, statistical methods are required to determine the
association between the two expression profiles. Yona
et al. (12) evaluated several measures of similarity between
expression profiles of genes, e.g. Euclidean distance,
Pearson’s correlation and Spearman’s rank correlation.
The authors observed that the best metric varied from
one data set to another though Spearman’s rank correla-
tion was consistently among the best performers. In our
analysis, we used the Spearman’s rank correlation as one
of the measures for evaluating the association between
miRNAs and mRNAs.

An important component of miRNA—mRNA data inte-
gration is the knowledge of potential mRNA targets for
each miRNA. There are a number of popular target pre-
diction algorithms such as PicTar (9), miRanda (13)
[implemented in miRBase (14)] and TargetScanS (8),
as well as methods that combine different prediction algo-
rithms, e.g. miRGen (15). Each of these prediction
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algorithms has its strengths and weaknesses. For example,
TargetScanS focuses on identification of target mRNAs
by searching for 5'-dominant mRNA sites. Therefore, it
is likely to miss targets that contain 3’-compensatory sites.
Other algorithms such as miRanda considers both
5’-dominant and 3’-compensatory sites for target identifi-
cation. While TargetScanS and miRanda focus on identi-
fication of targets for each miRNA separately, PicTar
considers the combinatorial effect of coexpressed
miRNAs for target prediction.

A recent paper (13) showed that TargetScanS, miRanda
and PicTar have almost identical sensitivity values, where
sensitivity was calculated as ‘true positives/(true positives
+ false negatives)’. Here, true positives corresponded to
the number of experimentally validated miRNA-target
mRNA pairs that were predicted by an algorithm and
false negatives corresponded to the number of experimen-
tally validated miRNA-target mRINA pairs that were not
predicted by the algorithm. However, miRanda predicted
nearly double the number of miRNA-target mRNA pairs
predicted by the other two algorithms. The number of
predicted miRNA-target mRNA pairs could be reduced
by considering the intersection of two or more algorithms
at the cost of lower sensitivity values. Currently only
the intersection of TargetScanS and PicTar has a sensitiv-
ity value close to those returned for the individual
algorithms (13).

While these predictive algorithms provided a good
starting point, they returned a few hundred mRNAs
as potential targets. In order to have better biological
interpretation, developing statistics to identify miRNA—
mRNA pairs that are most likely to be of biological
significance is an important goal. To this end, we devel-
oped an odds-ratio (OR) statistic for measuring the asso-
ciation between putative miRNA-target mRNA pairs and
identifying regulatory miRNAs.

Recently, Huang e al. (16) used a Bayesian model to
determine the posterior probability of an mRNA being
targeted by a miRNA. Unlike our approach that focuses
on the identification of regulatory miRNAs, they focused
on filtering the predicted miRNA-target mRNA pairs
using an Expectation-Maximization approach. Cheng
and Li (17) used the changes in expression profiles of
mRNAs and knowledge of predicted miRNA-target
mRNA pairs to infer whether a miRNA is regulatory.
Our approach is based on the matched analysis of
miRNA and mRNA expression data and considers a
miRNA to be regulatory if and only if the change in
expression profile of a miRNA and its predicted target-
mRNAs is correlated.

Time-course studies provide information that could
often be missed in a cross-sectional study based on a
single time point. Currently, typical microarray time-
course data is short with uneven time points and very
few replicates [for a detailed review, refer (18)].
Therefore, standard time series analysis methods like
Fourier transform are usually not applicable. In this arti-
cle, we have used moderated r*-statistic (19) and moder-
ated F-statistic (20); methods that have been developed for
handling short time-course microarray data.
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In this article we propose an integrative analysis of
miRNA and mRNA data that incorporates time informa-
tion to identify (i) miRNAs that are likely to regulate gene
expression and (ii) their target mRNAs. We first describe
the OR-statistic and later demonstrate the potential value
of OR-statistic using a data set obtained from a cancer
study.

METHODS

To identify regulatory miRNAs in matched microRNA-
mRNA time-course data, we performed a number of dis-
tinct steps—i(i) data pre-processing, (ii) identification of
differentially expressed (DE) miRNAs, (iii) identification
of regulatory miRNAs and (iv) identification of mRNAs
that were negatively correlated to the relevant miRNAs.
Application of an integrative approach to the last two
steps is the main focus of this article. We applied the
OR-statistic as well as the gene set test (GST)-based meth-
ods to a longitudinal time-course cancer dataset to illus-
trate this approach.

Experimental data

The cancer dataset corresponded to a drug study involving
a multiple myeloma cell line U266, consisting of six time
points—0, 2h, 4h, 8h, 24 h and 48 h with two biological
replicates per time point for both miRNA and mRNA.
The same RNA sample for each time-course was hybri-
dized to both the miRNA and mRNA microarrays.
The miRNA expression profiles were determined using
two-color Exiqon arrays V8.1 and the mRINA expression
profiles were determined using Human Genome U133
Plus 2.0 Affymetrix arrays. Raw expression data from
Exiqon array was extracted using the image analysis
package Spot (21).

Statistical analysis
Data Pre-processing.

(1) miRNA arrays: These two-color arrays were pre-
processed using the Bioconductor package limma
(22). The background intensities were subtracted
(23) followed by a within-array-normalization (24)
using the global loess method.

(i) mRNA arrays: These single-color arrays were pre-
processed using the Bioconductor package affy (25)
with RMA background correction (26) followed by
quantile normalization (27) and summarization of
gene expressions using the median polish algorithm.

Differentially expressed miRNA (mRNA). We fit a linear
model and tested the null hypothesis that there was no
change in expression at any time point x with respect to
time point 0, where x = 2, 4, 8, 24, and 48 h. The P-values
for the F-test were adjusted for multiple comparisons
using the BH correction method (28) and miRNAs with
adjusted P-values less than 0.05 were considered to be
statistically significant and differentially expressed.
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Discretized expression profiles. We obtained t-statistic for
the null hypothesis Hoy: i = poe versus the alternate
hypothesis Hi: g # 1o, Where pi is the average expres-
sion of mRNA g at time point 7 and jig, is the Javerage
expression at time point 0. Let M, = [m;, .. ,my]" denote
the classification of f-statistic as up-regulated, down-
regulated or non-differentially expressed for the g-th
mRNA, where £ is the number of time points excluding
time point 0. In other words, m; takes the values +1, —1 or
0 based on whether the g-th mRNA is up-regulated,
down-regulated or non-differentially expressed, respec-
tively, at time point ¢ with respect to time point 0. We
will henceforth refer to M, as the discretized expression
profile for the g-th mRNA. Similar discretized expression
profiles were obtained from miRNA expression data.
It should be noted that the z-statistics were discretized
using the limma function decideTests.

Integrative analysis

We propose a few approaches for measuring the strength
of association between a miRNA and its predicted target
mRNAs.

OR-statistic. Let W and M denote the discretized expres-
sion profiles for miRNA and mRNA, respectively. Let
M',...,M denote the discretized expression profiles of
the ; mRNAs that are predicted as targets of a miRNA.
As a first step, we focused on whether there was a change
in expression rather than the direction of change. Let
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where |w,| denotes the absolute value of the r-th element
of miRNA vector W, |n7}| denotes the r-th element for the
s-th target mRNA, and I(x = y) is an indicator function
that takes the value 1 if the condition is satisfied and 0,
otherwise. The variables a, b, ¢ and d were used to popu-
late a 2x2 contingency table (Table 1) and obtain
the OR.

Let Odds; = b/a and Odds, = d/c. Then, OR = Odds,/
Odds;. In other words,

P(DE in Gyrnalnon — DE in miRNA)

Odds; =
* = P(non — DE in Gyrua non — DE in miRNA)

P(DE in Gnrna|DE in miRNA)

Odds, = - - p
52 P(non — DE in Grna|DE in miRNA)

where G,rna denotes the set of j mRNAs that were pre-
dicted as a miRNA’s targets.
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The null hypothesis Hy: OR =1, i.e. a change in the
expression of predicted target mRNAs is independent of
a change in the miRNA’s expression is tested using a chi-
squared test with one degree of freedom. Alternatively, Hq
can be tested using a G-test (29) if |O; — E;| > E; for the i-th
cell in the 2 x 2 contingency table. Here, O; denotes the
observed value for the i-th cell, E; denotes the expected
value for the i-th cell, and 1 <i<4.

Since different miRNA-target prediction algorithms
return different results for the same miRNA, the OR-
statistic is dependent on the prediction algorithm.
Therefore, a ranking of miRNAs based on the OR-
statistic would vary from one algorithm to another. This
problem is similar to many statistical problems in clinical
studies that require meta-analysis techniques. In the
absence of the ability to determine the optimal prediction
algorithm, one solution is to combine the results from
several miRNA-target prediction algorithms and deter-
mine the overall rank of a miRNA. To this end, we pro-
pose the use of Fisher’s combined test (30) with the test
statistic x> = =27, In p;, where p; denotes the p-value
obtained using the OR-statistic for the i-th algorlthm and
n denotes the number of algorithms. Here, the x*-statistic
has a chi-squared distribution with 2 x n degrees of free-
dom. It should be noted that p; values are not independent
as the results are obtained for the same data set using
miRNA-target prediction algorithms with partial overlap.
Therefore, the p-value for the chi-squared test should be
treated with caution. In this article, we calculated the
x*-statistic for only those miRNAs that were predicted
as regulatory using each of the n miRNA-target prediction
algorithms. Although all the ranked miRNAs had regula-
tory potential, miRNAs that were ranked high by two or
more algorithms were ranked high overall and were more
likely to be regulatory.

OR-statistic with time lag. Since a change in miRNA
expression may not necessarily produce an instantaneous
change in target mRNA’s expression, we expanded our
previously discussed model to incorporate a delayed
change in target mRNA’s expression. We considered five
different time lags (Table 2) and, for each time lag, per-
formed the following steps:

(1) calculated OR for each miRNA;

(2) tested the null hypothesis that OR =1 using a chi-
squared test; and

(3) obtained miRNAs that had OR > 1 and p-values
lower than 0.05 for the chi-squared test.

It should be noted that for each time lag, the vectors
W and M corresponded to matched time points.

Table 1. An example 2 x 2 contingency table for determining the
association between miRNA and mRNA expression change

Target mRNA

No change Change
miRNA
No change a b
Change c d
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Table 2. Different time lags for changes in miRNA and mRNA
expressions
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Table 3. An example table for calculating the odds of a miRNA being
negatively correlated to its target mRNA

miRNA time points

2 h 4 h 8 h 24 h 48 h

mRNA time points 2 h 0
4 h 1 0
8 h 2 1
24 h 3 2 1 0
48 h 4 3 1 0

The numbers correspond to the matched miRNA—mRNA time
points for various time lags—(i) 0, time-lag 0; (i) 1, time-lag 1;
(iii) 2, time-lag 2; (iv) 3, time-lag 3; and (iv) 4, time-lag 4.

For example, for time-lag 1, W = [wy, wy, Wg, Waa]' and
M = [ma, mg, moa, mag]", where w; and m; denote the ter-
nary value at time point 7 h.

Negatively correlated miRNA—mRNA pairs. While it is
important to identify regulatory miRNAs, for experimen-
tal validation of a miRNA’s regulatory effect, it is equally
important to determine mRNAs that are negatively corre-
lated to it. Therefore, we identified target mRNAs whose
expression levels changed in the opposite direction to that
of miRNA.

Let m = Z]le I(w, | =1), e= Zle I(w,| = DI(w.m, =
—1) and f=m — a. Here, we dropped the superscript s
from m, as we considered miRNA—mRNA pairs one at
a time. The variables e and f'were used to populate Table 3
and obtain the odds of a change in the discretized
miRNA’s expression profile resulting in a change in the
opposite direction in its target mRNA. If the odds-value
was greater than one, then the miRNA—mRNA pair could
be considered to be negatively correlated.

Gene set test-based methods. In addition to the OR-
statistic, we used two GST-based methods for identifying
regulatory miRNAs. In principle, the GST-based methods
are similar to the gene set enrichment analysis (GSEA)
(31) that is used to determine whether a group of genes,
selected on the basis of a priori biological knowledge, e.g.
genes in a biological pathway or belonging to the same
gene ontology, has an expression profile different from
that for the remaining genes. Here, we determined whether
a group of mRNAs, predicted as targets of a particular
miRNA, has a change in expression for a change in the
relevant miRNA’s expression. The two GST-based meth-
ods are described below:

(1) Correlation-coefficient-based GST method (CC-
GST). We obtained t-statistic for the null hypothe-
sis Ho: e = pop versus the alternate hypothesis H;:
Mg 7 Mog, Where p, is the average expression of
miRNA (mRNA) g at time point ¢ and ji, is the
average expression at time point 0. Next, for a given
miRNA, mi,, we obtained the Spearman’s correla-
tion coefficient for all mi,-mRNA pairs using the
t-statistic. Let X denote the set of correlation coeffi-
cients for those mRNAs that were predicted as tar-
gets of mi, and let Y denote the set of remaining

Change in mRNA
expression in opposite

No change in mRNA
expression or change in

direction the same direction as
miRNA
Change in e f
miRNA
expression

correlation coefficients. Since changes in miRNA
expression are negatively correlated to changes in
mRNA expression, we tested the null hypothesis
Ho: wy =y versus the alternate hypothesis Hj:
Wy < My, where py denotes the average correlation
coefficient for set X and wy denotes the average
correlation coefficient for set Y. We used the
Wilcoxon rank-sum test (32) for testing the null
hypothesis and if the P-value (after adjusting
for multiple comparisons) was lower than a pre-
determined cut-off value, e.g. 0.05, then we consid-
ered mi, to be statistically significant.

(1) F-statistic-based GST method (F-GST): For each
mRNA, we obtained the F-statistic for the null
hypothesis that there was no change in expression
with respect to time point 0. Next, for a given
miRNA, mi,, we tested the null hypothesis Hy:
Wy = my versus the alternate hypothesis H;j:
Wy # Ly, where uy denotes the average of F-statistics
for mRNAs that were predicted as targets of mi,
and wy denotes the average of F-statistics for the
remaining mRNAs. We used the Wilcoxon rank-
sum test for hypothesis testing and if the P-value
(after adjusting for multiple comparisons) was lower
than a pre-determined cut-off value, e.g. 0.05, then
we considered mi, to be statistically significant.

RESULTS
Data pre-processing

We used standard pre-processing methods for single-color
(mRNA) and two-color (miRNA) arrays. However,
unlike the usual print-tip loess normalization method
(33) for two-color gene expression data, we used global
loess normalization. As evident in Table 4, there were too
few highly expressed miRNAs to allow for estimation of
print-tip based loess lines at highly expressed ‘spots’. The
small number of highly expressed miRNAs could be due
to the fact that multiple-species miRNAs were placed on
the same array and most of ‘spots’ would not have hybri-
dized with miRNAs extracted from cancer patients.

Differentially expressed (DE) miRNAs

Using a linear model for the experimental data set, we
obtained 726 DE miRNAs, out of which 193 miRNAs
corresponded to a known or predicted human miRNA
giving a total of 135 unique human miRNAs as DE. As
mentioned earlier in the ‘Methods’ section, the DE
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Table 4. Frequency table of average log,-expression from a typical miRNA expression data

Frequency bins (log,-expression) 5.5 6.5 7.5
Counts 1 299 1543

8.5 9.5 10.5 11.5 12.5 13.5
371 156 121 30 24 4

Table 5. miRNAs and mRNAs that were DE at least one time point

Is miRNA/mRNA DE?

DE Non-DE
Number of human miRNA probes 126 814
Number of Affymetrix probesets (mRNA) 18274 36401

miRNAs were obtained by testing the null hypothesis that
there was no change in miRNA expression at any time
point x with respect to time point 0, where x = 2, 4, 8§,
24 and 48 h. We denote the set of these 135 miRNAs as U
and it would be used later for identifying the regulatory
miRNAs.

While miRNAs with adjusted p-values lower than a pre-
determined cut-off value may be regulatory, a better
method of determining regulatory miRNAs would take
into account changes in expressions of both miRNA and
mRNA. This is because a miRNA that is regulatory should
be (i) differentially expressed over the time course and (ii)
associated with changes in its target mRINAs expressions.

We found that the discretized expression profiles were
usually vectors of all Os (Table 5) which was in agreement
with the widely known observation that at any given time
point, the majority of miRNAs/mRNAs are not DE. It
should be noted that the discretized expression profiles
were obtained by testing pairwise hypotheses (refer
‘Methods’ section) which is different from the hypothesis
used for determining U. Therefore, the two results were
slightly different.

For the cancer study, we considered five different time
lags (Table 2) and determined the corresponding 2 x 2
contingency table (see ‘Methods’ section). Since the
majority of miRNAs/mRNAs had no change in expres-
sion, many of the OR contingency tables (i.e. Table 1) had
one or more elements as 0. If even one of the elements was
0, the OR was not calculated and the results in Table 6 are
based on only those miRNA for which every element in
the OR matrix was strictly greater than 0.

Estimating regulatory miRNAs

We obtained p-values for the null hypothesis Hy: OR = 1
for (i) different miRNA-target prediction algorithms and
(i) different time lags. We considered four different
miRNA-target prediction algorithms—(i) PicTar, (ii)
TargetScanS, (iii) miRBase and (iv) miRGen (intersection
of target mRNAs returned by PicTar (4-way) and
TargetScanS). Figure 1 shows the concordance between
the miRNA rankings for time-lag 0 using the four differ-
ent algorithms. The rankings were obtained using the
p-values for the OR-statistic such that the miRNA with
the lowest p-value was ranked 1. While the rankings
obtained using PicTar and TargetScanS were quite

Table 6. Number of statistically significant miRNAs for time-lag 0
using the OR-statistic

Is miRNA statistically significant?

Yes No
PicTar 26 20
miRBase 52 54
TargetScanS 26 28
miRGen 24 19
5 15 5 15
) . . ) . : ’ 7“’
PicTar t e
. ..' . ° . fo
i . ® miRBase T L.
Iop ) °
. L. TargetScanS ‘.. |
., * . . : 0
2 .o. : . o.
<L e te miRGen
w0~ * . .
5 146 5 45

Figure 1. Pair-wise concordance between miRNA rankings obtained
for time-lag 0 using PicTar, TargetScanS, miRBase and miRGen. The
plot is represented as a 4 x 4 grid with the upper-diagonal cells and the
lower diagonal cells being mirror images. For example, while the graph
in cell (1, 2) has PicTar rankings on the Y-axis and miRBase rankings
on the X-axis, the graph in cell (2, 1) has PicTar rankings on the X-axis
and miRBase rankings on the Y-axis.

similar, they differed from that obtained using miRBase.
Since the rankings were not consistent, we used the
Fisher’s combined test to obtain the overall rank of
miRNAs. The G-test and the chi-squared test selected
the same miRNAs as regulatory for every combination
of miRNA-target prediction algorithm and time-lag.
Also, the overall ranks obtained using G-test and chi-
squared test were similar with only some of the miRNAs
being ranked slightly different. We decided to use only the
chi-squared test’s results for the rest of the analysis.

For a particular time lag, we considered a miRNA to be
regulatory if (i) the p-value for the chi-squared test (based
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on the OR-statistic) was statistically significant, (i) the
OR value was greater than 1, and (iii) the miRNA was
DE (i.e. miRNA was found in set U). We obtained 20
miRNAs of interest and some of these were identified as
regulatory for more than one time lag, e.g. hsa-miR-16
was found to be regulatory for time-lag 0 and time-lag
1. We obtained 33 miRNA-time lag combinations of inter-
est and hsa-miR-16 was ranked the highest with a time lag
of 0. Other top-ranked miRNAs included hsa-miR-30b
(time-lag 1), hsa-miR-20a (time-lag 1), hsa-miR-148a
(time-lag 2) and hsa-miR-181c (time-lag 2).

It should be noted that since the dataset was longitudi-
nal, considering the miRNA/mRNA expressions at differ-
ent time points as independent and using the moderated
t-statistic to discretize the expression profiles may
have resulted in some false positives and false negatives
e.g. (34).

Negative correlation between miRNA and mRNA

For each regulatory miRNA, we determined mRNAs that
were negatively correlated using matched miRNA—
mRNA discretized expression profiles. For example,
while considering miRNA—mRNA correlation for time-
lag 1 (Table 2), a change in miRNA expression at time
point 1 = 2h was matched to a change in mRNA expres-
sion at time point z = 4 h.

Since a single mRNA maps to i probesets on the
Affymetrix chip (i>1), we obtained the values e; and f;
for each miRNA-probeset combination, where ¢; and f;
denote the elements ¢ and f'in Table 3 for miRNA-probe-
set; combination. Next we calculated the odds of negative
correlation i.e. the ratio Y ;¢;/ Y ;fi. For each miRNA-
target prediction algorithm, we found a few miRNA—
mRNA pairs with odds greater than one and therefore,
negatively correlated.

Figure 2 shows the log,-fold change over the time
course for hsa-miR-16 and some of the negatively corre-
lated target mRNAs. These target mRNAs were selected
as PDCD4, CREBL2 and RABI1FIP2 have been experi-
mentally validated as hsa-miR-16’s targets (3). BAGS was
selected as Bcl2 is a known hsa-miR-16 target (3), but it
was identified using proteomics and not mRNA micro-
array data. Perhaps hsa-miR-16 regulates Bcl2 expression
via BAGS.

Since each target mRNA maps to multiple probe-sets,
the values in Figure 2 represent the median values per time
point. For each target mRNA, we observed some variabil-
ity in fold change values among the probesets and this is
shown in Figure 3.

Concordance with results obtained using GST-based
methods

We also obtained regulatory miRNAs using the two GST-
based methods as follows:

(i) CC-GST: For time-lag 0, we obtained statistically
significant miRNAs for each of the four miRNA-
target prediction algorithms. We considered a
miRNA to be regulatory if it was statistically signif-
icant using CC-GST and DE (i.e. miRNA was
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Figure 2. Log,-fold change values for hsa-miR-16 and some of its tar-
gets mRNAs identified using OR-statistic. The horizontal blue lines
correspond to 1.5-fold change (log, value of 0.58).

CREBL2 RAB11

Relative Expr (Log 2)
BAG5

PDCD4

miR-16

2 hrs 4 hrs 8 hrs 24 hrs 48 hrs
Time

Figure 3. Log,-fold change values per miRNA probe/mRNA probeset.
hsa-miR-16 had probes in duplicate and the target mRNAs map to
multiple probesets, the number of probesets varying from one mRNA
to another. Blue denotes over-expression with respect to time ¢ = 0 and
yellow denotes under-expression with respect to time ¢= 0. RABII
corresponds to the gene RABI1FIP2.

found in set U). Unlike the result obtained using
OR-statistic, we did not find any miRNA that was
common to all the four algorithms.

(i) F-GST: For each miRNA target prediction algo-
rithm, we obtained statistically significant miRNAs
for each of the four miRNA-target prediction algo-
rithms. We considered a miRNA to be regulatory if
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it was statistically significant using F-GST and DE
(i.e. miRNA was found in set U). We found 19
miRNAs common to all the four target prediction
algorithms. However, only six of these miRNAs
were also obtained using the OR-statistic. In fact,
hsa-miR-16, the highest ranked miRNA obtained
using the OR-statistic, was not found using the
F-GST method. Therefore, there was little agree-
ment between the miRNAs returned by the two
methods.

DISCUSSIONS

In this article, we propose an OR-statistic for integrating
miRNA and mRNA expression profiles using time-course
data and obtaining the miRNA—mRNA pairs of interest.
Since miRNAs are a part of gene regulatory mechanism,
they could be possible targets for drug development.

A literature search revealed that some of the miRNAs
identified using the OR-statistic have been shown to be
oncogenic or tumor suppressors. For example, hsa-
miR-16, the highest ranked miRNA in our analysis, has
been linked to chronic lymphocytic leukemia (35) and
mantle cell lymphoma (36). Similarly, hsa-miR-20a has
been linked to breast cancer and lung cancer (37).
hsa-miR-148 has been shown to target DNA methyltrans-
ferase 3b (DNMT3Db) gene (38) and a reduced expression
of DNMT3b has been shown to induce apoptosis of
cancer cells (39). Another miRNA, hsa-miR-21 (time-lag
0 and rank 22), has been shown to be oncogenic in mul-
tiple myeloma cells (40).

We observed that only 26.6% of the DE miRNAs
mapped to known human miRNAs. Although miRNA
sequences are highly conserved across species, many
miRNAs that are found in species such as mouse, and
are likely to have human counterparts, have currently
not been validated in humans. Infact only 30.6% of the
probes on Exiqon arrays were mapped to a known human
miRNA. Another possible reason could be that ~10% of
the probes on Exiqon arrays correspond to computation-
ally predicted or poorly characterized miRNAs. It is likely
that some of these miRNAs are present in humans but are
currently un-annotated.

The OR-statistic could be extended to incorporate some
of the combinatorial effects of miRNA-based gene regula-
tion. Instead of evaluating a miRNA’s regulatory poten-
tial, one could look at miRNAs that are co-expressed and
determine this group’s regulatory potential as a unit.
However, this would require either a priori knowledge of
miRNA modules or a model-based approach to miRNA
module identification. Recently Joung et al. (11) used an
evolutionary algorithm to identify miRNA-modules and
matched them to mRNA-modules but currently their
method is not applicable to time-course data.

Due to the nature of short time-course data, the calcu-
lation of correlation between miRNA and mRNA based
on actual expression values introduces too much noise.
Therefore, we chose to discretize the miRNA/mRNA
expression profiles into vectors of 0, +1 and —I1.
Though there could be a loss of information owing to
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this discretization, we believe that the reduction in noise
outweighs this potential problem. Moreover, our
approach could be easily adapted to longer time-course
data and the OR-statistic could be calculated using
Pearson’s correlation-coefficient (based on actual expres-
sions) or Spearman’s correlation-coefficient (based on
moderated z-statistic) with correlation-coefficients above
a threshold being discretized to 1 and those below the
threshold being discretized to 0.

The OR-statistic, CC-GST, and F-GST are different
metrics for identifying regulatory miRNAs. For time-lag
0, we obtained results using not only the OR-statistic but
also the GST-based methods. For time-lag 0, the CC-GST
method did not return any miRNA that was common to
all the four miRNA-target prediction algorithms. This
raises concerns about the reliability of correlation-coeffi-
cient based methods for short time-course data because a
miRNA that is identified by several algorithms is more
likely to be regulatory compared to one that is identified
by only one algorithm. Unlike the OR-statistic that can
be used for all possible time lags (Table 2), the CC-GST
can only be used for time-lag 0. For the remaining time
lags, there are very few (<4) data points making it hard
to distinguish between genuine correlations and those
by chance. However, for a longer time-series data set,
this will not be a limitation. We also used the F-GST
method to obtain regulatory miRNAs for time-lag 0.
The results obtained using the F-GST method and
the OR-statistic were not in agreement. The F-GST
method returned 19 regulatory miRNAs and the OR-
statistic-based method returned 20 regulatory miRNAs
but only six miRNAs were common to the two
methods. It should be noted that the F-GST method
cannot be used to determine the time lag between changes
in miRNA expression and mRNA expression. Since
the identification of time lag is essential for any experi-
mental validation of results, the F-GST method may be of
limited use.

If we had a priori biological knowledge of the miRNAs
that were regulatory (i.e. a gold standard), we could have
compared the results obtained using F-GST and OR-
statistic. We would have preferred the method that had
more ‘true’ regulatory miRNAs in the list but currently
such a gold standard is unavailable. A literature survey (7)
revealed that some of the miRNAs identified using the
OR-statistic have been experimentally validated in multi-
ple myeloma patients. However, currently only one of the
miRNAs returned by the F-GST method has been exper-
imentally validated. Therefore, the experimental data
favor OR-statistic as the method of choice for identifying
regulatory miRNAs.

Finally, both OR-statistic and GST-based methods are
dependent on the quality of miRNA-target prediction
algorithms. Since currently there is no one algorithm
that outperforms others in terms of sensitivity and speci-
ficity, we used the popular algorithms and obtained
miRNAs of interest by combining the various algorithm-
specific results. As the accuracy of miRNA-target predic-
tion improves, the accuracy of these methods will also
improve. The methods described in this article have been
implemented in R (41). The GST-based analysis is a part
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of the mirGst package and the R scripts related to the
integrative analysis are available upon request.
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