
Regulation of different inflammatory diseases by impacting the
mevalonate pathway

Introduction

Statins are widely used hypocholesterolaemic drugs that

inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-

CoA) reductase, the rate-limiting enzyme of the

mevalonate pathway. Initially this class of drugs was

established for their cholesterol-lowering effects in the

treatment of cardiovascular diseases.1 Recently, the pleio-

tropic immunomodulatory effects of these drugs have

attracted increasing interest. Initial evidence demonstrated

their effect in preventing and reversing relapsing paralysis

in experimental autoimmune encephalomyelitis, an ani-

mal model of multiple sclerosis (MS) – first demonstrated

in 20022 and confirmed by other studies.3–5 Statins affect

multiple cell populations relevant to the immune

response, including B cells,6 T cells,4,7–9 regulatory T

cells,10 macrophages,11 dendritic cells7,12 and endothelial

cells.13

Mechanistically it was shown that atorvastatin

decreased the expression of major histocompatibility

complex (MHC) class II, CD80 and CD86 on microglial

cells,2 an effect that may modulate antigen presentation

and T-cell costimulation. Similar observations were made

later in dendritic cells under conditions of graft-versus-

host-disease (GVHD)7 and B cells in lupus-prone mice.6

Statin-mediated modification of T-cell proliferation and

cytokine production acted via the mevalonate pathway

because the effects could be reversed by the addition of

L-mevalonate, the product of HMG-CoA reductase. That

observation indicated that molecules that are downstream

of the L-mevalonate pathway function as essential regula-

tors of T helper type 1 (Th1)/Th2 fate4 and suggests that
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Summary

The 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (sta-

tins) interfere with the mevalonate pathway. While initially developed for

their lipid-lowering properties, statins have been extensively investigated

with respect to their impact on autoantigen and alloantigen driven

immune responses. Mechanistically it was shown that statins modify

immune responses on several levels, including effects on dendritic cells,

endothelial cells, macrophages, B cells and T cells. Several lines of evi-

dence suggest that statins act in a disease-specific manner and are not

effective in each immune disorder. This review discusses possible modes

of action of statins in modulating immunity towards autoantigens and

alloantigens.
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inhibition of HMG-CoA reductase is a potential mecha-

nism to modulate pathogenic T-cell responses. Increased

production of Th2 cytokines can be protective in disease

states characterized by predominantly Th1 polarized

inflammatory conditions. Other mechanisms of a

subgroup of statins may include the modification of lym-

phocyte function-associated antigen 1 and interferon-

c-induced MHC class II expression.14

In light of the reports on statin-mediated effects in pre-

clinical models of autoimmunity,2,15,16 Table 1 clinical

studies have been performed in patients with MS,17,18

rheumatoid arthritis19 and chronic GVHD.20

Possible modes of action of statins in
modulating autoimmunity

Murine studies demonstrated the effects of statins in dif-

ferent autoimmune diseases. Interestingly in mouse mod-

els of systemic lupus erythematosus (SLE), atorvastatin

was ineffective.21 In humans it was recently reported that

the severity of SLE could be reduced by atorvastatin.22 A

similar effect was also seen when simvastatin was used.23

Interestingly, the reduction of the disease score was paral-

leled by prominent suppression of tumour necrosis factor

(TNF) concentration in the serum after 4 weeks of treat-

ment with simvastatin at a dose of 20 mg.23 A major can-

didate for the endothelial damage seen in patients with

SLE is TNF, so it may be speculated that suppression of

TNF levels after statin therapy might be one mechanism

by which restoration of endothelial functions occurs.

Another mechanism of action of statins in vasculitis is

that inhibition of protein isoprenylation can act directly

on endothelial function by increasing endothelial nitric

oxide synthase expression.24

Besides their anti-inflammatory and antithrombotic

actions, statins have also been reported as immunomodu-

lating agents, which act by inhibiting the transcription of

various genes induced by nuclear factor-jB (NF-jB) and

inhibiting interferon-d-induced human leucocyte antigen

(HLA) class II expression on endothelial cells.25 The sup-

pression of HLA class II expression contributes to

preventing local T-cell activation and this can minimize

Th1-driven autoimmunity in an SLE model.16

Further clinical studies on the therapeutic potential of

statins in patients with different inflammatory rheumatic

diseases refractory to conventional therapy demonstrated

that simvastatin (80 mg once daily for 8 days) induced a

rapid and significant reduction in proteinuria levels in

three patients with SLE.26 Also, simvastatin had a marked

beneficial effect in a patient with Wegener’s granulomato-

sis and a patient with erythema nodosum.26 Five patients

with rheumatoid arthritis who received atorvastatin for

8 days (20 mg/day) showed a reduction in C-reactive pro-

tein (CRP) levels and a clinical improvement that was

classified as an American College of Rheumatology (ACR)

20 response.26 Importantly, before the administration of

statins, all these patients had received aggressive conven-

tional therapy with no satisfactory response. A significant

reduction in spontaneous apoptosis of peripheral blood

lymphocytes and expression of CD69 and HLA-DR was

observed in SLE patients after simvastatin therapy.26

In a pilot short-term comparative (simvastatin versus

chloroquine) open clinical trial in 15 patients with rheu-

matoid arthritis 90% of the patients who received sim-

vastatin (40 mg/day) showed an ACR50 or better

response after 8 weeks, whereas such a response was not

observed in any patient (0/5) treated with chloroquine,26

suggesting that statins may be an important therapeutic

tool for the treatment of inflammatory rheumatic dis-

eases. Clinical studies on the anti-inflammatory and

immunomodulatory effects of low-dosage simvastatin on

rheumatoid arthritis demonstrated that the Th1/Th2 and

CD4/CD8 ratios in peripheral blood were significantly

reduced by simvastatin.27 Additional evidence that statins

may have an anti-inflammatory effect is provided by a

randomized trial that found that patients with rheuma-

toid arthritis experienced clinical improvement, reduced

CRP levels and lower erythrocyte sedimentation rates

when treated with atorvastatin compared with placebo

(Table 2).19

Regarding the mechanism of action, it was shown that

simvastatin inhibits cytokine production and NF-jB

activation in interleukin-1b (IL-1b)-stimulated synovio-

cytes from rheumatoid arthritis patients.28 Simvastatin

significantly inhibited the production of IL-6 and IL-8 in

IL-1-stimulated synoviocytes also, although to a lesser

extent than in unstimulated cells, via an HMG-CoA

reductase block with an interference in prenylation

process and NF-jB activation.28 These data support the

rationale for the use of statins in the treatment of

rheumatoid synovitis.

Multiple sclerosis is a chronic progressive inflammatory

disease with an immune response directed against myelin-

derived proteins.29 Different clinically applied therapies for

relapsing–remitting MS include the targeting of autoreac-

tive T-cell activation with glatiramer acetate, inhibition of

immunocompetent cell migration into the central nervous

system (interferon-b), and the suppression of the inflam-

matory response (e.g. by glatiramer acetate, mitoxan-

trone).30 Based on murine studies of experimental

autoimmune encephalomyelitis, an animal model of

MS,2,31 statins are promising candidates for the treatment

of MS, possibly in combination with other treatments such

as glatiramer acetate.32 The murine studies demonstrated

that atorvastatin induces a shift from a Th1 to a Th2 cyto-

kine profile (Table 1).2 The immunomodulatory effects of

statins resulted in the inhibition of central nervous system

lesion formation, and the delayed onset and ameliorated

severity of experimental autoimmune encephalomyeli-

tis.2–4,31 Beside the impact on antigen-presenting cells and
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the Th1/Th2 cytokine profile, (Fig. 1) recent data suggest

that simvastatin induces the expression of suppressor of

cytokine secretion (SOCS) 3 and 7 in monocytes, which

inhibit transcription of IL-6 and IL-23, cytokines that play

an important role in the development of the autoimmune

response in MS.33 Induction of SOCS3 by statins may have

an inhibitory effect on multiple inflammatory cytokine sig-

nal transduction pathways that mediate the autoimmune

response. The messenger RNA of IL-17 is elevated in active

MS brain lesions,34 which may provide an additional expla-

nation for the effectiveness of simvastatin in MS as the drug

inhibits IL-17 secretion by targeting several IL-17-regula-

tory cytokines and by inhibiting the expression of the IL-17

transcription factor RORC in CD4+ T cells.33

In the light of these results from rodent models, clinical

trials on statins for MS were initiated. An initial pilotT
ab

le
2.

C
li

n
ic

al
tr

ia
ls

o
n

th
e

an
ti

-i
n

fl
am

m
at

o
ry

ef
fe

ct
s

o
f

st
at

in
s

D
is

ea
se

en
ti

ty
E

xp
er

im
en

ta
l

d
es

ig
n

(n
u

m
b

er
o

f
p

at
ie

n
ts

)
O

b
se

rv
ed

ef
fe

ct
s

St
at

in
R

ef
er

en
ce

C
o

ro
n

ar
y

ar
te

ry

d
is

ea
se

P
ro

sp
ec

ti
ve

p
re

tr
ea

tm
en

t
(n

=
57

42
)

R
ed

u
ct

io
n

in
C

R
P

se
ru

m
le

ve
ls

b
y

al
m

o
st

15
%

L
o

va
st

at
in

62

C
o

ro
n

ar
y

ar
te

ry

d
is

ea
se

P
ro

sp
ec

ti
ve

p
re

tr
ea

tm
en

t
p

ri
o

r
p

er
cu

ta
n

eo
u

s
co

ro
n

ar
y

in
te

rv
en

ti
o

n
s

(n
=

15
52

)

St
at

in
s

im
p

ro
ve

d
su

rv
iv

al
in

p
at

ie
n

ts
in

th
e

h
ig

h
es

t
C

R
P

le
ve

ls
M

u
lt

ip
le

st
at

in
s

61

M
u

lt
ip

le
sc

le
ro

si
s

P
ro

sp
ec

ti
ve

st
u

d
y,

st
at

in
s

gi
ve

n
d

ai
ly

o
ve

r
6

m
o

n
th

s
(n

=
30

)
Si

gn
ifi

ca
n

t
re

d
u

ct
io

n
o

f
co

n
tr

as
t-

en
h

an
ci

n
g

b
ra

in
le

si
o

n
s

b
y

M
R

I
Si

m
va

st
at

in
17

M
u

lt
ip

le
sc

le
ro

si
s

P
ro

sp
ec

ti
ve

p
h

as
e

II
o

p
en

-l
ab

el
st

u
d

y
st

at
in

±
IF

N
-b

(n
=

41
)

M
R

I
an

al
ys

is
in

d
ic

at
es

a
p

o
ss

ib
le

b
en

efi
ci

al
ef

fe
ct

o
f

at
o

rv
as

ta
ti

n

n
o

m
aj

o
r

to
xi

ci
ty

A
to

rv
as

ta
ti

n
18

R
h

eu
m

at
o

id

ar
th

ri
ti

s

D
o

u
b

le
-b

li
n

d
,

ra
n

d
o

m
iz

ed
p

la
ce

b
o

-c
o

n
tr

o
ll

ed
tr

ia
l

(n
=

11
6)

C
R

P
an

d
E

SR
d

ec
li

n
ed

,
Sw

o
lle

n
jo

in
t

co
u

n
t

re
d

u
ce

d
,

cl
in

ic
al

re
sp

o
n

se
in

31
%

A
to

rv
as

ta
ti

n
19

SL
E

P
ro

sp
ec

ti
ve

an
al

ys
is

,
n

o
n

-r
an

d
o

m
iz

ed
(n

=
64

tr
ea

te
d

,

24
u

n
tr

ea
te

d
)

Si
gn

ifi
ca

n
t

in
cr

ea
se

in
fl

o
w

-m
ed

ia
te

d
d

il
at

io
n

A
to

rv
as

ta
ti

n
22

C
h

ro
n

ic
G

V
H

D
P

ro
sp

ec
ti

ve
o

p
en

tr
ia

l,
p

h
as

e
I,

n
o

n
-r

an
d

o
m

iz
ed

(n
=

18
)

C
li

n
ic

al
re

sp
o

n
se

in
30

%
,

tr
en

d
to

w
ar

d
s

T
h

2
cy

to
ki

n
es

in
re

sp
o

n
d

er
gr

o
u

p

P
ra

va
st

at
in

20

A
cu

te
G

V
H

D
R

et
ro

sp
ec

ti
ve

an
al

ys
is

,
ac

u
te

G
V

H
D

(n
=

49
)

Si
gn

ifi
ca

n
tl

y
re

d
u

ce
d

G
V

H
D

in
ci

d
en

ce
in

st
at

in
gr

o
u

p
,

n
o

in
cr

ea
se

in
le

u
ka

em
ia

re
la

p
se

M
u

lt
ip

le
st

at
in

s
45

C
R

P
,

C
-r

ea
ct

iv
e

p
ro

te
in

;
E

SR
,

er
yt

h
ro

cy
te

se
d

im
en

ta
ti

o
n

ra
te

;
G

V
H

D
,

gr
af

t-
ve

rs
u

s-
h

o
st

d
is

ea
se

;
M

R
I,

m
ag

n
et

ic
re

so
n

an
ce

im
ag

in
g;

SL
E

,
sy

st
em

ic
lu

p
u

s
er

yt
h

em
at

o
su

s;
T

h
2,

T
h

el
p

er
ty

p
e

2.

Statins

Acetyl-CoA

(HMG-CoA)
3-hydroxy-3-methylglutaryI-CoA

HMG-CoA
synthase

Thiolase
Acetoacetyl-CoA

Mevalonic acid

HMG-CoA
reductase

Mevalonate kinase
Mevalonate-5-phosphate

Mevalonate-5-PP

Isopentenyl-5-PP

Geranyl-PP

Farnesyl-PP
Farnesol

Dolichols

Squalene All-trans Geranyl-

T-cell activation

Th1/Th2 polarization

Cell migration

geranyl-PP

Cholesterol

Rho
Rac

Rap
Ras

o
3

3

2

o

o
o o

o-o
2

P P

P P

o
o

o- o-

o-o-

o-

Phosphomevalonate kinase

Mevalonate-5-PP decarboxylase

2-cis-Geranylgeranyl-PP

Figure 1. Inhibition of the l-mevalonate pathway for immunomodu-

lation. Statins interfere with 3-hydroxy-3-methyl-glutaryl-coenzyme

A (HMG-CoA) reductase, the rate-limiting enzyme of the l-mevalo-

nate pathway which causes reduction of farnesylated and geranylger-

anylated downstream proteins. Besides others, the GTPases Ras,

Rho-B and Rap-1 that play a role in the process of activation and

proliferation of T cells are not prenylated, which affects their binding

to the T-cell membrane. This shift in active GTPase signalling is con-

nected to a blockade of T helper type 1 (Th1) cytokine production.
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study with oral simvastatin given daily over 6 months

showed a significant reduction of contrast-enhancing

lesions on brain magnetic resonance images from 30

patients with remitting–relapsing MS compared with a

3-month baseline period.17 A more recent study showed

that treatment with high-dose atorvastatin (80 mg daily)

over a period of 9 months is safe and is well tolerated in

the majority of patients.18 Interestingly, a pronounced

reduction in number and volume of contrast-enhancing

lesions was observed under treatment when compared

with baseline. In this clinical study, neither a disturbed

proliferative response nor an inhibition of proinflamma-

tory cytokines was observed in the treated MS patients

and high-dose atorvastatin did not exhibit overall periph-

eral immunosuppressive effects.18 However, an upregula-

tion of IL-10 production was observed in patients treated

with atorvastatin, indicating an atorvastatin-mediated

involvement of regulatory mechanisms in vivo.18 Based on

these clinical studies as well as the data from the rodent

models, statins hold promise for the effective treatment of

MS, most likely in combination with other immunomod-

ulatory medications.

Possible modes of action of statins in
modulating alloantigen-driven immunity

Cardiac transplant recipients have a high incidence of

hyperlipidaemia, which was the initial indication for sta-

tin administration in these patients. Interestingly, statin

therapy improved patient survival and reduced the inci-

dence and severity of transplant vasculopathy and allo-

graft rejection.35 The effect of pravastatin therapy on

the incidence of transplant vasculopathy was evaluated

in a randomized, prospective open-label trial of 97

transplant recipients.36 Independent from its effects on

the lipid profile, pravastatin was associated at 1 year

with a significant reduction in the incidence of trans-

plant vasculopathy as determined by angiography or

autopsy, a lower maximal intimal thickness and a signif-

icant increase in patient survival,36 which was still seen

at the 10-year follow-up study.37 Therefore, it was

hypothesized that the benefits of statins may be related

to a number of other factors including the attenuation

of endothelial dysfunction,38 and immunosuppressive

activity.39

In kidney transplantation, chronic allograft nephro-

pathy still remains one of the leading causes of renal allo-

graft loss. In a rat model atorvastatin showed favourable

effects on blocking renal inflammation and fibrosis, and

consequently it efficiently inhibited the development and

progression of chronic allograft nephropathy, which

improved the long-term survival rate of renal allografts.40

In an experimental model of cyclosporin A nephrotoxi-

city, Li et al.41 reported the inhibitory effects of prava-

statin on macrophage infiltration and interstitial fibrosis.

Atorvastatin downmodulated lymphocyte cellular infiltra-

tion and the expression of osteopontin in renal allografts

in the early stages after kidney transplantation.42 In addi-

tion, statin therapy resulted in the downregulation

of transforming growth factor-b-inducible gene h3, which

is associated with reduced endothelial nitric oxide

synthesis.43

We have previously shown that statins effectively

reduce acute GVHD in a murine model. The effect of sta-

tins was through Th2 induction as increased levels of

intracellular IL-4 and reduced TNF and interferon-c pro-

duction were found.7 Also, when T cells from animals

deficient for signal transducer and activator of transcrip-

tion 6, which almost completely lack Th2 responses,44

were used as donors for GVHD induction the protective

effect of statins was partially antagonized.7

So far the effect of statins on GVHD has been investi-

gated in two clinical studies. The first study was a pro-

spective non-randomized study including 18 patients

with refractory chronic GVHD. In this trial, pravastatin

was given orally at a dose of 10 mg/day, with an

increase up to 40 mg/day in 4 weeks.20 While there were

no severe adverse events observed in the pravastatin

group, the overall response rate was 28%. Th1 cells were

found in 94% of the patients before treatment and the

Th1/Th2 ratio tended to be lower in the responders than

in the non-responders. In the second study, 67 consecu-

tive patients with acute leukaemia underwent T-cell–

replete allogeneic haematopoietic cell transplantation.45

Patients taking any type of statins at 40 mg/day or more

for at least 1 month before and 3 months after allo-

geneic stem cell transplantation (n = 10) were compared

with those without a history of statin use (n = 57).

Acute GVHD was scored according to modified Glucks-

berg criteria.46

No difference in the incidence of chronic GVHD was

seen in patients using statins (55%) compared with

those in the no-statin group (57%; P = 0�9). No patient

in either group experienced primary or secondary

engraftment failure. On subgroup analysis of patients

with acute myeloid leukaemia only (n = 49), a signifi-

cantly reduced incidence of grades II–IV acute GVHD

was seen in the statin group (0%) compared with 43%

(n = 18) in the no-statin group (P = 0�02). Rates of

chronic GVHD were 43% and 58% in the statin and

no-statin groups, respectively (P = 0�68). We further

investigated whether statin use, while reducing acute

GVHD, mitigated the graft versus leukaemia effect in

patients with acute myeloid leukaemia.45 Kaplan–Meier

estimates of progression-free survival at 3 years in acute

myeloid leukaemia patients with or without statin use

were 54% and 28%, respectively (P = 0�17). This non-

significant trend of improved progression-free survival

indicates that the GVL is preserved in patients using

statins at the time of allografting.45
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Possible modes of action of statins in
modulating immunity towards inflammatory
mitogens in the arterial vessel wall

While initially contributed solely to lipid accumulation,47

dysregulated vascular smooth muscle cell homeostasis48

and calcification, recent evidence has revealed that

inflammation contributes significantly to atherosclerosis

and plaque rupture.49 Elevated serum markers of inflam-

mation, and promoter gene variants for IL-1b and IL-18

are associated with progression of atherosclerosis and are

predictive for a first myocardial infarction.49 Consecu-

tively, these markers of inflammation are associated with

a worse prognosis among patients with stable and unsta-

ble angina and those who undergo coronary stenting.49

Recent in vitro studies indicate that statins interfere with

the interactions between neutrophils and endothelial

cells. In an experimental in vitro setting, statins reduced

histamine and TNF-mediated proinflammatory effects

including neutrophil tethering and rolling which was

accompanied by lower P/E-selectin expression on endo-

thelial cells.50 Importantly, mevalonate pretreatment

abrogated the beneficial effects of statins on endothelial

cells. The results from another group demonstrate that

the mevalonate pathway downstream products are criti-

cal for monocyte adhesion to endothelial cells induced

by TNF or angiotensin II and that this process can be

inhibited by simvastatin.51 Recent in vitro studies

demonstrated that CRP-induced CD32 expression and

NF-jB activation in endothelial cells were blocked by

interferences with the mevalonate pathway, which is of

clinical relevance because the finding provides a rationale

for using statins on patients with high serum CRP

levels.52 Clinical evidence for the anti-inflammatory

effects of statins originates from the observation that sta-

tin therapy, given as primary or secondary prevention,

reduces the concentration of CRP in the serum, an

effect that is mostly unrelated to lipid levels at baseline

or during therapy.53–55 Statin-mediated anti-inflamma-

tory effects in atherosclerosis could contribute to the

benefit from the early institution of statin therapy in

patients with an acute coronary syndrome.55 Results

from different clinical trials raise the possibility that the

anti-inflammatory effects may differ among statins.56

While the first trials showed early benefit with atorvasta-

tin,57 the following trial on simvastatin revealed no

evidence of clinical benefit and no reduction in CRP.58

The potential importance of statin-induced reduction in

serum markers of inflammation was illustrated by an

analysis from the secondary prevention CARE trial.59

Patients with baseline serum concentrations of CRP and

the acute-phase protein amyloid A in the highest quin-

tile had a relative risk for a recurrent event 75% higher

than those with levels in the lowest quintile.59 This risk

reduction was not observed with all statins. For example,

when using pravastatin, the association between inflam-

mation and risk was attenuated and was no longer sta-

tistically significant.59 These data were compatible with a

prospective study of patients with angiographically severe

coronary disease showing that the improvement in

survival with statin therapy occurred primarily in those

with elevated serum CRP.60 Furthermore, a prospective

observational study of patients who underwent percuta-

neous coronary interventions demonstrated that pretreat-

ment with statins was associated with a marked

improvement in survival in those patients in the highest

CRP levels.61 Another prospective trial on lovastatin

demonstrated that this drug reduced serum CRP by

almost 15%.62 Interestingly, lovastatin was ineffective in

patients with a low CRP, which is consistent with the

hypothesis that statins are more effective when an

inflammatory condition is present. Mechanistically it was

suggested that statin-induced cardioprotection is medi-

ated by increasing inducible nitric oxide synthase and

consequent S-nitrosylation of cyclooxygenase-2.63

Another protective effect may arise from the impact of

statins on tissue factor. Tissue factor plays a pivotal role

in thrombus formation in acute coronary syndromes.

Endothelial tissue factor induction by thrombin is

regulated by Rho/Rho-kinase, Akt, and p38 mitogen-

activated protein kinase. Recently it was shown that

simvastatin prevented tissue factor induction through

inhibition of Rho/Rho-kinase and activation of Akt.64 In

summary the protective action of statins in acute coro-

nary syndromes is most likely to occur on several levels

of the local inflammatory response in the vessel wall.

Conclusions and perspectives

The effects of statins on alloresponses and autoimmuni-

ty2,36 by pleiotropic mechanisms indicate a central role

for the mevalonate downstream products in immunity.

Mechanistically it was shown that isoprenoids that are

downstream of the mevalonate pathway function as

essential regulators of Th1/Th2 fate in T cells and are

most likely relevant for the fate of other immune cells

such as B cells, dendritic cells, macrophages and endo-

thelial cells towards a tolerogenic versus proinflammatory

phenotype.
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