

NIH Public Access

Author Manuscript

J Biol Chem. Author manuscript; available in PMC 2009 May 6.

Published in final edited form as:

J Biol Chem. 2007 April 20; 282(16): 11676–11686. doi:10.1074/jbc.M608458200.

Function, Activity, and Membrane Targeting of Cytosolic Phospholipase A2*ζ* **in Mouse Lung Fibroblasts*,S**

Moumita Ghosh‡, **Robyn Loper**‡, **Farideh Ghomashchi**§, **Dawn E. Tucker**‡, **Joseph V. Bonventre**¶, **Michael H. Gelb**§, and **Christina C. Leslie**‡,||,1

‡ *Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206*

§ *Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195*

¶ *Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115*

|| *Departments of Pathology and Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045*

Abstract

Group IVA cytosolic phospholipase A2 (cPLA2*α*) initiates eicosanoid production; however, this pathway is not completely ablated in cPLA₂ α ^{-/-} lung fibroblasts stimulated with A23187 or serum. $\text{cPLA}_2\alpha^{+/+}$ fibroblasts preferentially released arachidonic acid, but A23187-stimulated cPLA₂α^{-/−} fibroblasts non-specifically released multiple fatty acids. Arachidonic acid release from $cPLA_2\alpha^{-/-}$ fibroblasts was inhibited by the $cPLA_2\alpha$ inhibitors pyrrolidine-2 (IC₅₀, 0.03 μ M) and Wyeth-1 (IC₅₀, 0.1 μ M), implicating another C2 domain-containing group IV PLA₂. cPLA₂ α ^{-/-} fibroblasts contain cPLA2*β* and cPLA2*ζ* but not cPLA2*ε* or cPLA2*δ*. Purified cPLA2*ζ* exhibited much higher lysophospholipase and PLA2 activity than cPLA2*β* and was potently inhibited by pyrrolidine-2 and Wyeth-1, which did not inhibit cPLA2*β*. In contrast to cPLA2*β*, cPLA2*ζ* expressed in Sf9 cells mediated A23187-induced arachidonic acid release, which was inhibited by pyrrolidine-2 and Wyeth-1. cPLA2*ζ* exhibits specific activity, inhibitor sensitivity, and low micromolar calcium dependence similar to cPLA2*α* and has been identified as the PLA2 responsible for calcium-induced fatty acid release and prostaglandin E₂ production from cPLA₂ $a^{-/-}$ lung fibroblasts. In response to ionomycin, EGFP-cPLA2*ζ* translocated to ruffles and dynamic vesicular structures, whereas EGFPcPLA2*α* translocated to the Golgi and endoplasmic reticulum, suggesting distinct mechanisms of regulation for the two enzymes.

> Mammals contain a number of phospholipases A_2 (PLA₂)² that include secreted forms, intracellular group IV cytosolic PLA_2 s (GIV c PLA_2), and group VI calcium-independent PLA_2 s (GVI iPLA₂) (1,2). The presence of diverse PLA₂s provides cells with differentially regulated pathways for the hydrolysis of fatty acids from phospholipid. Intracellular PLA2s

^{*}This work was supported by National Institutes of Health Grants HL61378 and HL34303 (to C. C. L.) and HL50040 (to M. H. G.). SThe on-line version of this article (available at <http://www.jbc.org>) contains Supplemental Movie 1.

¹To whom correspondence should be addressed: Dept. of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO, 80206. Tel.: 303-398-1214; Fax: 303-270-2155; E-mail: E-mail: lesliec@njc.org.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBank[™]/EBI Data Bank with accession number(s) DQ888308 and DQ904008.

²The abbreviations used are: PLA2, phospholipase A2; cPLA2, cytosolic PLA2; iPLA2, calcium-independent PLA2; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PGE2, prostaglandin E2; DMEM, Dulbecco's modified Eagle's medium; BSA, bovine serum albumin; Sf9, *Spodoptera frugiperda*; MLF, mouse lung fibroblasts; IMLF, immortalized MLF; EGFP, enhanced green fluorescent protein; GIV, group IV; RACE, rapid amplification of cDNA ends; MOPS, 4-morpholinepropanesulfonic acid.

exhibit multiple enzymatic activities (PLA₂, PLA₁, lysophospholipase, transacylase) to varying degrees, which can potentially result in the formation of a diverse number of phospholipid breakdown products $(3,4)$. The direct products of PLA₂ action, lysophospholipids and fatty acids, can themselves act as cellular mediators or serve as precursors for the formation of mediators such as platelet-activating factor and eicosanoids.

There are six enzymes classified as GIV PLA2s: cPLA2*α* (GIVA), cPLA2*β* (GIVB), cPLA2*γ* (GIVC), cPLA2*δ* (GIVD), cPLA2*ε* (GIVE), and cPLA2*ζ* (GIVF) (4). These enzymes contain a conserved Ser/Asp active site dyad and an Arg residue, which are critical for catalytic activity. cPLA₂ α has been studied extensively because it is the only PLA₂ that exhibits specificity for hydrolysis of *sn*-2 arachidonic acid from phospholipids (4–6). Arachidonic acid is the precursor of a large number of biologically active oxygenated metabolites including prostaglandins and leukotrienes. cPLA2*α* is a highly regulated enzyme, which is important in controlling the availability of free arachidonic acid in cells for the production of eicosanoids (7). cPLA2*α* is regulated by phosphorylation and an increase in intracellular calcium. Calcium binds to the calcium- and phospholipid-binding C2 domain on cPLA2*α*, which promotes its translocation from the cytosol to the Golgi, endoplasmic reticulum, and nuclear envelope, where it can access substrate $(4,8-11)$. cPLA₂ α is phosphorylated on serine residues in the catalytic domain. Phosphorylation of Ser-505 by mitogen-activated protein kinases occurs in response to diverse agonists and is required for cPLA2*α*-mediated release of arachidonic acid in stimulated cells (12,13).

Much less is known about the regulation and physiological function of the other GIV PLA $_2$ s (cPLA₂ β , -*γ*, -*δ*, -*ε*, -*ζ*) (4). cPLA₂*γ* is the only GIV enzyme that does not contain a C2 domain (14,15). It contains fatty acyl and C-terminal farnesyl groups, and is constitutively bound to membrane (16,17). Human cPLA₂*γ* is expressed most abundantly in heart and skeletal muscle; however, its role in these tissues is unknown. In contrast, the mouse cPLA₂*γ* homologue is only 50% homologous to human cPLA2*γ* and is expressed exclusively in oocytes (18). $cPLA_2\delta$, $cPLA_2\epsilon$, and $cPLA_2\zeta$ form a gene cluster near $cPLA_2\beta$ in humans and mice and have more homology to cPLA₂ β than to cPLA₂ α (4,19,20). Human cPLA₂ δ is associated with psoriatic lesions and is expressed in stratified squamous epithelium (19). Human cPLA2*β* is widely expressed and occurs as multiple splice variants (14,21,22). It contains a novel, Nterminal-truncated JmjC domain immediately upstream of the C2 domain. We have recently found that the principle form of $cPLA_2\beta$ translated in human cells is a novel splice variant (cPLA₂ β 3) that contains an internal deletion in the catalytic domain (22). cPLA₂ β 3 exhibits calcium-dependent PLA2 activity but is constitutively bound to mitochondria and early endosomes in cells, suggesting a mechanism of regulation and function distinct from cPLA2*α*. cPLA2*δ*, cPLA2*ε*, and cPLA2*ζ* have been cloned from mouse tissues; however, only preliminary information is available about their biochemical properties, and nothing is known of their functional roles (20).

It is well documented that $cPLA_2\alpha$ functions to release arachidonic acid for the production of eicosanoids. However, eicosanoid production is not completely ablated in the cPLA2*α* knockout mouse indicating a role for other PLA2s in mediating arachidonic acid release (23,24). We previously isolated mouse lung fibroblasts (MLF) from cPLA2*α* wild type and knock-out mice and demonstrated a primary role for $cPLA_2\alpha$ in mediating arachidonic acid release and prostaglandin E₂ (PGE₂) production (25). However, we found that cPLA₂ α ^{-/-} MLFs $(MLF^{-/-})$ release lower, but significant, levels of arachidonic acid and produce PGE₂ in response to calcium ionophore and serum (25). We have identified cPLA2*β* and cPLA2*ζ* in MLF^{$-/-$} and provide evidence here that cPLA₂ δ is the enzyme that mediates calcium-dependent arachidonic acid release.

EXPERIMENTAL PROCEDURES

Materials

 $[5,6,8,9,11,12,14,15$ ⁻³H]Arachidonic acid (100 Ci/mmol), 1-palmitoyl-2- $[$ ¹⁴C]arachidonylphosphatidylcholine (PC) (48 mCi/mmol), 1-[14C]palmitoyl-2-lyso-PC (55 mCi/mmol), 1 palmitoyl-2-[14C]arachidonyl-phosphatidylethanolamine (PE) (48 mCi/mmol), and 1 palmitoyl-2-[14C]oleoyl-PC (55 mCi/mmol) were from PerkinElmer Life Sciences. 1- Palmitoyl-[14C]linoleoyl-PE (55 mCi/mmol) was from Amersham Biosciences. 1- Palmitoyl-2-arachidonyl-PE, 1-palmitoyl-2-li-noleoyl-PE, and 1-hexadecyl-2-arachidonyl-PC were from Avanti Polar Lipids. 1-Palmitoyl-2-arachidonyl-PC, dioleoylglycerol, bovine serum albumin (BSA), fatty acid-free BSA, pluronic acid, and anti-His₆ monoclonal antibody were from Sigma. 1-Arachidonyl-2-hexadecyl-PC was prepared as described (26). PLA₂ inhibitors indoxam, pyrrolidine-2, and Wyeth-1 were synthesized as described previously (27–30). Dulbecco's modified Eagle's medium (DMEM) was from Bio-Whittaker. Penicillinstreptomycin-L-glutamine solution was from Invitrogen. Fetal bovine serum was from Irvine Scientific. Bromoenol lactone was purchased from Biomol. Silica gel LC-Si SPE columns were from Sigma-Supelco. Protease inhibitor mixture tablets were from Roche Applied Science. The Total RNA Isolation kit was purchased from Promega, and the Advantage reverse transcription-PCR kit, BD SMART RACE cDNA amplification kit, and EGFP vector were from Clontech. The TA cloning vector was from Invitrogen. The plasmid isolation kit, RNeasy mini kit, and nickel-nitrilotriacetic acid-agarose beads were from Qiagen. iScript cDNA synthesis kit was obtained from Bio-Rad.

Culture of MLF and Assays for Fatty Acid Release and PGE2 Production

Lung fibroblasts were isolated from wild type (MLF+/+) and cPLA2*α* knock-out (MLF−/−) mice, and SV40 immortalized MLF (IMLF) were generated as described previously (31). Fibroblasts were plated in 24-well tissue culture plates at a density of 2.5×10^4 cells/well in supplemented DMEM (10% fetal bovine serum, 0.1% nonessential amino acids, 1 mM sodium pyruvate, and 1% penicillin-streptomycin-L-glutamine solution) and incubated for 6 h at 37 ° C with 5% CO2. Cells were washed twice with serum-free DMEM and incubated in serumfree DMEM containing 0.1% BSA and radiolabeled fatty acids $(0.2 \mu C)$ of [³H]arachidonic acid, 0.5 *μ*Ci of [3H]palmitic acid, 0.25 *μ*Ci of [3H]oleic acid, and 0.5 *μ*Ci of [14C]linoleic acid/ well). After incubation overnight, the cells were washed three times with DMEM containing 0.1% fatty acid-free BSA and stimulated with agonists in albumin-containing medium for the times indicated. For inhibitor experiments, cells were preincubated with inhibitors for 15 min prior to stimulation. The culture medium was removed and centrifuged at 15,000 rpm for 15 min. Cells were solubilized with 0.1% Triton-X-100. The level of radioactivity in the culture medium and in the cells was measured, and the amount released was calculated as a percentage of the total (released plus cellular) radioactivity.

To measure the effect of inhibitors on PGE_2 production, MLF^{$-/-$} were incubated overnight in serum-free medium containing transforming growth factor *β* to up-regulate cyclooxy-genase-2 as reported previously (25). The cells were incubated with and without pyrrolidine-2 and Wyeth-1 (both at 10*μ*M) for 15 min and then stimulated with A23187 (2 *μ*g/ml) for 45 min. PGE₂ in the culture medium was quantified by enzyme-linked immunosorbent assay (Elisa Tech, Aurora, CO).

Quantitative Real-time PCR

The primers and probes used for real-time PCR of mouse cPLA2*β*, cPLA2*ζ*, cPLA2*δ*, and cPLA2*ε* were obtained from Applied Biosystems (premade Taqman gene expression assays). Assay IDs for mouse cPLA2*β*, cPLA2*ζ*, cPLA2*δ*, and cPLA2*ε* are Mm 01271073_g1, Mm 01338177_g1, Mm 01279782_m1, and Mm 00625711_m1, respectively. Total RNA was

isolated from MLF and IMLF using a Qiagen RNeasy mini kit, and 1 *μ*g of total RNA was used to make cDNA using iScript cDNA synthesis kit from Bio-Rad following the manufacturer's instructions. Each PCR reaction (25 *μ*l) contained 500 ng of cDNA, PCR master mix, and pre-made Taqman gene expression assay components containing a 6 carboxyfluorescein reporter dye at the 5′-end of the Taqman probe and a nonfluorescent quencher at the 3′-end of the probe. Rodent glyceraldehyde-phosphate dehydrogenase was used as a control to verify the quality of cDNA template. Real-time PCR was performed and analyzed by the dual-labeled fluorogenic probe method using an ABI Prism 7000 sequence detector from Applied Biosystems.

Cloning of Mouse cPLA2β and cPLA2ζ

To clone cPLA₂*β* cDNA from IMLF^{-/-}, cells were cultured in supplemented DMEM; total RNA was isolated, 1 *μ*g of which was used to generate cDNA. PCR analysis was performed using 10 *μ*l of cDNA for cPLA₂*β* and 5 *μ*l of cDNA for glyceraldehyde-phosphate dehydrogenase following the manufacturer's instructions (Clontech Advantage reverse transcription-PCR kit). Specific primers used for mouse cPLA₂ β were as follows: 5[']gtctacaagcttatgcaggcaaaggtg-3′, 5′-gccaactttggcggtaccggcaagagc-3′, 5′ gctcttgccggtaccgccaaagttggc-3′, and 5′-cagctgggatcctcactccggcctaaac-3′. The primers were designed based on the mouse cPLA2*β* genomic sequence available from NCBI (gi:211429) to amplify the full-length cDNA in two fragments. The PCR products were cloned into the TA cloning vector, and the fragments were sequenced and then assembled into the full-length clone using the internal KpnI site present in the PCR products.

Mouse cPLA₂ ζ was cloned from IMLF^{-/-} cells and from mouse thyroid using the following primer sets: 5′-ctgggacctgagctgctactgctgg-3′, 5′-gaatactactcccgggaaaagagag-3′, 5′ ctctttttcccgggagtagtattc-3', and 5'-gtttaaagtcttccctctccctcag-3'. These were designed based on the mouse cPLA2*ζ* sequence (NCBI NM_001024145) to amplify the full-length cDNA in two fragments. PCR products were cloned into the TA cloning vector, and the fragments were sequenced and then assembled into the full-length cPLA2*ζ* clone using the internal SmaI site present in the PCR products. For immunofluorescence microscopy, cPLA2*ζ* and cPLA2*β* cDNAs were cloned into the EGFP vector in the XhoI/HindIII and XhoI/BamHI sites, respectively.

Production of Recombinant Baculoviruses and Expression in Sf9 Cells

Mouse cPLA2*β* cDNA was cloned into the baculovirus vector pAcHLT in the StyI/NotI sites and cPLA2*ζ* in the XhoI/SacI sites. Recombinant baculovirus was generated by co-transfection of Sf9 cells with $cPLA_2$ -containing constructs and linearized baculovirus DNA (Baculogold) following the manufacturer's instructions (BD Biosciences-Pharmingen), and amplified by standard protocols. To determine the expression of cPLA2s, Sf9 cells were plated in a 12-well tissue culture plate at a density of 0.5×10^6 cells/well and infected with recombinant viruses at different multiplicities of infection for 1 h. The virus-containing medium was replaced with fresh medium, and cells were incubated for 48 h. Expression of His₆-cPLA₂*β* and His₆cPLA₂ζ was determined by Western blot analysis using anti-His₆ monoclonal antibodies. His₆-cPLA₂β and His₆-cPLA₂ζ expressed in Sf9 cells were affinity-purified using nickelagarose beads following the manufacturer's instructions (Qiagen). The concentration of the enzymes in eluted fractions was determined by comparing the intensity of Coomassie-stained bands on SDS-polyacrylamide gels with a standard curve made with BSA and also by the bicinchoninic acid method.

Western Blotting

Cells were washed with phosphate-buffered saline and then scraped into ice-cold lysis buffer (50 mM Hepes, pH 7.4, 150 mM sodium chloride, 1.5 mM magnesium chloride, 10% glycerol,

1% Triton X-100, 1 mM EGTA, 200 *μ*M sodium vanadate, 10 mM terasodium pyrophosphate, 100 mM sodium fluoride, 300 nM *p-*nitrophenyl phosphate, 1 mM phenylmethylsulfonyl fluoride, 10 *μ*g/ml leupeptin, and 10 *μ*g/ml aprotinin). After incubation on ice for 30 min, lysates were centrifuged at 15,000 rpm for 15 min, and protein concentration in the supernatant was determined. Lysates were boiled for 5 min in Laemmli electrophoresis sample buffer, and the proteins (15–25 *μ*g total protein) were separated on 10% SDS-polyacrylamide gels and transferred to nitrocellulose membrane. After blocking with 5% milk for 1 h, membranes were incubated overnight at 4 °C with monoclonal anti-His₆ anti-body in 20 mM Tris, pH 7.6, 137 mM NaCl, and 0.05% Tween containing 5% milk and then incubated with anti-mouse IgG horseradish peroxidase antibody (1:5000 dilution) for 30 min at room temperature. The immunoreactive proteins were detected using the Amersham Biosciences ECL system.

Assay for Arachidonic Acid Release from Sf9 Cells

Sf9 cells were plated in 24-well plates $(2.5 \times 10^5 \text{ cells/well})$ in 500 μ l of TNM-FH medium containing 10% fetal bovine serum (complete medium) and incubated at 27 \degree C for 15 min. The medium was removed and baculoviruses added in 150 *μ*l of complete medium. After incubation for 1 h, complete medium (350 *μ*l/well) was added and the cells incubated 25–30 h followed by incubation overnight in complete medium (500 *μ*l/well) containing 0.2 *μ*Ci [3H]arachidonic acid. The cells were washed three times with serum-free TNM-FH medium containing 0.1% human serum albumin and stimulated for 45 min with A23187 ($2 \mu g$ /ml). The level of released [³H]arachidonic acid was determined as described above for fibroblasts. A portion of the Triton lysate was used for Western blotting to determine the relative level of expression of the cPLA₂s.

Enzyme Assays

PLA₂ activity was assayed using 1-palmitoyl-2- $[$ ¹⁴C]arachidonyl-PC, 1-palmitoyl-2- $[$ ¹⁴C] oleoyl-PC, 1-palmitoyl-2- $[$ ¹⁴C]arachidonyl-PE, and 1-palmitoyl-2- $[$ ¹⁴C]linoleoyl-PE as substrates. To prepare substrate, solvents were evaporated from the lipid mixture under a stream of nitrogen, 50 mM Hepes buffer, pH 7.4, was added and the lipid mixture sonicated at 4 °C for 10 s on ice using a microprobe (Braun Instruments) to form small unilamellar vesicles. The reaction mixture (50 *μ*l final volume) contained 30 *μ*M phospholipid substrate (100,000 dpm), 9 *μ*M dioleoylglycerol (which was cosonicated with the substrate), 150 mM sodium chloride, 1 mg/ml fatty acid free BSA, 1 mM EGTA, and 5 mM CaCl2. For assays with palmitoylarachidonyl-PE, dioleoylglycerol was not added. Reactions were started by the addition of affinity-purified enzyme (50 ng-1 *μ*g) and incubated at 37 °C for the times indicated. Free fatty acids were extracted using Dole reagent (propan-2-ol:heptane:1 $N H₂SO₄$, 20:5:1) and separated by silicic acid chromatography as described previously using unlabeled oleic acid $(25 \mu g)$ as carrier lipid (32) .

The calcium dependence of the PLA₂ activity of cPLA₂ α and cPLA₂ ζ was measured using 1palmitoyl-2-[14C]arachidonyl-PC. Vesicles were made by extrusion through two 0.2-*μ*m Nucleopore membranes as described previously (33) in buffer (10 mM MOPS, 100 mM KCl, 0.5 mM EGTA, pH 7.2) to give 4–4.5 mM total phospholipid at a final specific radioactivity of 2.7 Ci/mol. The phospholipid concentration in the stock solution after extrusion was calculated from the initial concentration and the yield of radioactivity. The same buffer containing various concentrations of free calcium from 0 to 20μ M was prepared by fluorimetric titration using fluo-3 and Calcium Green 5N as described previously (34). A small aliquot of extruded vesicle stock was added to give 200μ M total phospholipid in each assay. Reactions $(80 \,\mu l)$ were carried out in various calcium buffers supplemented with 0.5 mg/ml fatty acidfree BSA for 2 min at 37 °C. Reactions were quenched and analyzed for radiolabeled free arachidonic acid as described earlier (35).

Reactions to study the PLA_2 and PLA_1 activities were carried out as follows. 1-Hexadecyl-2arachidonyl-PC or 1-arachidonyl-2-hexadecyl-PC was sonicated at 60 *μ*M in 50 mM Hepes, pH 7.4, to form a stock solution of small unilamellar vesicles as described (36). Reaction mixtures contained 30 *μ*M phospholipid in 250 *μ*l of 50 mM Hepes, pH 7.4, 150 mM NaCl, 1 mg/ml fatty acid-free BSA, 1 mM EGTA, 5 mM CaCl₂, and either cPLA₂*α* (10 ng), cPLA₂*β* (7.5 *μ*g), or cPLA2*ζ* (20 ng). After 20 min at 37 °C, reactions were processed for arachidonic acid analysis using gas chromatography/mass spectrometry as described with d_8 -arachidonic acid (Cayman Chemicals, Inc.) as an internal standard (37).

Lysophospholipase activity was measured using 1-[14C] palmitoyl-2-lyso-PC sonicated in 50 mM Hepes, pH 7.4, to make micelles as described previously (38). Assays contained 50 *μ*M substrate (120,000 dpm), 1 mM EGTA, and 5 mM CaCl₂ in a final volume of 50 μ l. Reactions were started by adding affinity-purified enzyme and incubated at 37 °C for the times indicated. Free fatty acid product was extracted using Dole reagent. After vortexing, the upper heptane phase was removed and dried under a stream of nitrogen, and 0.5 ml of heptane added. Radiolabeled free fatty acids were measured by liquid scintillation spectrometry. For inhibitor experiments, enzymes were preincubated for 2 min at 37 °C with inhibitors, and reactions were started by addition of substrate.

Immunofluorescence Microscopy

IMLF−/− were transfected with 10 *μ*g of EGFP-cPLA2*ζ* and EGFP-cPLA2*α* cDNA using nucleofection technology (Amaxa Biosystems), with solution T, following the manufacturer's instructions. Transfected fibroblasts were plated in 35-mm glass-bottom MatTek plates at a density of 0.5×10^6 /cm² and incubated for 48 h. Cells were then washed twice with serumfree DMEM and incubated in serum-free DMEM containing 0.1% BSA overnight. For live cell imaging, fibroblasts were washed with and incubated in Hanks' balanced salt solution buffered with 25 mM Hepes. Cells were stimulated with 0.5 *μ*M ionomycin and imaged at 37 °C with an inverted Zeiss 200M microscope with a 175-watt xenon lamp using a ×63 oil immersion objective and GFP filters. Images were acquired every 5 s for a total of 10 min with a charge-coupled device camera from Sensicam, and data were analyzed using Intelligent Imaging Innovations Inc. (3I) software.

RESULTS

Fatty Acid Release from IMLF+/+ and IMLF −/− and Effect of PLA2 Inhibitors

We previously reported that primary MLF−/− and immortalized MLF−/− release arachidonic acid and produce PGE_2 in response to A23187 and serum indicating the presence of a calciumregulated PLA₂ that can initiate lipid mediator production (25). To characterize the PLA₂, we compared the types of fatty acids released from stimulated IMLF+/+ and IMLF−/−. The cells were incubated with radiolabeled fatty acids to determine the acyl chain specificity of the PLA₂ (Fig. 1, *A* and *B*). IMLF^{+/+} stimulated with A23187 or mouse serum release relatively greater amounts of arachidonic acid than other fatty acids. This is consistent with a primary role for cPLA₂ α in mediating arachidonic acid release (25). In contrast IMLF^{$-/-$} stimulated with A23187 do not preferentially release arachidonic acid but release similar levels of saturated, monounsaturated, and polyunsaturated fatty acids. As previously shown, the release of arachidonic acid from IMLF^{$-/-$} stimulated with mouse serum is lower than with A23187 (25); however, the results also show nonspecific release of multiple fatty acids (Fig. 1*B*). Thus the PLA₂ in IMLF^{$-/-$} does not exhibit acyl chain specificity. It is interesting to note that the release of arachidonic acid from $IMLF^{-/-}$ is about 65% lower than from $IMLF^{++}$; however, the % release of the other fatty acids (16:0, 18:1, 18:2) is similar in IMLF^{$-/-$} and IMLF^{+/+}. This suggests that the release of these fatty acids from IMLF^{+/+} is not due to cPLA₂ α but is mediated by another PLA₂ that is present in both IMLF^{$-/-$} and IMLF^{+/+}.

To determine the type of PLA₂ involved in release of arachidonic acid from IMLF^{$-/-$}, the cells were treated with PLA₂ inhibitors and stimulated with A23187. The iPLA₂ inhibitor bromoenol lactone, the sPLA₂ inhibitor indoxam, and the cPLA₂ α inhibitors pyrrolidine-2 and Wyeth-1 were tested (29,30). Although IMLF^{-/−} lack cPLA₂α, pyrrolidine-2 and Wyeth-1 were used because they may inhibit another GIV cPLA₂ present in IMLF. Pyrrolidine-2 and Wyeth-1 are the only inhibitors that block A23187-stimulated arachidonic acid release from IMLF^{$-/-$} (Fig. 2A). Pyrrolidine-2 and Wyeth-1 inhibit arachidonic acid release from IMLF^{+/+} with an IC₅₀ of ~0.01 and 0.05 μ M, respectively, and from IMLF^{-/-} with an IC₅₀ of ~0.03 and 0.1 μ M, respectively (Fig. 2, *B* and *C*).

We previously reported that MLF^{$-/-$} produce PGE₂ in response to A23187 and serum (25), suggesting that arachidonic acid released by the PLA_2 couples to cyclooxygenases for PGE_2 production. This is supported by data showing that pyrrolidine-2 and Wyeth-1 block PGE_2 production from A23187-stimulated MLF^{$-/-$} by 91 and 50%, respectively (Table 1). MLF^{$-/-$} were incubated overnight with transforming growth factor *β* prior to stimulation to up-regulate cyclooxygenase-2. These experiments were carried out with MLF−/− rather than IMLF−/[−] because IMLF^{$-/-$} produce very little PGE₂ due to a defect in the expression of microsomal PGE synthase from inactivation of p53 by SV40 (25).

Identification of cPLA2β and cPLA2ζ in IMLF−/[−]

Because pyrrolidine-2 does not inhibit iPLA₂*β* or sPLA₂s (39) and the PLA₂ in IMLF^{$-/-$} is calcium-regulated, the results suggested another C2 domain-containing GIV PLA_2 may be responsible for arachidonic acid release in these cells. Real-time PCR analysis revealed that IMLF−/− contain transcripts for cPLA2*β* (GIVB) and cPLA2*ζ* (GIVF) but not cPLA2*ε* (GIVE) or cPLA2*δ* (GIVD) (Fig. 3*A*). The level of expression of cPLA2*β* and cPLA2*ζ* is similar in IMLF^{+/+} and IMLF^{-/-}, indicating that the ablation of cPLA₂ α does not result in their upregulation. Similar results were obtained for primary MLF+/+ and MLF−/− (data not shown).

Cloning of cPLA₂ β cDNA from IMLF^{-/-} demonstrated that it has a C2 domain as well as a catalytic domain that contains the active site residues previously identified in human cPLA2*β*1 (14,21). An alignment of the amino acid sequence of mouse cPLA2*β* and human cPLA2*β*1 is shown in Fig. 3*B*. The C2 and catalytic domains of mouse cPLA2*β* have 82% amino acid identity with human cPLA₂ β 1. We have recently identified three transcripts of human cPLA₂ β in BEAS-2B lung epithelial cells (22). cPLA₂ β 1 is identical to the form originally cloned (14,21), and cPLA₂β2 and cPLA₂β3 contain internal deletions in the catalytic domain (22). We found that only cPLA2*β*3 is translated in BEAS-2B cells. Only one transcript of mouse cPLA₂*β* is found in IMLF^{$-/-$}, and its catalytic domain is most similar to human cPLA₂*β*1 because it does not contain the internal deletion. This was determined by 3′-RACE PCR using three gene-specific primers to different regions in the catalytic domain of mouse cPLA2*β* and the universal primer. One striking difference between mouse and human cPLA₂ β is that mouse cPLA₂ β does not contain the N-terminal extension with the truncated JmjC domain found in human cPLA2*β* (Fig. 3*B*) (14,21). We confirmed the lack of a truncated JmjC domain in mouse cPLA2*β* by 5′-RACE analysis. This is consistent with the prediction in the NCBI Database that separate adjacent genes encode a complete JmjC domain (accession number BC016255) and cPLA2*β* (accession number BC098210) on mouse chromosome 2.

Mouse cPLA2*ζ* cloned from IMLF−/− is homologous to the sequence previously reported for mouse cPLA₂ζ cloned from thyroid with the exception of a number of base differences leading to amino acid changes. We also cloned cPLA2*ζ* from mouse thyroid and confirmed that it is identical to cPLA2*ζ* in IMLF−/−. The sequences of cPLA2*β* (accession number DQ888308) and cPLA₂^ζ (accession number DQ904008) from IMLF^{−/−} can be found in the NCBI Database.

Enzymatic Properties and Inhibitor Sensitivity of Purified cPLA2β and cPLA2ζ

To determine whether cPLA2*β* and cPLA2*ζ* have characteristics of the PLA2 responsible for mediating arachidonic acid release from IMLF−/−, the enzymes were expressed as N-terminal $His₆$ -tagged proteins in Sf9 cells using baculoviruses, affinity-purified, and their enzymatic properties and inhibitor sensitivity characterized. cPLA2*β* has lysophospholipase activity against palmitoyl-lyso-PC and lower PLA2 activity against both palmitoyl-arachidonyl-PC and palmitoyl-arachidonyl-PE (Fig. 4, *A* and B). We tested the ability of pyrrolidine-2 and Wyeth-1 to inhibit the activity of cPLA2*β* using palmitoyl-lyso-PC as substrate (Fig. 4*C*). The results demonstrate that concentrations of pyrrolidine-2 and Wyeth-1 that are more than sufficient to inhibit arachidonic acid release from $IMLF^{-/-}$ have no effect on the activity of mouse cPLA₂ β . In contrast, the activity of cPLA₂ ζ under the same assay conditions is inhibited by over 90% by pyrrolidine-2 and Wyeth-1 (Fig. 4*C*).

Affinity-purified His₆-tagged cPLA₂^ζ exhibits greater lyso-phospholipase and PLA₂ activity than cPLA2*β* (Fig. 5, *A* and *B*). cPLA2*ζ* does not exhibit *sn*-2 acyl chain specificity, because it hydrolyzes both *sn*-2 arachidonic acid and oleic acid from PC with similar activity (Fig. 5*B*). cPLA2*ζ* hydrolyzes arachidonic acid from PE with slightly lower activity than from PC (Fig. 5*C*). The PLA₂ activity of cPLA₂ ζ is very sensitive to inhibition by pyrrolidine-2 and Wyeth-1 with IC50 values of 0.002 and 0.02 *μ*M, respectively (Fig. 5*D*). The analog of pyrrolidine-2 in which the ketone carbonyl has been reduced to the tertiary alcohol did not inhibit cPLA₂α or $cPLA_2\zeta$ when tested *in vitro* at a concentration up to 1 μ M (data not shown). This is consistent with a mechanism of inhibition of both enzymes in which the active site serine residue (Ser-228 in $cPLA_2\alpha$) adds to the ketone carbonyl of pyrrolidine-2 to form a hemiketal. This also explains why removal of the 2-fluorine atoms from pyrrolidine-2 renders the compound inactive as an inhibitor (30).

A summary of the specific activities of cPLA2*β* and cPLA2*ζ* is shown in Table 2. Overall cPLA2*ζ* has 300-fold greater lyso-phospholipase and 400–800-fold greater PLA2 activity than cPLA2*β*. The release of *sn*-2 fatty acids could occur through a PLA2 mechanism and/or by sequential deacylation of the *sn*-1 fatty acid (PLA₁ reaction) followed by release of *sn*-2 fatty acid by lysophospholipase activity. We measured the specific activity of the various $cPLA_2s$ for hydrolysis of 1-hexadecyl-2-arachidonyl-PC ($PLA₂$ activity) or 1-arachidonyl-2-hexadecyl-PC (PLA₁ activity) using sonicated vesicles of the pure phospholipid. The use of ester/ ether phospholipids ensures that only one round of lipolysis can occur, *i.e.* no lysophospholipase activity is possible because phospholipases do not cleave ether-linked aliphatic groups. Estimates of the specific activities came from a single time point assay (20 min). The results show that all three cPLA₂ isoforms (α, β, ζ) have PLA₂ and PLA₁ activity, with the former being about 2-fold higher than the latter (Table 3). To be sure that the 1 arachidonyl-2-hexadecyl-PC was not contaminated by the positional isomer in which the arachidonyl group is in the *sn-2* position, we submitted the 2-hexadecyl-PC synthetic precursor to combined reverse-phase high pressure liquid chromatography/electrospray ionization mass spectrometry using the previously reported method for lysophospholipid analysis (40). Based on the signal-to-noise ratio for the 2-hexadecyl-PC peak, we estimated that there was less than 2% of the positional isomer present. Based on this estimate and the data in Table 3, we conclude that cPLA₂*α* and cPLA₂*ζ* display significant PLA₁ activity. The activity for cPLA₂*β* was very low; however, the amount of arachidonic acid generated was 30- and 4-fold higher than that measured with no enzyme control in the reactions with 1-arachidonyl-2-hexadecyl-PC and 1 hexadecyl-2-arachidonyl-PC, respectively.

cPLA2ζ Expressed in Sf9 Cells Mediates A23187-induced Arachidonic Acid Release

Our results suggest that cPLA₂ ζ is the PLA₂ in IMLF^{$-/-$} responsible for fatty acid release in response to A23187. To compare the ability of cPLA2*ζ* and cPLA2*β* to release arachidonic acid

in cells in response to A23187, the enzymes were expressed in Sf9 cells. We have used this cell model to study the properties and regulation of $cPLA_2\alpha$, which releases arachidonic acid in response to A23187 when expressed in Sf9 cells $(41,42)$. As shown in Fig. 6A, His₆cPLA₂ ζ has a much greater capacity than cPLA₂ β to release arachidonic acid in response to A23187 when expressed in Sf9 cells. Sf9 cells were infected with two concentrations of baculovirus, resulting in similar levels of expression of cPLA2*β* and cPLA2*ζ* as shown by Western blot analysis using anti-His₆ antibody. In Sf9 cells expressing His₆-cPLA₂ζ, A23187stimulated arachidonic acid release is 10-fold greater than vector control cells but is only slightly above control levels in cells expressing His6-cPLA2*β*. As we observed for arachidonic acid release from IMLF^{$-/-$}, the release of arachidonic acid from A23187-stimulated Sf9 cells expressing His₆-cPLA₂ ζ is inhibited by pyrrolidine-2 (IC₅₀ 0.1 μ M) and Wyeth-1 (IC₅₀ 1.0 μ M) (Fig. $6B$).

Calcium Sensitivity of cPLA2ζ

Our results demonstrate that cPLA2*ζ* is activated in cells in response to increases in intracellular calcium. The calcium dependence of cPLA2*ζ* was investigated in more detail by measuring the effect of calcium on the activity of purified cPLA₂*ζ in vitro*. The PLA₂ activity of cPLA₂*ζ* assayed using palmitoyl-arachidonyl-PE is stimulated by calcium ~5-fold above the low level of activity observed in the absence of calcium (Fig. 7*A*). The effect of calcium concentration on PLA2 activity of cPLA2*ζ* and cPLA2*α* was compared directly using palmitoyl-arachidonyl-PC as substrate (Fig. 7*B*). The results of three experiments show that the calcium dependence of cPLA2*α* (*K*Ca 0.82 ± 0.45, 1.5 ± 0.3, 0.87 ± 0.3 *μ*M) and cPLA2*ζ* (*K*Ca 1.5 ± 0.3, 0.95 ± 0.15, $1.7 \pm 0.4 \,\mu$ M) is comparable. At saturating calcium levels the specific activity of cPLA₂ α is 2fold higher than cPLA2*ζ* (Fig. 7*B*). The activity in the absence of calcium is 16 and 7% of maximal activity at saturating calcium for cPLA2*α* and cPLA2*ζ* respectively.

Calcium-induced Translocation of EGFP-cPLA2ζ and EGFP-cPLA2α in IMLF−/[−]

The ability of cPLA2*ζ* to release arachidonic acid in response to calcium ionophore and the stimulation of its activity by physiological levels of calcium suggests that it may translocate to membrane in response to increases in intracellular calcium as reported for cPLA₂*α*. This was investigated by comparing translocation of EGFP-cPLA2*ζ* and EGFP-cPLA2*α* in ionomycin-stimulated IMLF−/− by live cell imaging. EGFP-cPLA2*ζ* exhibits primarily diffuse cytosolic localization in unstimulated cells (Fig. 8*A*, *a*). In response to ionomycin, EGFPcPLA2*ζ* rapidly translocates to membrane ruffles and to dynamic vesicular structures (Fig. 8*A*, *b–f*). An *enlarged image* of a portion of this cell (3.3 min after ionomycin) shows the presence of numerous fluorescent vesicles (Fig. 8*A*, *g*). A video of this cell shows the dynamic localization of cPLA2*ζ* to these structures (Movie 1 in supplemental data). Images of another cell depicting the translocation of $cPLA_2\zeta$ to membrane ruffles in response to ionomycin are shown in Fig. 8*A*, *h–j*. In comparison, EGFP-cPLA₂ α expressed in IMLF^{$-/-$} rapidly translocates to Golgi and endoplasmic reticulum in response to ionomycin as observed in other cell types (Fig. 8*B*, *a–c*) (11, 43).

DISCUSSION

 $cPLA_2\alpha$ plays an important role in production of eicosanoids through its ability to specifically release arachidonic acid from stimulated cells. However, there is ample evidence that other PLA₂s participate in the release of arachidonic acid for production of eicosanoids, including certain secreted and GVI PLA₂s $(27,29,44,45)$. Our study is the first to implicate another member of the GIV PLA₂ family as mediating agonist-induced arachidonic acid release and eicosanoid production. We previously reported that lung fibroblasts from the cPLA2*α* knockout mouse release arachidonic acid and produce $PGE₂$ in response to A23187 and mouse serum (25). Our data indicates that this is due to the calcium-dependent activation of cPLA2*ζ*. The

cPLA2*ζ* transcript is highly expressed in mouse thyroid and at lower levels in stomach, large intestine, and prostate (20). The mRNA for cPLA $_2\zeta$ was not detected in whole mouse lung; however, the lung comprises over 20 different cell types, and cell type-specific expression of cPLA2*ζ* is possible. Mouse lung fibroblasts contain both cPLA2*β* and cPLA2*ζ*; however, the enzymatic properties of cPLA2*ζ*, its ability to mediate calcium-dependent release of arachidonic acid, and its sensitivity to inhibition by pyrrolidine-2 and Wyeth-1 support its role in mediating arachidonic acid release and PGE₂ production from cPLA₂ $\alpha^{-/-}$ mouse lung fibroblasts. The ability of two structurally different inhibitors, pyrrolidine-2 and Wyeth-1, to block arachidonic acid release from cells and the activity of purified cPLA2*ζ* with similar IC50 values is strong evidence supporting a role for cPLA2*ζ* in mediating arachidonic acid release from stimulated IMLF−/−.

Our results demonstrate that $cPLA_2\zeta$ and $cPLA_2\alpha$ share similar properties. They both have lysophospholipase, PLA_1 , and PLA_2 activity, they have similar specific activities, and they are activated by low micromolar levels of calcium. The data showing that cPLA2*ζ* and cPLA2*α* are both potently inhibited by pyrrolidine-2 and Wyeth-1 complicate the use of these inhibitors to specifically implicate cPLA2*α* in mediating arachidonic acid release from cells. The similar inhibitor sensitivity of cPLA₂ ζ and cPLA₂ α is in contrast to the results with mouse cPLA₂ β , which is not inhibited by pyrrolidine-2 and Wyeth-1. Human cPLA2*β* and human cPLA2*γ* also are not inhibited by pyrrolidine-2 and pyrrolidine-1, respectively (22,39). The basis for the differences in sensitivity of the GIV PLA₂ family to pyrrolidine-2 and Wyeth-1 is not clear at this time.

One difference noted between cPLA₂ ζ and cPLA₂ α is that cPLA₂ ζ does not have specificity for arachidonic acid but releases multiple fatty acids, including palmitic, oleic, linoleic, and arachidonic acids, in response to A23187. The release of these fatty acids may be through its $PLA₁$, $PLA₂$, and lysophospholipase activities acting sequentially to deacylate diacylphospholipids. We confirmed that pyrrolidine-2 inhibits the release of oleic and palmitic acids from A23187-stimulated IMLF^{$-/-$} (data not shown), which is consistent with a role for $cPLA_2\zeta$ in mediating the nonspecific release of fatty acids. Despite the similarities in inhibitor sensitivities, cPLA2*ζ* and cPLA2*α* clearly have differences in the active site that influence acylchain specificity.

In contrast to cPLA2*ζ*, mouse cPLA2*β* has very low enzymatic activity and only weakly releases arachidonic acid in response to A23187 when expressed in Sf9 cells. We recently reported that human cPLA₂ β also has low enzymatic activity and that neither mouse nor human cPLA₂ β is inhibited by cPLA₂ α inhibitors (22). Analysis of the mouse cPLA₂ β transcript present in lung fibroblasts demonstrates that it does not contain the truncated JmjC domain found in the N terminus of human cPLA₂*β*. The truncated JmjC domain of human cPLA₂*β* is created by skipping exons 7 and 8 of the cPLA2*β* gene (4). However, a complete JmjC domain (image clone AAH25390) can be transcribed from the first 8 exons of the human cPLA₂*β* gene (4). This transcript stops prematurely after the first 8 exons of the human cPLA2*β* gene and thus lacks the C2 and catalytic domains of $cPLA_2\beta$. In contrast separate adjacent genes on mouse chromosome 2 encode a complete JmjC domain and cPLA2*β*. Both mouse and human cPLA2*β* are similarly situated near the gene cluster encoding cPLA2*ε*, -*δ*, and -*ζ* (4,20). cPLA2*β* has very low enzymatic activity when assayed *in vitro*; however, it is possible that it has a unique substrate and/or cofactors *in vivo*. The physiological function and mechanisms of the regulation of cPLA₂*β* remain to be elucidated.

The finding that lung fibroblasts contain three GIV PLA₂s suggests that they play different physiological functions and are regulated by distinct mechanisms. This is emphasized by the observation that cPLA2*α* and cPLA2*ζ* translocate to different subcellular sites in response to ionomycin. Although we were unable to express mouse EGFP-cPLA₂ β in IMLF^{-/−} for

microscopy, we had previously observed that human cPLA2*β* does not translocate in response to calcium ionophore but is constitutively localized on mitochondria and early endosomes (22). In addition to differences in localization of cPLA₂ α and cPLA₂ ζ , the phosphorylation sites found in cPLA2*α* are not conserved in cPLA2*ζ*. Thus cPLA2*ζ* and cPLA2*α* provide differentially regulated pathways for fatty acid release, eicosanoid production, and the regulated turnover of lysophospholipids.

References

- 1. Kudo I, Murakami M. Prostaglandins Other Lipid Mediat. 2002:68–69. 3–58.
- 2. Six DA, Dennis EA. Biochim Biophys Acta 2000;1488:1–19. [PubMed: 11080672]
- 3. Leslie CC. Biochem Cell Biol 2004;82:1–17. [PubMed: 15052324]
- 4. Ghosh M, Tucker DE, Burchett SA, Leslie CC. Prog Lipid Res 2006;45:487–510. [PubMed: 16814865]
- 5. Clark JD, Schievella AR, Nalefski EA, Lin LL. J Lipid Mediat Cell Signal 1995;12:83–117. [PubMed: 8777586]
- 6. Leslie CC. Prostagl Leukot Essent Fatty Acids 2004;70:373–376.
- 7. Funk CD. Science 2001;294:1871–1875. [PubMed: 11729303]
- 8. Glover S, de Carvalho MS, Bayburt T, Jonas M, Chi E, Leslie CC, Gelb MH. J Biol Chem 1995;270:15359–15367. [PubMed: 7797525]
- 9. Nalefski EA, Sultzman LA, Martin DM, Kriz RW, Towler PS, Knopf JL, Clark JD. J Biol Chem 1994;269:18239–18249. [PubMed: 8027085]
- 10. Perisic O, Fong S, Lynch DE, Bycroft M, Williams RL. J Biol Chem 1998;273:1596–1604. [PubMed: 9430701]
- 11. Evans JH, Spencer DM, Zweifach A, Leslie CC. J Biol Chem 2001;276:30150–30160. [PubMed: 11375391]
- 12. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ. Cell 1993;72:269–278. [PubMed: 8381049]
- 13. Hefner Y, Borsch-Haubold AG, Murakami M, Wilde JI, Pasquet S, Schieltz D, Ghomashchi F, Yates JR 3rd, Armstrong CG, Paterson A, Cohen P, Fukunaga R, Hunter T, Kudo I, Watson SP, Gelb MH. J Biol Chem 2000;275:37542–37551. [PubMed: 10978317]
- 14. Pickard RT, Strifler BA, Kramer RM, Sharp JD. J Biol Chem 1999;274:8823–8831. [PubMed: 10085124]
- 15. Underwood KW, Song C, Kriz RW, Chang XJ, Knopf JL, Lin LL. J Biol Chem 1998;273:21926– 21932. [PubMed: 9705332]
- 16. Jenkins CM, Han X, Yang J, Mancuseo DJ, Sims HG, Muslin AJ, Gross RW. Biochemistry 2003;42:11798–11807. [PubMed: 14529291]
- 17. Tucker DE, Stewart A, Nallan L, Bendale P, Ghomashchi F, Gelb MH, Leslie CC. J Lipid Res 2005;46:2122–2133. [PubMed: 16061942]
- 18. Vitale A, Perlin J, Leonelli L, Herr J, Wright P, Digilio L, Coonrod S. Dev Biol 2005;282:374–384. [PubMed: 15950603]
- 19. Chiba H, Michibata H, Wakimoto K, Seishima M, Kawasaki S, Okubo K, Mitsui H, Torii H, Imai Y. J Biol Chem 2004;279:12890–12897. [PubMed: 14709560]
- 20. Ohto T, Uozumi N, Hirabayashi T, Shimizu T. J Biol Chem 2005;280:24576–24583. [PubMed: 15866882]
- 21. Song C, Chang XJ, Bean KM, Proia MS, Knopf JL, Kriz RW. J Biol Chem 1999;274:17063–17067. [PubMed: 10358058]
- 22. Ghosh M, Loper R, Gelb MH, Leslie CC. J Biol Chem 2006;281:16615–16624. [PubMed: 16617059]
- 23. Downey P, Sapirstein A, O'Leary E, Sun T, Brown D, Bonventre JV. Am J Physiol 2001;280:F607– F619.
- 24. Wong DA, Kita Y, Uozumi N, Shimizu T. J Exp Med 2002;196:349–357. [PubMed: 12163563]
- 25. Ghosh M, Stewart A, Tucker DE, Bonventre JV, Murphy RC, Leslie CC. Am J Respir Cell Mol Biol 2004;30:91–100. [PubMed: 12842849]

- 26. Hanel AM, Gelb MH. Biochemistry 1995;34:7807–7818. [PubMed: 7794891]
- 27. Mounier CM, Ghomashchi F, Lindsay MR, James S, Singer AG, Parton RG, Gelb MH. J Biol Chem 2004;279:25024–25038. [PubMed: 15007070]
- 28. Yokota Y, Hanasaki K, Ono T, Nakazato H, Kobayashi T, Arita H. Biochim Biophys Acta 1999;1438:213–222. [PubMed: 10320804]
- 29. Ni Z, Okeley NM, Smart BP, Gelb MH. J Biol Chem 2006;281:16245–16255. [PubMed: 16603549]
- 30. Seno K, Okuno T, Nishi K, Murakami Y, Watanabe F, Matsuura T, Wada M, Fujii Y, Yamada M, Ogawa T, Okada T, Hashizume H, Kii M, Hara S, Hagishita S, Nakamoto S, Yamada K, Chikazawa Y, Ueno M, Teshirogi I, Ono T, Ohtani M. J Med Chem 2000;43:1041–1044. [PubMed: 10737736]
- 31. Stewart A, Ghosh M, Spencer DM, Leslie CC. J Biol Chem 2002;277:29526–29536. [PubMed: 12039969]
- 32. Leslie CC, Gelb MH. Methods Mol Biol 2004;284:229–242. [PubMed: 15173620]
- 33. Bayburt T, Gelb MH. Biochemistry 1997;36:3216–3231. [PubMed: 9115999]
- 34. Hixon MS, Ball A, Gelb MH. Biochemistry 1998;37:8516–8526. [PubMed: 9622504]
- 35. Ghomashchi F, Schuttel S, Jain MK, Gelb MH. Biochemistry 1992;31:3814–3824. [PubMed: 1567837]
- 36. Jain MK, Gelb MH. Methods Enzymol 1991;197:112–125. [PubMed: 2051908]
- 37. Degousee N, Ghomashchi F, Stefanski E, Singer A, Smart BP, Borregaard N, Reithmeier R, Lindsay TF, Lichtenberger C, Reinisch W, Lambeau G, Arm J, Tischfield J, Gelb MH, Rubin BB. J Biol Chem 2002;277:5061–5073. [PubMed: 11741884]
- 38. de Carvalho MGS, Garritano J, Leslie CC. J Biol Chem 1995;270:20439–20446. [PubMed: 7657619]
- 39. Ghomashchi F, Stewart A, Hefner Y, Ramanadham S, Turk J, Leslie CC, Gelb MH. Biochim Biophys Acta 2001;1513:160–166. [PubMed: 11470087]
- 40. Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, Rouault M, Sadilek M, Nguyen E, Lazdunski M, Lambeau G, Gelb MH. J Biol Chem 2002;277:48535–48549. [PubMed: 12359733]
- 41. de Carvalho MGS, McCormack AL, Olson E, Ghomashchi F, Gelb MH, Yates JR III, Leslie CC. J Biol Chem 1996;271:6987–6997. [PubMed: 8636128]
- 42. Gijón MA, Spencer DM, Kaiser AL, Leslie CC. J Cell Biol 1999;145:1219–1232. [PubMed: 10366595]
- 43. Girotti M, Evans JH, Burke D, Leslie CC. J Biol Chem 2004;279:19113–19121. [PubMed: 14963030]
- 44. Lehman JJ, Brown KA, Ramanadham S, Turk J, Gross RW. J Biol Chem 1993;268:20713–20716. [PubMed: 8407892]
- 45. Jenkins CM, Han X, Mancuso DJ, Gross RW. J Biol Chem 2002;277:32807–32814. [PubMed: 12089145]

FIGURE 1. Comparison of fatty acids released from IMLF+/+ and IMLF −/[−]

IMLF+/+ and IMLF−/− were incubated overnight in medium containing various radiolabeled fatty acids and then either left unstimulated (*US*, *white bar*) or stimulated with A23187 (2 *μ*g/ ml) (*black bar*) for 45 min (*A*) or with 10% mouse serum (*MS*, *black bar*) for 30 min (*B*). The amount of fatty acids released into the medium is expressed as a percentage of the total cellular incorporated radioactivity. Results are the average \pm S.E. of four independent experiments.

FIGURE 2. Effect of PLA2 inhibitors on arachidonic acid release fromIMLF+/+ and IMLF −/[−] *A*, [³H]arachidonic acid-labeled IMLF^{$-/-$} were treated with PLA₂ inhibitors (10 μ M) or Me2SO (vehicle control) for 15 min and then left unstimulated (*US*, *light gray bars*) or incubated with A23187 (2 *μ*g/ml) (*dark gray bars*) for 45 min. The amount of [3H]arachidonic acid released into the medium is expressed as a percentage of the total cellular incorporated radioactivity. IMLF+/+ and IMLF−/− were preincubated with the indicated amounts of pyrrolidine-2 (*B*) or Wyeth-1 (*C*) for 15 min and then stimulated with 2 *μ*g/ml A23187. The amount of $\lceil^3H\rceil$ arachidonic acid released is expressed as a percentage of the total incorporated radioactivity after subtracting the % release from unstimulated cells treated with inhibitors. Data shown are the average \pm S.E. of three independent experiments.

NIH-PA Actros Manuscript NIH-PA Author Manuscript

int unun buuchun no t thua t ouuna t ouuna t purna muoomnuqua umnoqua na un

FIGURE 3. Real-time PCR of GIV cPLA2s in IMLF +/+ and IMLF−/[−]

A, real-time PCR was carried out using Taqman gene expression assays for mouse GIV cPLA2s using iScript cDNA from IMLF+/+ and IMLF−/−. Glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) was used as a cDNA template control. The data are represented as cycle threshold values, which is the cycle number that a signal was detected for a specific cDNA and is inversely proportional to the abundance of the transcript. Results are the average \pm S.E. of six independent experiments. *B*, amino acid alignment of human cPLA₂ β 1 and mouse cPLA2*β*. The N-terminal extension containing the truncated JmjC domain (*highlighted*, with *double overline*) in human cPLA₂ β 1 is not present in mouse cPLA₂ β . The calcium-binding loops (*CBL*) in the C2 domains (*highlighted* and *boxed*) of human and mouse cPLA2*β* are shown. Residues required for catalytic activity, including the active site Ser (human Ser-566; mouse Ser-333) and Asp (human Asp-846; mouse Asp-613) catalytic dyad and Arg (human Arg-538; mouse Arg-305) are shown in *open boxes*. The region in the catalytic domain of human cPLA₂ β 1 that is deleted in the human cPLA₂ β 3 splice variant (22) is highlighted in *gray*.

FIGURE 4. cPLA2*β* **has low enzymatic activity and is insensitive to pyrrolidine-2 and Wyeth-1** *A*, lysophospholipase activity of affinity purified His₆-cPLA₂β (1 μg) was assayed using 1-[¹⁴C]palmitoyl-2-lyso-PC for the indicated times. Expression of His₆-cPLA₂*β* in Sf9 cells infected with increasing volumes (μl) of baculovirus is shown in the *inset*. B, PLA₂ activity of His₆-cPLA₂ β (1 μ g) was measured at the indicated time points using 1-palmitoyl-[¹⁴C] arachidonyl-PE or -PC as described under "Experimental Procedures." *C*, the effect of pyrrolidine-2 and Wyeth-1 on lysophospholipase activity of cPLA2*β* (1 *μ*g) or cPLA2*ζ* (50 ng) was studied by incubating purified enzyme at 37 °C for 2 min with different doses of inhibitors followed by the addition of the substrate. Results shown are the average \pm S.D. of two independent experiments.

Ghosh et al. Page 17

FIGURE 5. Enzymatic properties of cPLA2*ζ* **and inhibition by pyrrolidine-2 and Wyeth-1** *A*, lysophospholipase activity of affinity-purified His₆-cPLA₂ζ (50 ng) was assayed using 1-^{[14}C]palmitoyl-2-lyso-PC. Expression of His₆-cPLA₂ζ in Sf9 cells infected with increasing volumes (μ l) of baculovirus is shown in the *inset. B* and *C*, PLA₂ activity (150 ng) was assayed using 1-palmitoyl-2-[14C]arachidonyl-PC (P*APC) and 1-palmitoyl-2-[14C]oleoyl-PC (P^*OPC) (*B*) and 1-palmitoyl- $[{}^{14}C]$ arachidonyl-PE (P^*APE) (*C*) for the indicated times. *D*, the effect of pyrrolidine-2 and Wyeth-1 on PLA₂ activity of His₆-cPLA₂ζ (150 ng) was studied by incubating the purified enzyme at 37 \degree C for 2 min with different amount of inhibitors followed by the addition of the substrate (P^*APE). Results shown are the average \pm S.D. of two independent experiments.

FIGURE 6. A23187 stimulates arachidonic acid release from Sf9 cells expressing His-cPLA2ζ *A*, Sf9 cells were infected with different amounts of recombinant baculoviruses for expression of glutathione *S*-transferase-His (pAcGHLT, vector control), mouse His6-cPLA2*β*, or mouse His6-cPLA2*ζ*. [3H]Arachidonic acid-labeled Sf9 cells were stimulated with A23187 (2 *μ*g/ml) for 45 min. The amount of $\left[3H\right]$ arachidonic acid released into the medium from unstimulated (*US*) or A23187-stimulated cells is expressed as a percentage of the total incorporated radioactivity. The *bottom panels* are representative immunoblots of Sf9 lysates showing levels of expression of glutathione *S*-transferase-His₆ (*vector control*), His₆-cPLA₂β and His₆cPLA₂ ζ using antibody to His₆. *B*, [³H]arachidonic acid-labeled Sf9 cells expressing His₆cPLA2*ζ* were treated with the indicated amounts of pyrrolidine-2 or Wyeth-1 for 15 min prior to stimulation with A23187. Arachidonic acid release was measured similarly as described in

A. Arachidonic acid release from Sf9 cells infected with control vector treated similarly was subtracted as background. Results shown are the average \pm S.D. of two independent experiments.

FIGURE 7. Calcium dependence of cPLA2*ζ* **activity**

A, PLA₂ activity of His₆-cPLA₂ζ was measured with 1-palmitoyl-[¹⁴C]arachidonyl-PE in the absence (1 mM EGTA) (*open bars*) or presence (1 mM EGTA with 5 mM CaCl₂) of calcium (*gray bars*). Results are the average \pm S.D. of two independent experiments. *B*, cPLA₂*α* and His₆-cPLA₂ζ were assayed using 1-palmitoyl-2-[¹⁴C]arachidonyl-PC vesicles as a function of the concentration of free calcium. A representative experiment of triplicate analyses is shown.

FIGURE 8. Calcium-induced translocation of EGFP-cPLA2ζ and EGFP- cPLA2α in IMLF −/[−] Ionomycin (0.5 *μ*M) was added to IMLF−/− expressing EGFP-cPLA2*ζ* (*A*) or EGFP-cPLA2*α* (*B*), and images were taken every 5 s. The *arrows* in *A*, *a–f*, point to vesicles with EGFPcPLA2*ζ*. A movie of this cell can be found in the supplemental data [\(http://www.jbc.org](http://www.jbc.org)). An *enlarged portion* of the cell showing translocation of EGFP-cPLA2*ζ* to vesicles 3.3 min after adding ionomycin is shown in *A*, *panel g*. Another cell depicting tranlocation of EGFPcPLA2*ζ* to ruffles is shown in *A*, *h*–*j*.

TABLE 1

PGE2 production from A23187-stimulated MLF−/[−]

MLF−/− were cultured overnight with transforming growth factor *β* (TGF*β*) (2 ng/ml) to up-regulate cyclooxygenase 2 and then left unstimulated (US) or treated with A23187 (2 *μ*g/ml) for 45 min. Fibroblasts were incubated with 10 μM pyrrolidine-2 (Pyr-2) or Wyeth-1 for 15 min prior to stimulation with A23187. PGE₂ levels in the culture medium were measured by enzyme-linked immunosorbent assay. A representative experiment of triplicate samples is shown \pm S.D.

TABLE 2

Specific activity of cPLA2*β* **and cPLA2***ζ*

Lysophospholipase and PLA₂ activity of affinity-purified His₆-cPLA₂β and His₆-cPLA₂ζ were assayed with different substrates as described under "Experimental Procedures." Values represent the average of two independent experiments in triplicate \pm S.D.

Specific activity of three cPLA2 isoforms

The PLA₁ and PLA₂ activity of affinity-purified cPLA₂*α*, cPLA₂*β*, and cPLA₂*ζ* was investigated with different substrates as described under "Experimental Procedures."

