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Abstract
Several lines of evidence suggest that cannabinoids can attenuate various types of pain and
hyperalgesia through peripheral mechanisms. The development of rodent cancer pain models has
provided the opportunity to investigate novel approaches to treat this common form of pain. In the
present study, we examined the ability of peripherally administered cannabinoids to attenuate tumor-
evoked mechanical hyperalgesia in a murine model of cancer pain. Unilateral injection of osteolytic
fibrosarcoma cells into and around the calcaneus bone resulted in tumor formation and mechanical
hyperalgesia in the injected hindpaw. Mechanical hyperalgesia was defined as an increase in the
frequency of paw withdrawals to a suprathreshold von Frey filament (3.4mN) applied to the plantar
surface of the hindpaw. WIN 55, 212-2 (1.5 to 10μg) injected subcutaneously into the tumor-bearing
hindpaw produced a dose-dependent decrease in paw withdrawal frequencies to suprathreshold von
Frey filament stimulation. Injection of WIN 55,212-2 (10μg) into the contralateral hindpaw did not
decrease paw withdrawal frequencies in the tumor-bearing hindpaw. Injection of the highest
antihyperalgesic dose of WIN 55,212-2 (10μg) did not produce catalepsy as determined by the bar
test. Co-administration of WIN 55,212-2 with either cannabinoid 1 (AM251) or cannabinoid 2
(AM630) receptor antagonists attenuated the antihyperalgesic effects of WIN 55, 212-2. In
conclusion, peripherally administered WIN 55,212-2 attenuated tumor-evoked mechanical
hyperalgesia by activation of both peripheral cannabinoid 1 and cannabinoid 2 receptors. These
results suggest that peripherally-administered cannabinoids may be effective in attenuating cancer
pain.
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1. Introduction
Pain resulting from cancer still presents a major therapeutic challenge. Current estimates
indicate that over half of patients with cancer experience pain, and nearly two-thirds in
advanced disease stages experience pain (van den Beuken-van Everdingen et al., 2007). Of
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those reporting cancer pain, it is estimated that one-third of all cancer patients rate their pain
as moderate to severe (van den Beuken-van Everdingen et al., 2007). Although the prevalence
of cancer pain differs among the various types of cancer, it is often reported by individuals
with both primary and metastatic bone cancer, with greater than 60% of individuals with
metastatic bone cancer suffering from severe pain (Coleman, 2006).

Cancer pain is most often treated with opioid drugs; however, these drugs produce dose-
limiting side effects and sometimes provide inadequate analgesia (Hanks and Forbes, 1997;
Cherny, 2004). Current estimates suggest that adequate analgesia is not achieved in all cancer
patients using the World Health Organization’s (WHO’s) analgesic ladder (Azevedo et al.,
2006). Understanding the mechanisms related to the generation and maintenance of cancer
pain is needed for the development of novel and more efficacious therapies to treat this
condition.

The use of cannabinoids to treat cancer pain may provide a novel therapeutic approach. Two
endogenous receptors for cannabinoids have been isolated and cloned so far, cannabinoid 1
(CB1) and cannabinoid 2 (CB2) receptors (Matsuda, et al., 1990; Munro, et al., 1993), and both
have been localized to various neuronal and non-neuronal tissues. Previous studies have shown
that systemic administration of cannabinoids produces antinociception and attenuates
hyperalgesia and allodynia in animal models of acute and chronic pain (for reviews see Walker
et al., 1999; Hohmann, 2002; Walker and Huang, 2002; Mbvundula et al., 2004). The efficacy
of systemically delivered cannabinoids is limited by adverse cannabimimetic effects
(catalepsy, hypolocomotion, and disruptions in memory) which are mediated through CB1
receptor activation in the central nervous system (for review see Iversen, 2003). One way to
avoid these centrally-mediated cannabimimetic effects, while still providing analgesia, is
through the selective targeting of peripheral CB1 receptors expressed on nociceptive primary
afferent dorsal root ganglion (DRG) neurons (Hohman and Hekenham, 1999; Ahluwalia et al.,
2000) and cutaneous nerve terminals (Ständer et al., 2005; Amaya et al., 2006; Agarwal et al.,
2007).

A recent study from our lab demonstrated that systemic administration of the non-selective
cannabinoid receptor agonist CP 55,940 attenuated tumor-evoked mechanical hyperalgesia in
an established murine model of cancer pain through activation of CB1 receptors (Hamamoto
et al., 2007). In this cancer pain model, osteolytic fibrosarcoma cells were injected into and
around the calcaneus bone which produces a tumor mass and eventually leads to hyperalgesia
and sensitization of C nociceptors overlying the tumor on the plantar surface of the hindpaw
(Cain et al., 2001; Wacknik et al., 2001). Since systemically administered cannabinoids can
produce adverse cannabimimetic effects, the present study was designed to determine if local
injection of the non-selective cannabinoid receptor agonist WIN 55,212-2 can attenuate tumor-
evoked mechanical hyperalgesia and whether this effect occurred through activation of CB1
or CB2 receptors.

2. Results
2.1. Tumor-evoked mechanical hyperalgesia

Prior to implantation of fibrosarcoma cells, the paw withdrawal frequency evoked by a 3.4mN
von Frey filament was 0–20% (data not shown). Mechanical hyperalgesia was fully developed
by 6 days post-implantation at which time paw withdrawal frequencies increased in the tumor-
bearing hindpaw to 70–100% (data not shown). No changes in paw withdrawal frequencies
were observed in the contralateral hindpaw where paw withdrawal frequencies remained 0–
20% (data not shown). These data are consistent with prior studies in our lab demonstrating
the time-course and magnitude of mechanical hyperalgesia following implantation of
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fibrosarcoma cells into and around the calcaneus bone (Cain et al., 2001; Hamamoto et al.,
2007).

2.2. WIN 55,212-2 attenuation of tumor-evoked mechanical hyperalgesia
Ten to fourteen days after fibrosarcoma cell implantation, tumor-bearing mice were randomly
divided into separate groups and received an intraplantar injection of vehicle or WIN 55,212-2
at doses of 1.5, 2.5, 5, or 10μg(n=6–8 per group). Paw withdrawal response frequencies were
determined before and at 10, 30, 60, 90, and 120 min after drug administration. Injection of
vehicle into the tumor-bearing hindpaw did not alter paw withdrawal frequencies which
remained approximately 85% throughout the time course. Injection of WIN 55,212-2 into the
tumor-bearing hindpaw dose-dependently decreased mean paw withdrawal frequencies (figure
1). WIN 55,212-2 at doses of 2.5, 5, and 10μg significantly decreased the paw withdrawal
frequencies compared to vehicle (p<0.05). These data indicate that peripherally administered
WIN 55,212-2 attenuated tumor-evoked mechanical hyperalgesia dose-dependently.

To ensure that the antihyperalgesic effects were due to peripherally-mediated actions and not
systemic effects, WIN 55,212-2 was injected into the contralateral hindpaw and paw
withdrawal frequencies were determined in the tumor-bearing hindpaw. Intraplantar injection
of WIN 55,212-2 (10μg) or vehicle into the contralateral hindpaw did not alter paw withdrawal
frequencies in the tumor-bearing hindpaw which remained approximately 70% throughout the
time course (figure 2). These data indicate that the antihyperalgesic effects of locally
administered WIN 55,212-2 were not due to systemic effects.

2.3. Cataleptic effects of WIN 55,212-2
The bar test was used to determine whether intraplantar administration of WIN 55,212-2
produced catalepsy defined as an increase in the time spent with front paws on an elevated bar.
Prior to injection of WIN 55,212-2, naive mice only kept their front paws on the bar for
approximately 2 seconds (s). Intraplantar injection of vehicle or the highest dose of WIN
55,212-2 that produced antihyperalgesia (10μg) did not increase the duration of time mice spent
with their front paws on the bar (Figure 3). In contrast, intraplantar injection of 25μg of WIN
55,212-2 increased time spent on the bar at 30 minutes post administration (p<0.05). These
data indicate that intraplantar injections of higher doses of WIN 55,212-2 are capable of
producing catalepsy, but the decrease in paw withdrawal frequencies produced by the
antihyperalgesic doses of WIN 55,212-2 used in the present study are not due to catalepsy.

2.4. Contribution of CB1 and CB2 receptors to the effects of WIN 55,212-2
To determine the contribution of CB1 and CB2 receptors to the decrease in paw withdrawal
frequencies produced by WIN 55,212-2, selective cannabinoid receptor antagonists were co-
administered with WIN 55,212-2. Co-administration of the CB1 receptor antagonist AM251
(1μg) blocked the decrease in paw withdrawal frequencies produced by 10μg of WIN 55,212-2
(p<0.05, figure 4A). Co-administration of the CB2 receptor antagonist AM630 (1μg) also
blocked the decrease in paw withdrawal frequencies produced by 10μg of WIN 55,212-2
(p<0.05, figure 4B). These data suggest that the decrease in tumor-evoked mechanical
hyperalgesia following intraplantar injection of WIN 55,212-2 into the tumor-bearing hindpaw
was mediated by CB1 and CB2 receptors.

3. Discussion
In summary, local intraplantar injection of WIN 55,212-2 into the tumor-bearing hindpaw dose-
dependently attenuated tumor-evoked mechanical hyperalgesia. The antihyperalgesic effects
of WIN 55,212-2 were not the result of catalepsy and were blocked by co-administration of
either CB1 or CB2 receptor antagonists. Injection of WIN 55,212-2 into the contralateral
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hindpaw did not alter mechanical hyperalgesia in the tumor-bearing hindpaw. Overall, these
results show that local injection of WIN 55,212-2 attenuated tumor-evoked mechanical
hyperalgesia through activation of both peripheral CB1 and CB2 receptors.

3.1. Cannabinoid attenuation tumor-evoked hyperalgesia
Results from the present study agree with earlier studies where systemic administration of
cannabinoids attenuated tumor-evoked hyperalgesia following implantation of osteolytic
fibrosarcoma cells into the humerus (Kehl et al., 2003) or into the calcaneus bone (Hamamoto
et al., 2007). However, in the present study, cannabinoids were administered directly to the
site of the tumor and decreased tumor-evoked mechanical hyperalgesia exclusively through
peripheral mechanisms rather than through systemic administration which presumably has both
central and peripheral components (Kehl et al., 2003; Hamamoto et al., 2007). The present
study also found that WIN 55,212-2 attenuated tumor-evoked hyperalgesia through both
CB1 and CB2 receptors while prior studies (Kehl et al., 2003; Hamamoto et al., 2007) found
that systemic administration of cannabinoids only attenuated tumor-evoked hyperalgesia
through activation of CB1 receptors. Our results also agree with a recent report that showed
local administration of WIN 55,212-2 or the CB2 receptor agonist AM1241 attenuated tumor-
evoked mechanical hyperalgesia in a murine model of cancer pain using human oral squamous
cell carcinoma cells (Guerrero et al., 2008). Thus, in two separate murine cancer pain models
that utilize different cancer cell lines, fibrosarcoma and squamous cell carcinoma, activation
of both peripheral CB1 and CB2 receptors produced antihyperalgesia. Further studies should
determine if changes in endocannabinoid tone occur in the tumor microenvironment and
possibly affect tumor-evoked hyperalgesia.

3.2. Peripheral mechanisms of cannabinoid antihyperalgesia
A great deal of evidence has accumulated in recent years showing that local, site-directed
administration of cannabinoids can attenuate hyperalgesia in a variety of animal pain models
through peripheral mechanisms. Peripheral administration of cannabinoids produced
antihyperalgesic effects in animal models of inflammatory pain (Richardson et al., 1998;
Amaya et al., 2006; Gutierrez et al., 2007), neuropathic pain (Fox et al., 2001; Guidon and
Beaulieu, 2006), heat injury (Johanek and Simone, 2004), and capsaicin-evoked hyperalgesia
(Johanek at al., 2001) through activation of CB1 receptors. Interestingly, we also found that
the antihyperalgesic effects of WIN 55,212-2 on tumor-evoked mechanical hyperalgesia were
due to activation of CB2 receptors. This observation is also consistent with earlier studies in
which activation of CB2 receptors produced both antinociception and antihyperalgesia in a
variety of pain models. Peripheral or systemic administration of selective CB2 receptor agonists
produced antinociception to heat (Malan Jr. et al., 2001; Ibrahim et al., 2005; Ibrahim et al.,
2006) and attenuated hyperalgesia produced by carrageenan (Nackley et al., 2003;Quartiho et
al., 2003; Elmes et al., 2005; Gutierrez et al., 2007), capsaicin (Hohmann et al., 2004), and
neuropathic injury (Ibrahim et al., 2003). Peripheral injection of CB2 receptor agonists also
decreased mechanically-evoked responses of nociceptive spinal cord neurons following
carrageenan-evoked inflammation and spinal nerve ligation (Elmes et al., 2004).

The underlying peripheral antihyperalgesic mechanisms responsible for the decrease of tumor-
evoked mechanical hyperalgesia by WIN 55, 212-2 are not yet known. A recent study using
mice with a conditional knockdown of CB1 receptors in Nav1.8-expressing nociceptive sensory
neurons found a loss of peripherally-mediated cannabinoid analgesia in models of neuropathic
and inflammatory pain (Agarwal et al., 2007). Results from that study suggest the underlying
antihyperalgesic effects of peripherally administered cannabinoids may result from activation
of CB1 receptors located on nociceptive primary afferent fibers (Agarwal et al., 2007).
Additionally, intraplantar administration of the selective CB1 agonist, arachidonyl-2-
chloroethylamide (ACEA), attenuated mechanically-evoked responses of nociceptive spinal
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cord neurons following carrageenan inflammation, which was also likely due to activation of
CB1 receptors on nociceptors (Kelly et al., 2003). Further support for that mechanism of action
is suggested by previous studies showing that activation of CB1 receptors can decrease high-
voltage activated calcium currents (Ross et al., 2001; Khasabova et al., 2002, 2004) and reduce
capsaicin-evoked calcium transients (Millns et al., 2001; Sagar et al., 2005) in nociceptive
dorsal root ganglion neurons. It is likely that activation of CB1 receptors on nociceptive primary
afferent fibers is responsible for the decrease in tumor-evoked mechanical hyperalgesia in our
study. Although the type of nociceptors affected by cannabinoids has not yet been determined,
it is possible that local administration of WIN 55,212-2 into the tumor-bearing hindpaw
decreases sensitization of C nociceptors. We have shown that a proportion of C nociceptors in
the skin overlying the tumor had ongoing activity and lowered response thresholds for heat
(Cain et al., 2001). Future studies should address the effects of cannabinoids on changes in the
response properties of nociceptors during tumor-evoked hyperalgesia.

WIN 55, 212-2 also decreased tumor-evoked mechanical hyperalgesia through activation of
CB2 receptors possibly on non-neuronal cells in the tumor microenvironment. Activation of
CB2 receptors on keratinocytes results in the release of endogenous opioids which mediates
the antinociception produced by CB2 receptor agonists (Ibrahim et al., 2005). However, there
is currently no evidence of opioid mobilization by WIN 55, 212-2. Previous studies have
demonstrated that peripherally administered opioid receptor agonists attenuate tumor-evoked
hyperalgesia through peripheral mechanisms (Menéndez et al., 2003; Menéndez et al., 2005;
Baamonde et al., 2005). It is likely that peripherally administered opioids have direct actions
on nociceptors during tumor-evoked hyperalgesia since both the response properties of
cutaneous C nociceptors and hyperalgesia are attenuated by local administration of morphine
in a rat model of inflammatory pain (Stein et al., 1993; Wenk et al., 2006). Future studies should
address the relationship between activation of CB2 receptors on the release of endogenous
opioids in attenuating tumor-evoked hyperalgesia and nociceptor activity.

3.3. Analgesic effects of cannabinoids in humans
Although numerous studies in animals demonstrate the antinociceptive and antihyperalgesic
properties of cannabinoids, very few studies have examined quantitatively their analgesic
efficacy in humans. A study using Δ-9- tetrahydrocannabinol, the main psychoactive
component of cannabis, found its analgesic efficacy was similar to codeine in patients with
cancer pain (Noyes Jr. et al., 1975). CT-3 (Karst et al., 2003) and ajulemic acid (Salim et al.,
2005), both analogs of Δ-9- tetrahydrocannabinol, were reported to have analgesic efficacy in
patients with chronic neuropathic pain. Additional controlled, clinical studies are needed to
address the therapeutic potential of cannabinoids in chronic pain states including cancer pain.

3.4. Conclusions
In conclusion, tumor-evoked mechanical hyperalgesia was dose-dependently attenuated by
local administration of WIN 55, 212-2 into the tumor-bearing hindpaw. The antihyperalgesia
produced by WIN 55,212-2 was mediated by both CB1 and CB2 receptors and not due to
systemic effects or catalepsy. Based on results from the present study, peripherally acting
cannabinoid receptor agonists may be useful to treat chronic cancer pain in humans either alone
or in combination with other therapies.

4. Experimental Procedures
4.1 Subjects

Adult (> 6 weeks old) male C3H/He mice weighing 25–29 grams were used for this study.
Animals were obtained from the National Institutes of Health (Frederick, MD), housed on a
12-hour light/dark schedule, and allowed ad libitum access to food and water. Each animal was
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used in only one experiment. All animal procedures and protocols were approved by the Animal
Care Committee at the University of Minnesota, and experiments were conducted according
to the guidelines established by the International Association for the Study of Pain.

4.2 Cancer cell implantation
NCTC clone 2472 fibrosarcoma cells were obtained from the American Type Culture
Collection (Manassas, VA) and were maintained and implanted as described previously
(Wacnik et al 2001). Briefly, fibrosarcoma cells were grown to confluency in 75 cm2 in NCTC
135 medium (Sigma Chemical, St. Louis, MO) with a pH of 7.4 and containing 10% horse
serum (ATCC, Manassas, VA). These fibrosarcoma cells were chosen because they are
syngenic with C3H/He mice. Fibrosarcoma cells were trypsinized, pelleted, and resuspended
in phosphate buffered saline (PBS) prior to implantation. Mice were placed in an enclosed
chamber and anesthetized with 2% halothane, and fibrosarcoma cells (2×105/10 μl PBS) were
injected unilaterally into and around the calcaneus bone in each animal’s left hind paw using
a 0.3ml insulin syringe. None of the mice used in this study displayed any motor dysfunction
following implantation of fibrosarcoma cells. Prior studies from our lab and others have
demonstrated that implantation of NCTC 2472 fibrosarcoma cells into and around the
calcaneus bone reliably results in tumor formation in the injected hindpaw that progressively
degrades the calcaneus bone beginning around post-implantation day (PID) six while also
infiltrating overlaying hypodermal tissue (Cain et al., 2001; Wacnick et al., 2001). Moreover,
prior studies from our lab and others have shown that mechanical hyperalgesia develops and
remains consistent between PID 6–16 (Cain et al., 2001; Wacnick et al., 2001).

4.3 Drug preparation and administration
(R)-(+)-[2,3-Dihydro-5-methyl-3-(4-morpholinylmethyl)py rrolo[1,2,3-de]-1,4-
benzoxazin-6-yl]-1-naphthalenylmeth anone mesylate (WIN 55,212-2), N-(Piperidin-1-yl)-5-
(4-iodophenyl)-1-(2,4-dichlorophen yl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and
6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-y l](4-methoxyphenyl)methanone
(AM630) were all purchased from Tocris Bioscience (Ellisville, MO). All drugs were prepared
in a stock solution of 5% Tween 80, 5% DMSO, and 90% saline, and then further diluted in
sterile physiological saline. All drugs were administered via subcutaneous intraplantar
injection in a volume of 10μl.

4.4 Measurement of mechanical hyperalgesia
Paw withdrawal response frequency evoked by mechanical stimulation was assayed using a
Semmes-Weinstein von Frey monofilament (3.4 mN bending force) (Stoelting, Wood Dale,
IL). Animals were placed on an elevated wire mesh platform under individual glass dishes and
allowed to acclimate to the testing environment for 30 minutes prior to testing. The filament
was applied to the plantar surface of each hindpaw ten times for 1–2 seconds with an
interstimulus interval of 5–6 seconds. Paw withdrawal response frequency was calculated as
the number of paw withdrawals elicited by von Frey filament stimulation divided by 10.
Baseline measures were determined for each animal for three days prior to fibrosarcoma cell
implantation, and animals were tested daily following implantation of fibrosarcoma to monitor
the development of mechanical hyperalgesia. Previous work from our lab and others has shown
that both sham-injected and naive mice do not differ in their paw withdrawal response
frequency which typically ranges between 10–20% (Cain et al., 2001; Wacnick et al., 2001).
Mechanical hyperalgesia was defined as a paw withdrawal frequency ≥ 70%. The experimenter
was blinded to the identity of drugs used.
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4.5 Measurement of Catalepsy
Catalepsy was assayed using the bar test (Kuschinsky and Hornykiewicz, 1972). Briefly, each
mouse was placed with forelimbs on a metal bar (1cm diameter) positioned 5cm above and
parallel to the counter top. The time (seconds) the animal spent with forelimbs on the metal
bar was recorded over a 60 second time period. Catalepsy was defined as a statistically
significant increase in the time spent on the metal bar. The experimenter was blinded to the
identity of drugs used.

4.6 Data Analysis
All data are presented as mean ± S.E.M. Within group comparisons at each dose of WIN 55,
212-2 (or vehicle) were made using one-way repeated measures ANOVA followed by paired
t-tests with the Bonferroni correction for multiple comparisons. Between groups comparisons
at each time point were made using one-way ANOVA followed by un-paired t-tests with the
Bonferroni correction. For all statistical analyses, a probability value <0.05 was considered
significant.
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Figure 1.
WIN 55,212-2 dose-dependently attenuates mechanical hyperalgesia in a murine model of
cancer pain. Local injection of 2.5, 5, or 10μg of WIN 55,212-2 into the tumor-bearing hindpaw
reduced the mean paw withdrawal frequency evoked by a suprathreshold von Frey
monofilament (3.4mN). * indicates a significant difference from vehicle (p<0.05).
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Figure 2.
Antihyperalgesia produced by intraplantar injection of WIN 55,212-2 occurred through
peripheral mechanisms. Administration of WIN 55,212-2 (10μg) into the contralateral hindpaw
did not decrease paw withdrawal frequencies in the tumor-bearing paw. This indicates that the
antihyperalgesia produced by injection of WIN 55,212-2 into the paw did not occur via
systemic uptake of the drug
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Figure 3.
Attenuation of tumor-evoked mechanical hyperalgesia following intraplantar injection of WIN
55,212-2 is not due to catalepsy. Neither vehicle nor 10μg of WIN 55,212-2 increased the
amount of time mice spent on the bar. However, intraplantar injection of the 25μg dose of WIN
55,212-2 produced catalepsy. *indicates a significant difference from vehicle (p<0.05).
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Figure 4.
CB1 and CB2 receptors contribute to the antihyperalgesia produced by WIN 55,212-2. Co-
administration of 1 μg of either the CB1 receptor antagonist, AM251 (A), or the CB2 receptor
antagonist, AM630 (B) with 10μg of WIN 55,212-2 attenuated the antihyperalgesia produced
by WIN 55,212-2. * indicates a significant difference from vehicle (p<0.05); # indicates a
significant difference from WIN 55,212-2 (10μg).
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