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Abstract We assume that Hebbian learning dynamics

(HLD) and spatiotemporal learning dynamics (SLD) are

involved in the mechanism of synaptic plasticity in the

hippocampal neurons. While HLD is driven by pre- and

postsynaptic spike timings through the backpropagating

action potential, SLD is evoked by presynaptic spike tim-

ings alone. Since the backpropagation attenuates as it nears

the distal dendrites, we assume an extreme case as a neuron

model where HLD exists only at proximal dendrites and

SLD exists only at the distal dendrites. We examined how

the synaptic weights change in response to three types of

synaptic inputs in computer simulations. First, in response

to a Poisson train having a constant mean frequency, the

synaptic weights in HLD and SLD are qualitatively similar.

Second, SLD responds more rapidly than HLD to syn-

chronous input patterns, while each responds to them.

Third, HLD responds more rapidly to more frequent inputs,

while SLD shows fluctuating synaptic weights. These

results suggest an encoding hypothesis in that a transient

synchronous structure in spatiotemporal input patterns will

be encoded into distal dendrites through SLD and that

persistent synchrony or firing rate information will be

encoded into proximal dendrites through HLD.

Keywords Spike-timing-dependent plasticity �
Cooperative plasticity � Spatiotemporal learning rule �
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Introduction

The hippocampus is one of the most important brain areas in

learning and memory (Abraham and Bear 1996; Martin et al.

2000). Regarding synaptic plasticity, long-term potentiation

(LTP) and long-term depression (LTD) are well-known

phenomena in response to tetanic stimuli of high and low

frequencies. Since LTP and LTD in the hippocampus have

time scales of hours and days, synaptic plasticity is believed

to play an important role in mid-term learning and memory.

Synaptic transmission is strengthened only if the pre-

and postsynaptic elements are simultaneously activated

(Hebb 1949). Learning rules governing synaptic efficacy in

the hippocampal area have been proposed by many

researchers (LeMasson et al. 1993; Sjostrom et al. 2001;

Daoudal et al. 2002). The Hebbian rule has been widely

validated in various cortical areas and has been variously

modified (Frey and Morris 1997; Turrigiano et al. 1998;

Froemke et al. 2002).

However, several recent physiological data have shown

that changes in the synaptic efficacy depend on the temporal

difference between pre- and postsynaptic action potentials

in the cerebral cortex and hippocampus (Markram et al.

1997; Bi and Poo 1998; Abbott and Nelson 2000). This

phenomenon is termed ‘‘spike-timing-dependent plasticity

(STDP).’’ STDP is a rule of synaptic efficacy that states that

LTP occurs when a causal relationship exists between pre-

synaptic and postsynaptic firing, and LTD or no change

occurs otherwise. The firing rates of postsynaptic neurons

are considered to be stabilized and maintained because of

this synaptic competition. Thus, the STDP rule is thought to

regulate neuronal activity levels within the optimum

response band (Song et al. 2000). The action potentials of

postsynaptic neurons are backpropagated into the dendrites,

and this backpropagation has been considered to play a vital
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role in the STDP mechanism (Magee and Johnston 1997;

Stuart and Hausser 2001).

The backpropagated signal attenuates as it propagates

from the cell body to the dendrites. If the distance between

the dendrites and the soma is great, the effect on synaptic

plasticity should be correspondingly weak. However,

associative LTP or LTD can also occur in the absence of

postsynaptic firing. These data suggest that synaptic plas-

ticity can be caused by local interactions at the synapse

alone in absence of backpropagated signals. In fact, recent

studies reported that these dendritic backpropagating action

potentials are attenuated depending on the distance from the

soma (Hoffman et al. 1997; Golding and Staff 2001), and

LTP can occur at the synapses of the distal dendrites of the

hippocampal CA1 pyramidal neurons even in the absence of

postsynaptic somatic spikes (Golding et al. 2002; Aihara

et al. 2005; Tsukada et al. 2005). In addition, it is suggested

that the pyramidal neurons in the hippocampal CA1 area are

highly sensitive to the spatiotemporal patterns of input

stimuli. The stimuli that showed negative correlations in

successive inter-stimulus intervals produced smaller LTPs

than those that showed no correlation, while those that

showed positive correlations produced larger LTPs (Tsuk-

ada et al. 1996). This led to the proposal of the

‘‘spatiotemporal learning rule,’’ which states that synaptic

weights are modified by local spatiotemporal patterns of

spikes from presynaptic neurons (Tsukada et al. 1994,

1996; Aihara et al. 1997; Tsukada and Pan 2005). These

data suggest that there are two mechanisms of synaptic

plasticity: one driven by pre- and postsynaptic spike tim-

ings, and another evoked by presynaptic spike timings only.

We assume that both these dynamics are involved in the

mechanism of synaptic plasticity in the hippocampal neu-

rons. To enable clear distinction between the two

dynamics, we have termed these the Hebbian learning

dynamics (HLD) and Spatio-temporal learning dynamics

(SLD). While HLD is driven by pre- and postsynaptic spike

timings, SLD is evoked by presynaptic spike timings alone.

We therefore assume that synaptic efficacy depends on the

total effect of these dynamics. Since the backpropagating

action potential attenuates as it nears the distal dendrites,

HLD may be weaker in the synapses of distal dendrites

than in those of the proximal ones. To elucidate these

functional differences, we assume an extreme case as a

neuron model where HLD exists only at proximal dendrites

and SLD exists only at the distal dendrites. In reality, we

think that HLD and SLD may coexist in a single synapse.

Methods

Each pyramidal neuron in the hippocampal CA1 area

receives projections via Schaffer collaterals from

approximately 5,000 pyramidal neurons in the CA3 area

(Amaral et al. 1990). We focused on one postsynaptic

neuron (a pyramidal cell) in the CA1 area and its excitatory

synapses, which were assumed to receive input spikes from

CA3 neurons (Fig. 1). The dendritic area of the model

neuron can be divided into two parts: proximal dendrite

(PD) and distal dendrite (DD). We assume that two types of

synaptic dynamics are involved in these dendrites. In the

sections below, the dynamics of the neuronal membrane

potential and the two types of synapses are explained.

Dynamics of membrane potential

We adopted a leaky integrate-and-fire neuron model as a

postsynaptic neuron, whose subthreshold membrane

potential V(t) obeys the following equation:

dVðtÞ
dt
¼ � 1

s
VðtÞ þ IðtÞ; ð1Þ

where I(t) is the magnitude of synaptic inputs at time t, and

s is the time constant of neuronal membrane decay. When

V(t) reaches the threshold h, a spike is generated, and the

membrane potential is reset to Vreset, where 0 B Vreset\ h.

The dendritic area of this model was assumed to have two

parts: proximal dendrite (PD) and distal dendrite (DD). In

addition, we assumed that each presynaptic neuron projects

to both dendritic areas, with one synapse for each dendritic

area (Figs. 1, 2). Since the number of presynaptic neurons

was set to N = 100, the number of synapses was 200.

We assume that xi(t) represents the firings of i-th pre-

synaptic neuron as follows:

xiðtÞ ¼
X

k

dðt � t
ðiÞ
k Þ; ð2Þ

where d is the Dirac delta function and tk
(i) is the timing of

the k-th spike of the i-th neuron. The synaptic input I(t)

through the synapses in PD and DD is represented by the

following equation:

Fig. 1 Schematic drawing of a hippocampal slice. The square
delineates the area of simulation analysis in this study. DG dentate

gyrus, F fimbria, GC granule cell, PP perforant path, S subiculum, SC
Schaffer collateral
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IðtÞ ¼
XN

i¼1

wPD
i ðtÞxiðtÞ þ

XN

j¼1

wDD
j ðtÞxjðtÞ; ð3Þ

where wi
PD(t) represents the synaptic efficacy in the PD

from the i-th neuron, and wj
DD(t) represents the synaptic

efficacy in the DD from the j-th neuron. When i = j,

xi(t) = xj(t). However, synaptic modification rules differ

between the PD and DD, in which generally wi
PD

= wj
DD.

Dynamics of synaptic modification

On the basis of our series of experiments in the hippo-

campal CA1 neurons (Aihara et al. 1997), we assume that

the synaptic modification mechanism includes fast (10–

30 ms) and slow (150–250 ms) time courses. The fast

process consists of the time windows required to detect

spike timings between pre- and postsynapses (termed HLD

in this paper) or between pre- and presynapses (SLD),

while the slow process is a temporal summation of the

results of filtering by the time-window functions. The

details of the time-window functions are explained in

section ‘‘STDP window function.’’ Regarding the slow

process, it has been reported that LTP depends on the

amount of glutamate binding to the postsynaptic N-methyl-

D-aspatate (NMDA) channel, and that the quantity of bound

glutamate decays exponentially after binding (Lester et al.

1990). We assume that the quantity of glutamate can be

expressed by the following equation.

dGðtÞ
dt
¼ � 1

sg
GðtÞ þ dGðtÞ; ð4Þ

where G(t) is the quantity of glutamate, sg is the time

constant of exponential decay, and dG(t) is the degree of

glutamate binding. Since the decay rate is essential to the

sensitivity of temporal relations of spikes, the value of sg is

one of the most important parameters. On the basis of this

equation, two synaptic dynamics are formulated in the next

two sections. For example, the mechanisms of glutamate

binding represented by the term dG are different in the two

dynamics.

In this paper, to clarify the functional differences in

synaptic plasticity induced by HLD and SLD, we assumed

that the synaptic modification at the PD obeys only HLD

and that at the DD exclusively obeys SLD. The former

depends on the timings of pre- and postsynaptic spikes, and

the latter, on the timing of presynaptic spikes alone.

Spatio-temporal learning dynamics (SLD)

Spatio-temporal learning dynamics depends on the timing

of the presynaptic neuronal spikes, and postsynaptic neu-

ronal firing is not required. We assumed that the

presynaptic inputs at the neighboring synapses affect the

synaptic dynamics at the focused synapse #i. The quantity

of glutamate Gi
S(t) and its effect on synaptic efficacy wi(t)

were calculated according to the following equations:

dGS
i ðtÞ

dt
¼ � 1

sS
GS

i ðtÞ þ aS

Z Z t

0

xiðlÞwiðlÞKSðl� mÞ

XN

k 6¼i

xkðmÞwkðmÞ
( )

dldm;

ð5Þ

d

dt
wiðtÞ ¼ GS

i ðtÞ; ð6Þ

where sc is the decay time constant, aS is a proportional

constant of the synaptic modification caused by a single

input spike, and KS(Dt) is the window function, which

depends on the input timings of the presynaptic spikes.

In Eq. 5,

XN

k 6¼i

xkðmÞwkðmÞ

indicates the coincidence factor among the presynaptic

input spikes. The window function is concretely explained

in section of STDP window function.

Fig. 2 Schematic drawing of the circuitry in the hippocampal CA1

area (redrawn from Paulsen and Moser 1998). Pyramidal cells in the

hippocampal CA1 area project to c-aminobutyric acid (GABA)ergic

interneurons via feed-forward and feedback circuits. GABAergic

interneurons whose cell bodies are in the pyramidal cell layer (SP) of

the CA1 region and are activated in a feed-forward manner include

axo-axonic cells (AACs), basket cells (BCs), and bi-stratified cells

(BSCs). These contact the axon initial segments and the somatic and

dendritic compartments of the pyramidal cells. GABAergic feedback

loops include at least one short loop involving basket interneurons

and at least one long loop involving the horizontal cells (HCs) of the

stratum oriens-alveus (SO-A), which project to the stratum lacuno-

sum-molecular (SL-M). The interneurons in the hippocampus CA1

areas are merely illustrated to show the principles of organization, and

this is not an exhaustive list
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Hebbian learning dynamics (HLD)

Hebbian learning dynamics (HLD) is so named because it

depends on the temporal difference in the pre- and post-

synaptic neuronal spikes such as that explained by the

Hebbian rule. In HLD, the dynamics of the synaptic weight

wi(t) is calculated by the following equations:

d

dt
GH

i ðtÞ ¼ �
1

sh
GH

i ðtÞ þ ah

Z Z t

0

xiðlÞwiðlÞKh

ðl� mÞyðmÞdldm;

ð7Þ

d

dt
wiðtÞ ¼ GH

i ðtÞ; ð8Þ

where sh is the decay time constant, ah is a proportional

constant of the dendritic backpropagating action potential,

wi(t) represents the weight of synaptic efficacy from neuron

i at time t, Kh(Dt) is a spike-timing window function, and

y(t) is the output value (0 or 1) of the postsynaptic neuron.

The time-window function is explained in the next section.

STDP window function

According to the experiments by Bi and Poo (1998), the

synaptic modification rule yields temporally asymmetric

plots, wherein the horizontal axis indicates the temporal

differences in pre- and postsynaptic spikes, and the vertical

axis indicates the change in synaptic efficacy. These data can

be fitted to an exponential function as follows (Fig. 3A):

DW ¼
Ap exp � Dt

sp

� �
if Dt [ 0

�Ad exp Dt
sd

� �
if Dt\0

0 otherwise;

8
>><

>>:
ð9Þ

where sp and sd are the rates of exponential decays, and Ap

and Ad are the magnitudes of the changes in synaptic

efficacy. Dt indicates the temporal difference between the

timings of postsynaptic and presynaptic neuronal spikes,

i.e, Dt = tpost - tpre.

On the basis of results of the physiological experiments

that used hippocampal slices (Nishiyama et al. 2000;

Tsukada et al. 2005, 2007), we assume that the symmetric

window function depends on the spike timings of pre- and

postsynaptic neurons. Figure 3B shows the spike-timing

window function that was used for our simulations. This

difference in symmetry (Fig. 3A versus B) is attributable to

the experimental conditions: cells in culture and cells in

sliced organization. In the hippocampal slice, more com-

plicated local circuits, including target neurons as well as

GABAergic neurons such as basket cells (BS) and hori-

zontal cells (HC) are observed (Fig. 2). On the other hand, in

cell culture, one synapse with glutamate receptors in the

sparsely connected neurons is the target of observation.

Thus, the feedback and feed-forward inhibitory connections

in the slice may modify the asymmetric time-window plot to

a symmetric time-window plot, although the mechanism

underlying this modification remains yet to be elucidated.

Our STDP window function is assumed to have symmetrical

characteristics because the synaptic plasticity in the hippo-

campal circuit may effectively show the symmetry.

In our computer simulations, a Mexican hat function

such as that represented below was used as the symmetrical

window function.

KðDtÞ ¼ a 1� Dt

b

� �2
 !

exp � Dt

c

� �2
 !

; ð10Þ

where Dt is the difference in the firing times of the pre- and

postsynaptic neurons, and a, b, and c are the parameters

which characterize the shape of the window function

(Fig. 3B).

In this study, based on the results of the experiments, our

assumption is that both the time-window functions in SLD

and HLD are Mexican-hat type time windows.

Results

We performed three types of numerical experiments. First,

to clarify the fundamental characteristics of HLD and SLD,

BAFig. 3 Two types of STDP

window functions. (A)

Equation 9, (B) Equation 10

(a = 1.0, b = 14.0, c = 19.0)
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we examined the transitions of synaptic weights in

response to the frequency of input spikes. Since important

information is believed to be encoded in spatiotemporal

spike patterns in the hippocampus, we assume that syn-

chronous spikes and mean firing rates are two orthogonal

candidates for information representation. Therefore, in the

following two experiments, when a part of the inputs is

synchronous or very frequent, we would like to differen-

tiate the responses of HLD and SLD. Unless otherwise

stated, the parameter values are as follows: the membrane

time constant s is 10 ms, threshold theta is 25 mV, and

Vreset is 0 mV. The initial synaptic weights are uniformly

distributed in the range (0.9, 1.1). The synaptic weight has

a lower limit of 0.0 and an upper limit of 2.0.

Responses to mean frequency

As a first step to elucidate the differences between HLD

and SLD, we examined how the synaptic weights in each

type of dynamics changed in response to inputs with a

constant mean frequency. Instead of periodic trains, we

employed Poisson trains in order to ignore the periodic

effects of some specific temporal structures of input spikes

and to focus on the effects of the input frequency. The

interspike intervals (ISI) of the Poisson trains exhibit an

exponential distribution. The mean ISIs of the exponential

distribution for all synaptic inputs are set to be a constant

and they were the same in one trial in this simulation. We

observed the temporal change in the mean synaptic weights

over various mean ISIs of Poisson inputs. The range of

mean input frequencies is 1–100 Hz. The parameter value

b is set to 1.4, so as to balance the potentiation and

depression of the STDP window function.

Figures 4A and 5A show the temporal change in the

average synaptic weights in each type of dynamics in

response to the Poisson trains. In these figures, the hori-

zontal axis indicates time, the vertical axis indicates mean

frequency of input spikes, and the density indicates an

average synaptic weight. Figures 4B and 5B show histo-

grams of the synaptic weights of each type of dynamics at

several instants.

In both HLD and SLD, the mean synaptic weight

increases rapidly within 500 ms, then decreases gradually,

and finally converges to a constant value. The higher is the

input frequency, the larger is the maximum value and the

smaller is the convergent value of the mean synaptic

weights. The convergence is due to the temporal window

function (Fig. 3B). When more frequent Poisson trains are

provided as input, a greater number of input spikes will be

more delayed or advanced than the postsynaptic spike

timings. These temporal differences eventually contribute

to a reduction in G because the coverage of the depression

is wider than that of the potentiation in the window

function. Then, the synaptic weight decreases with some

delays. This regulation function is known to be one of the

characteristics of STDP (Song et al. 2000).

Most of the synaptic weights exhibit unimodal distri-

butions (see Figs. 4B, 5B in 50 and 90 Hz). Some

exceptions (bimodal distributions) are found in HLD.

When the input frequency is low (or high), a group of

synapses with highest (or lowest) synaptic weights emerges

as the learning proceeds (Fig. 5B in 20 Hz). According to

previous studies, synaptic weights with a multiplicative

STDP rule driven by random inputs result in a unimodal

distribution (van Rossum et al. 2000). The synapses in

HLD do not exhibit a unimodal distribution despite the

multiplicative STDP because the Hebbian input–output

interaction affects the synaptic weights. In other words, the

HLD synapse tends to drive an action potential more eas-

ily, once it has already driven it previously. On the

contrary, the previous study assumes that neuron firing is

uncorrelated with synaptic inputs, which leads to a uni-

modal distribution (van Rossum et al. 2000).

Response to temporally correlative inputs

Second, we investigate the different responses of HLD and

SLD when a specific part of the synaptic inputs is syn-

chronous. We set the average frequency of each synaptic

input to a lower level of 10 Hz. This is because the vari-

ances of synaptic weights on both dendrites are smaller at

this frequency according to the frequency response

(Figs. 4A, 5B). Synapses #46–#55 in each dendrite receive

synchronous inputs whose timings follow a Poisson pro-

cess, while the others receive other independent Poisson

trains (see Figs. 6A).

Figure 6B shows the action potential of the postsynaptic

neuron when locally synchronous spike patterns are input.

Figure 6C and D shows the distributions of synaptic

weights on the proximal dendrite (PD) (t = 1000 ms,

t = 2000 ms), and Fig. 6E and F shows the ones on the

distal dendrite (DD).

Initially, the weights of the distal synapses that received

synchronous spikes increased rapidly because of the coin-

cident detection of inputs by SLD. The weights increased

until they reached the upper limit (Fig. 7). During this

process, the weights potentiated by SLD enabled the neu-

ron to fire easily. Therefore, the postsynaptic neuron began

firing synchronously with the synchronous input after

t = 800 ms. The weights of proximal (HLD) synapses that

received synchronous spikes increased until they reached

their upper limit. In fact, their weights increased by

approximately 10% during t = 2000 ms. However, the

weights of synapses other than synapses #46–#55 in HLD

did not change significantly because of the weaker corre-

lation between the presynaptic inputs and the postsynaptic
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outputs. Finally, in DD (SLD), synapses that received

synchronous spikes potentiated remarkably to the upper

limit, while the others fluctuated around the initial value

(Fig. 6E, F). Ultimately, the synaptic weights are

determined by the value of G, which is essentially an

integrated value of the outputs of the window function.

Assuming that the synaptic weight is an integration of the

output of a stochastic process, it is analogous to the
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Fig. 4 Results of responses to

mean frequency in SLD. (A)

The temporal change in the

average synaptic weights in

response to the Poisson trains.

(B) Histograms of the synaptic

weights of SLD at 500, 1000,

3000 and 5000 ms
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distance from the origin in a random walk process where a

probability decides which way to go. The observed distri-

bution of the synaptic weights in response to a Poisson

process essentially corresponds to the Gaussian distribution

observed in the case of a random walk.

Response to more frequent inputs

Third, we studied a case in which a specific part of the syn-

aptic inputs had more frequent spikes. We assume that

synapses #46–#55 received inputs having a higher frequency
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Fig. 5 Results of responses to

mean frequency in HLD. (A)

The temporal change in the

average synaptic weights in

response to the Poisson trains.

(B) Histograms of the synaptic

weights of HLD at 500, 1000,

3000 and 5000 ms
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of 100 Hz, while the others received inputs having an aver-

age frequency of 10 Hz (See Fig. 8A). Each of the synaptic

inputs follows an independent Poisson process.

Figure 8B shows the action potential of the postsynaptic

neuron when more frequent spikes are locally input. Fig-

ure 8C and D shows the distributions of synaptic weights

on PD (t = 1000 ms, t = 2000 ms). With regard to the

distribution of synaptic weights, only those synapses that

received more frequent spikes on PD (HLD) were

strengthened until they were saturated, while the other

synapses on HLD and those on DD (SLD) fluctuated

around the initial value (Fig. 9). In the case of multiple

Poisson trains with a constant mean frequency, the rate of

coincident spikes per unit time increases in proportion to

the mean frequency. However, the weights of distal syn-

apses that received inputs having a higher frequency

fluctuated and were obviously not strengthened. This may

be due to the regulation caused by the window function’s

balance of effectively stronger depression: more frequent

potentiation and much more frequent depression. This

fluctuation process partly corresponds to a random walk

process, as discussed in the previous section.
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Fig. 6 Results of response to

temporally correlative inputs.

(A) Input stimulus. (B) The

action potential of the

postsynaptic neuron. (C) The

distributions of synaptic weights

on the proximal dendrite (PD) at

t = 1000 ms, and (D) at

t = 2000 ms. (E) The

distributions of synaptic weights

on the distal dendrite (DD) at

t = 1000 ms, and (F) at

t = 2000 ms
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Discussion

We assume that the PD of a model neuron obeys HLD and

the DD obeys SLD. Both dynamics comprise two impor-

tant factors: window function and temporal integration.

This is because our previous studies have shown that their

coincidence of input spikes and temporal summation can

explain the physiological data on synaptic plasticity in the

hippocampus (Aihara et al. 1997; Aihara et al. 2000;

Tsukada et al. 2007). In this study, we have introduced a

window function that detects the coincidence between

input–input relationships (SLD) and between input–output

relationships (HLD).Fig. 7 The time-course of mean synaptic weights of the response to

temporally correlative inputs
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Fig. 8 Results of response to

more frequent inputs. (A) Input

stimulus. (B) The action

potential of the postsynaptic

neuron. (C) The distributions of

synaptic weights on the

proximal dendrite (PD) at

t = 1000 ms, and (D) at

t = 2000 ms. (E) The

distributions of synaptic weights

on the distal dendrite (DD) at

t = 1000 ms, and (F) at

t = 2000 ms
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We examined how the synaptic weights change in

response to three types of synaptic inputs: Poisson trains

with (a) constant mean rates, (b) partial synchrony, and (c)

partial high rates. First, the synaptic weights in HLD and

SLD in response to a Poisson train having a constant mean

frequency are qualitatively similar: (1) they increase rap-

idly and converge to a constant; (2) the higher is the input

frequency, the lower is the convergent value; and (3) the

synaptic weights typically exhibit a unimodal distribution.

Second, SLD responds more rapidly than HLD to syn-

chronous input patterns, while both SLD and HLD respond

to them. In response to asynchronous inputs, the synaptic

weights in SLD fluctuate like a Gaussian distribution.

Third, HLD responds more rapidly to more frequent inputs.

The synaptic weights in SLD fluctuate in response to

asynchronous inputs.

These results suggest an encoding hypothesis in that a

transient synchronous structure in spatiotemporal input

patterns will be encoded into DD through SLD and that

persistent synchrony or firing rate information will be

encoded into PD through HLD. Recent physiological

experiments on rat hippocampal slices show that there are

two distinct inhibitory circuits: one transiently inhibits the

somatic regions of pyramidal cells, while the other acti-

vated in proportion to the rate of action potentials

persistently inhibits DD (Pouille and Scanziani 2004).

Assuming that this recurrent inhibition acts like a filter, the

rate information of action potentials is left at PD and their

temporal structure is emphasized at DD, which supports

our encoding hypothesis.

Although we assume two alternative types of dynamics,

SLD and HLD, it is possible that they coexist in real hip-

pocampal neurons. We will clarify the characteristics of

this hybrid synaptic plasticity in future works. Our study

concerns a fundamental mechanism behind encoding sen-

sory information into distributed synaptic weights in a

learning and memory system. To elucidate the learning

function of the hippocampus, decoding mechanisms as well

as encoding should be considered in modeling in future

works.
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