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Abstract

Transcription factor binding sites (TFBS) are being discovered at a rapid pace1, 2. We must now 

begin to turn our attention towards understanding how these sites work in combination to 

influence gene expression. Quantitative models that accurately predict gene expression from 

promoter sequence3-5 will be a crucial part of solving this problem. Here we present such a model 

based on the analysis of synthetic promoter libraries in yeast. Thermodynamic models based only 

on the equilibrium binding of transcription factors to DNA and to each other captured a large 

fraction of the variation in expression in every library. Thermodynamic analysis of these libraries 

uncovered several phenomena in our system, including cooperativity and the effects of weak 

binding sites. When applied to the genome, a model of repression by Mig1, which was trained on 

synthetic promoters, predicts a number of Mig1 regulated genes that lack significant Mig1 binding 

sites in their promoters. The success of the thermodynamic approach suggests that the information 

encoded by combinations of cis-regulatory sites is interpreted primarily through simple protein-

DNA and protein-protein interactions with complicated biochemical reactions, such as 

nucleosome modifications, being down stream events. Quantitative analyses of synthetic promoter 

libraries will be an important tool in unraveling the rules underlying combinatorial cis-regulation.

Thermodynamic models of gene regulation have shown promising results in Eukaryotic 

systems6, 7 when applied to small gene sets. Due to limitations in studying genomic 

promoters the number of observations in these studies is small compared to the number of 

molecular events that are modeled, and over fitting is therefore a serious concern. An 

approach that circumvents this limitation is to model the expression of synthetic 

promoters8-10. Since conceivably any promoter sequence can be created and analyzed, a 

large portion of possible regulatory element combinations can be evaluated.
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We constructed synthetic promoter libraries consisting of random combinations of three to 

four transcription factor binding sites, or building blocks (Table 1 and Supplementary 

Information). In total, we analyzed 2807 promoters among 7 libraries using 18 different 

building blocks. All promoters were placed upstream of a medium strength basal promoter 

driving yellow fluorescent protein (YFP) (Supplementary Fig. S1) and integrated into the 

yeast genome at the TRP1 locus. The level of gene expression directed by each synthetic 

promoter was quantified by flow cytometry of 25,000 individual cells per promoter (Fig. 1A 

and 1B).

Figure 1C shows the expression levels of 429 synthetic promoters from the L1 library (see 

Supplementary Tables S1-S7 for expression and sequence of all promoters). Basal promoter 

only controls (Fig. 1C, shown in red) were used to estimate the technical variance of our 

expression measurements, which is 1.3% of the total variance of the L1 library; the average 

technical variance for all libraries is 0.8% of the total variance. The biological replicate 

variance, which refers to the gene expression differences between independent transformants 

that have the same synthetic promoter by chance, is 35% of the total variance in the L1 

library and 17% on average. Therefore, a perfect model relating promoter sequence to our 

expression data would explain 65% of the variance in expression driven by the different 

promoters in the L1 library.

We constructed a thermodynamic model of the relationship between promoter sequence and 

expression. The purpose of the model was to provide a formal mathematical framework for 

predicting the activity of novel combinations of cis-regulatory sites, and to gain insight into 

the mechanisms that generate diverse expression levels from different arrangements of the 

same cis-regulatory sites. We used a model first proposed by Shea and Ackers11, and later 

modified by Buchler et al.12 The main assumption of this model is that gene regulation is 

controlled completely by the equilibrium binding of proteins to DNA and to each other. 

Enzymatic events, such as chromatin modifications and polymerase phosphorylation, are not 

taken into account. The model consists of parameters that describe the changes in free 

energy of particular DNA-protein and protein-protein interactions that can occur on the 

promoters. These parameters are used to calculate the probability of RNA Polymerase 

(RNAP) being bound to each promoter in the library (See Supplementary Information). We 

then assume that the probability of RNAP being bound to a given promoter is directly 

proportional to the intensity of YFP fluorescence measured for that promoter.

In every library, thermodynamic models explained 44-59% of the variance in expression 

(Table 1), which is between 50% and 100% more variance explained than the best models of 

genome-wide expression data4, 5. The thermodynamic model for the L1 library captured 

49% of the variance in expression (Supplementary Fig. S2; 75% of the available variance). 

The overall success of the thermodynamic approach indicates that expression driven by 

combinations of binding sites can be generally and accurately modeled by simply 

considering protein-DNA and protein-protein binding events.

To determine the predictive power of our model for the L1 library, we constructed the L1-

Test library, which consists of novel combinations of the L1 building blocks. With the same 

parameter values from the L1 library the model still captures 44% of the variance in 
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expression, implying that the model is not over fit. This lack of over fitting is not surprising 

considering that each model contains about 6 parameters fit to an average of over 400 

promoters. The Mig1 parameter values found in the L1 library were held constant among 

three other libraries (L1-Test, L1-Weak and L2) that all exhibited high accuracy (see 

Supplementary Table S8 for all parameter values). Our model for the L1 library predicts that 

the Spacer building block, which we designed to contain no known or predicted regulatory 

sequence elements, can recruit RNAP to promoters. Since about half of the DNA binding 

proteins in yeast do not yet have an associated cis-regulatory motif 1, it is likely that the 

Spacer site is actually an unidentified cis-regulatory element. The ability of the model to 

incorporate an unknown sequence element and accurately predict its behavior points to a 

strength of the approach.

Analysis of the model for the L1 library suggests that Mig1 binds cooperatively to the 

synthetic promoters. Because nothing in the previous literature suggested cooperativity 

between Mig1 monomers we decided to analyze Mig1 cooperativity independent of the 

model. We fit a Hill equation relating percent repression to the number of Mig1 sites with 

the assumption that 100% repression occurs with five Mig1 binding sites. We found that a 

Hill coefficient of 3.4 ± 0.25 and K=1.8 (the number of Mig1 sites that causes half maximal 

repression) gives the best fit, suggesting cooperativity. Figure 2A shows that the observed 

data fits well to the Hill equation and that without cooperativity the fit is substantially worse. 

These results are consistent with the model and suggest that Mig1 acts cooperatively to 

repress transcription in our system, which lead us to examine the influence of low affinity 

TFBS on expression.

Low affinity, or weak, TFBS are known to play important roles in prokaryotic promoters13 

and have been postulated to play an important role in eukaryotic gene regulation14. 

However, their quantitative effect on gene expression is difficult to determine. To study the 

effects of weak TFBS we constructed a library (L1-weak) incorporating a building block 

matching a Mig1 binding site that was shown to have low affinity for Mig1 in vitro15. The 

sequence of this weak site scores below any reasonable cutoff in a genome scan for Mig1 

sites based on a weight matrix derived from known Mig1 sites 16, 17. In our system the low 

affinity Mig1 site behaved as a weaker repressor than the strong site (Fig. 2B). However, 

when there are strong Mig1 sites present in a promoter the weak sites behave as strong sites. 

When comparing promoters with the same building block content except for the number of 

Mig1 sites, promoters with one weak and one strong Mig1 site exhibit lower expression 

compared to promoters with one strong Mig1 site (Fig. 2C; P<10-8, sign test, n=211) and the 

same expression as promoters with two strong Mig1 sites (Fig. 2C; P>10-2, sign test, 

n=177). This behavior suggests that strong and weak Mig1 sites interact cooperatively to 

repress transcription in our system. This interaction produces complex patterns of expression 

in the L1-Weak library.

The thermodynamic model of transcriptional regulation accurately captures many of the 

complexities of expression in the L1-Weak library by adding only one adjustable parameter 

to the L1 library model parameters, namely the relative affinity of Mig1 for the weak site. 

The optimal value of the new parameter is 1.9, which corresponds to a 6.7 fold lower 

relative affinity for Mig1 than the stronger Mig1 site. This value is in good agreement, and 
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within a 95% confidence interval, with an independent computational analysis of a position 

specific weight matrix for Mig1, which predicted a 9.0-fold lower affinity of the weak site 

for Mig116, 18. The similarity of the R2 of this model with that of the L1 library model 

demonstrates that we are capturing the additional complexities caused by the effect of weak 

Mig1 sites on expression.

We next examined the possibility that weak sites contribute to Mig1 repression of genomic 

promoters. Weak Mig1 binding sites are over-represented in S. cerevisiae promoters 

compared to shuffled S. cerevisiae promoters (P<10-3, simulation, n=1000; Supplementary 

Fig. S3). Weak sites are found in 24% of all promoters, while 39% of promoters containing 

a significant match to a Mig1 weight matrix also contain a weak site (P<10-12, 

hypergeometric test), indicating that strong and weak sites tend to co-occur. Of 33 genes that 

are known to be regulated by Mig119, 20, and whose promoters contain a significant match 

to a Mig1 weight matrix, 20 also contain a weaker Mig1 site in their promoters compared to 

8 genes expected by chance. According to our model of gene regulation promoters with one 

strong and one weak site are more sensitive to changes in Mig1 concentrations than 

promoters with either two strong or two weak sites and therefore may be best suited to 

respond to changes in available carbon sources (Supplementary Fig. S4). These results 

suggest that combinations of strong and weak Mig1 binding sites are commonly found 

together in genomic promoters and may provide a sensitive strategy for glucose repression.

We sought to determine if the properties of Mig1 repression found in the synthetic promoter 

libraries were informative when studying genomic promoters. 359 promoters in the S. 

cerevisiae genome have a significant match to a Mig1 weight matrix and 33 of these 

promoters correspond to one of 136 documented Mig1 regulated genes. To compare these 

results directly to our model we applied the thermodynamic model of Mig1 repression to 

genomic promoters (see Online Methods). Out of the top 359 promoters ranked by the 

thermodynamic model for the strength of Mig1 repression, 41 correspond to one of the 136 

documented Mig1 regulated genes. Using the regulatory rules encoded in our 

thermodynamic model we explain eight (24%) more known Mig1 regulated genes (HXT9, 

HXT12, HXT13, GSY1, SOR1, ICS2, YIL172C, YOL153C) than by simply looking for 

promoters with a significant match to a Mig1 weight matrix. For example, the SOR1 

promoter does not harbor a significant match to a Mig1 site but contains a number of weak 

sites that cluster together (Fig. 3A). Since cooperativity between Mig1 sites is an important 

part of our quantitative model, we correctly predicted that SOR1 is Mig1 regulated and also 

identified the likely binding sites of Mig1 in this promoter.

Using the thermodynamic model we also predicted a number of Mig1 regulated genes that 

were not previously known to be Mig1 targets (Supplementary Table S9). MIG2, a paralog 

of MIG1 that represses and binds the same site as Mig115, was predicted by the model to be 

auto regulated based on its promoter sequence (Fig. 3B). To validate this prediction we 

measured MIG2 promoter activity (see Online Methods) in strains deleted for both MIG1 

and MIG2. MIG2 promoter activity increased significantly in the mig1Δ mig2Δ strain as 

compared to wild-type (P<10-3, t-test, n=24), showing that MIG2 is auto-regulated by Mig1/

Mig2 (Figure 3C). The prediction from the model was that MIG2 expression would increase 

1.8-fold in a mig1Δ mig2Δ strain, and we observed a 1.5-fold change. The regulation of 
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MIG2 by Mig1/Mig2 represents a previously unreported negative feedback loop in the 

glucose repression network that was identified based on our analysis of synthetic promoters.

Using a simple system we succeeded in constructing an accurate model of the relationship 

between promoter sequence and gene expression. In part this was because we sampled a 

much larger fraction of promoter space using our library than we could by sampling 

genomic promoters. Thus, we were able to fit models containing a small number of 

parameters to data containing large numbers of observations. We found that a completely 

thermodynamic model based on the equilibrium binding of the transcription factors and 

RNAP to each other, and to their cis-regulatory sites, was a reasonable way to capture the 

relationship between promoter sequence and gene expression in our system for all of the 

libraries examined. This does not imply that kinetic processes, such as histone or RNAP 

modification, are unimportant in gene regulation; however, it does suggest that the 

information encoded in a promoter is decoded primarily by the sequence specific binding of 

transcription factors. Our results support the idea that the complexity and variation in gene 

regulation could stem from very simple rules describing the binding of proteins to DNA and 

to each other 12, 13, 21.

Methods Summary

To create the building blocks that make up the synthetic promoters oligonucleotide pairs, 

each with a 5′ phosphate, were annealed by being boiled and then slowly cooled to room 

temperature (see Supplementary Information for building block sequences). 15 μL of 50 μM 

double stranded building blocks were then ligated with 200U of T4 DNA ligase (New 

England Biolabs) for 2 hours at 16°C. The ligation products were then purified using a 

microcon YM-100 column from Millipore (Billerica, MA) to reduce the number of short 

promoters. 15 ng of purified ligation product were then ligated into the BamH1 site of the 

integrating reporter plasmid pJG102 (20 ng) and transformed into E. coli. Transformants 

were scraped into Luria Broth plus carbinecillan, grown overnight and then maxipreped 

using the GenElute HP Plasmid Maxiprep kit from Sigma (St. Louis, MO). 130 μg of the 

maxiprep was digested with BglI, BamH1, Sal1 and EcoR1 (200U each) and transformed 

into yeast as described in 22. Colonies growing on medium lacking uracil were picked into 

96 well plates and Trp- colonies were then identified by replica plating onto medium lacking 

tryptophan. We observed that some building blocks were represented slightly more than 

others, even though they were added at equal molar concentrations. The relative abundance 

of each building block in each library scaled similarly to the melting temperature of the 

building block.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Gene expression measurements. Graphs of cell volume versus fluorescence for 25,000 

individual cells containing the promoters A) S′MM′M and B) G′S′G′S′M′ where S = Spacer, 

G = Gcr1 site, M = Mig1 site and the ′ superscript indicates a site in the reverse orientation. 

C) Histogram of expression values for all L1 library members. Expression values were 

computed as the average fluorescence/volume ratio for 25,000 individual cells, and then 

normalized to plate controls. Control promoters with no library insert are shown in red.
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Figure 2. 
Mig1 sites act cooperatively and weak site represses weakly. A) Hill equation with n=3.4 

and K=1.8 (red) fits the observed data (blue) well compared to n=1 (green). B) Plot of 

average expression versus the number of weak sites (blue), without strong sites, and strong 

sites (red), without weak sites. Error bars represent one standard deviation. C) Plots of 

expression for pairs of identical promoters except that either one strong Mig1 site or two 

strong Mig1 sites replace one strong and one weak Mig1 site. A blue circle represents one 

promoter pair and the red line represents equal expression.
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Figure 3. 
Thermodynamic model explains Mig1 repression in the genome. Mig1 binding sites in the 

promoters of SOR1 (A) and MIG2 (B) are shown. The affinity of Mig1 for the site based on 

a position weight matrix score relative to the strong site is plotted vs. the location upstream 

on the translation start site (TSS). The horizontal line represents the significance threshold 

for the weight matrix and each square represents a Mig1 site. C) MIG2 promoter activity in a 

wild-type (WT) strain and a mig1Δ mig2Δ strain, error bars represent one standard deviation.

Gertz et al. Page 9

Nature. Author manuscript; available in PMC 2009 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gertz et al. Page 10

Table 1

Summary of synthetic promoter libraries.

Library Building Blocks Number of Promoters Number of Parameters 
Fit

Fraction of Variance 
Explained (R2)

L1 Mig1, Gcr1, Spacer 429 5 0.49

L1-Test Same as L1 83 0 0.44

L1-Weak Same as L1 plus a weak Mig1 site 266 1 0.44

L2 Mig1, Reb1, Rap1, Gcr1 (different from L1) 471 4 0.59

L3 Adr1, Hap2/3/4/5, CSRE, Rgt1 596 6 0.47

L4 Cbf1, Gcn4, Met31/32, Nrg1 381 10 0.54

L5 Msn2/4, Smp1, Xpb1 581 4 0.57
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