
RESEARCH ARTICLE

Working memory dynamics and spontaneous activity in a flip-flop
oscillations network model with a Milnor attractor

David Colliaux Æ Colin Molter Æ Yoko Yamaguchi

Received: 30 September 2008 / Revised: 3 February 2009 / Accepted: 3 February 2009 / Published online: 26 February 2009

� The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Many cognitive tasks require the ability to main-

tain and manipulate simultaneously several chunks of

information. Numerous neurobiological observations have

reported that this ability, known as the working memory, is

associated with both a slow oscillation (leading to the up and

down states) and the presence of the theta rhythm. Further-

more, during resting state, the spontaneous activity of the

cortex exhibits exquisite spatiotemporal patterns sharing

similar features with the ones observed during specific

memory tasks. Here to enlighten neural implication of

working memory under these complicated dynamics, we

propose a phenomenological network model with biologi-

cally plausible neural dynamics and recurrent connections.

Each unit embeds an internal oscillation at the theta rhythm

which can be triggered during up-state of the membrane

potential. As a result, the resting state of a single unit is no

longer a classical fixed point attractor but rather the Milnor

attractor, and multiple oscillations appear in the dynamics of

a coupled system. In conclusion, the interplay between the

up and down states and theta rhythm endows high potential

in working memory operation associated with complexity in

spontaneous activities.

Keywords Working memory � Up down states �
Theta rhythm � Chaotic dynamics � Cell assembly

Introduction

During the past 60 years, despite seminal observations

suggesting the existence and the importance of complex

dynamics in the brain (Nicolis and Tsuda 1985; Skarda and

Freeman 1987; Babloyantz and Destexhe 1986), fixed point

dynamics has been the predominant regime used to describe

brain information processing and more precisely to code

associative memories (Amari 1977; Hopfield 1982; Gross-

berg 1992). More recently, the increasing power of com-

puters and the development of new statistical mathematics

demonstrated less equivocally the necessity to rely on more

complex dynamics (e.g. Varela et al. 2001; Kenet et al.

2003; Buzsaki and Draguhn 2004). In that view, by

extending classical Hopfield networks to encode cyclic

attractors, the authors demonstrated that cyclic and chaotic

dynamics could encompass several limitations of fixed point

dynamics (Molter et al. 2007a, b).

During working memory tasks, tasks requiring the

ability to maintain and manipulate simultaneously several

chunks of information for central execution (Baddeley

1986), human scalp EEG (Mizuhara and Yamaguchi 2007;

Onton et al. 2005) and neural firing in monkeys (Tsujimoto

et al. 2003; Rainer et al. 2004) suggested that the theta

rhythm (4–8 Hz) plays an important role. The neural basis

of the working memory has been widely investigated in

primates by using delay to matching tasks. In these tasks,

the primate has to retain specific information during a short

period of time to guide a forthcoming response. Single cell

recordings has shown that during this delay period, some

cells located in specific brain areas had increased firing

rates (Fuster and Alexander 1971; Rainer et al. 1998).

How these cells can maintain sustained activity is not

solved. However, while the coding of information in

long-term memory is mediated by synaptic plasticity
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(e.g. Whitlock et al. 2006), it seems that working memory

and more generally short-term memory relies on different

mechanisms, potential candidates being that the information

is maintained in the network’s dynamics itself (Goldman-

Rakic 1995). Recent related observations reported the exis-

tence of slow oscillations in the cortex associated with

‘flip-flop’ transitions between bistable up- and down-states of

the membrane potential; Up-states, or depolarized states,

being associated with high firing rates of the cells during

seconds or more. The transition between up and down states

as well as the maintenance of high activity during up states

could be the result of network interactions, and the neural

basis for working memory (McCormick 2005).

Different models of working memory have been pro-

posed. According to the classification proposed by

Durstewitz et al. (2000), one type of model is based on a

cellular mechanism of bistability (e.g. Lisman and Idiart

1995). Another type follows to the tradition of classical

rate coding scheme proposed by (Amari 1977; Hopfield

1982; Grossberg 1992). In these models (e.g. Brunel et al.

2004; Mongillo et al. 2005), the associative memories are

coded by cell assemblies in a recurrent network where the

synaptic weights are usually pre-encoded according to a

Hebbian rule (Hebb 1949). As a result, the recovery of a

memory, i.e. of a cell assembly, leads to persistent activity

of that cell assembly through recurrent excitation. This

could be described as an up-state, while the attractor to the

resting state would be the down-state. Flip-flop transitions

between up- and down-states are regulated by applying

transient inputs.

Remarkably, these models neglect the presence, and

accordingly the possible contribution, of the theta rhythm

observed during working memory tasks. However, many

physics studies have demonstrated the powerful impact of

rhythms and oscillations on synchronization which in turn

could play an important role during working memory tasks.

Here, to conciliate the cell assembly theory with the

presence of brain rhythms, we hypothesize that during up-

states the firing rate is temporally modulated by an intrinsic

cellular theta rhythm. Synchronization among cellular

rhythms leads to dynamical cell assembly formation in

agreement with observation of EEG rhythms. Grounding

on two previous reports (Colliaux et al. 2007; Molter et al.

2008), we propose here the ‘‘flip-flop oscillation network’’

characterized by two different temporal and spatial scale.

First, at the unit scale, a theta oscillation is implemented,

second, at the network scale, cell assemblies are imple-

mented in the recurrent connections. We demonstrate how

the intrinsic cellular oscillation implemented at the unit

level can enrich, at the network level, the dynamics of the

flip-flop associative memory.

In the following section, we first formulate the flip-flop

oscillation network model. Then, we show that the dynamics

for a single cell network has an interesting attractor in term

of the Milnor attractor (Milnor 1985). Following that,

network dynamics in two coupled system is further ana-

lyzed. Finally, associative memory networks are elucidated

by focusing on possible temporal coding of working

memory.

Model

To realize up- and down-states where up-states are associ-

ated with oscillations, two phenomenological models are

combined. First, in tradition of Hopfield networks and the

theory of associative memories, each cell i is characterized

by its membrane potential Si, and is modulated by the

activity of other cells through recurrent connections

(Hopfield 1982). Second, to account for the presence of an

intrinsic oscillation, each cell is characterized by a phase /i.

The phase follows a simple phase equation defining

two stable states: a resting state and a periodic motion

(Yamaguchi 2003; Kaneko 2002; Molter et al. 2007c).

These two variables are coupled such that, first, an oscilla-

tion component cos /i produces intrinsic oscillation of the

membrane potential, second, the evolution of the phase

depends on the level of depolarization. As a result, the cell’s

dynamics results from the non linear coupling between two

simpler dynamics having different time constant. Thus, in a

network of N units, the state of each cell is defined by

fSi;/ig 2 < � ½0; 2p½ (i 2 ½1;N�) and evolves according to

the dynamics:

dSi

dt ¼ �Si þ
PN

j¼1 wijRðSjÞ þ Cð/iÞ þ Ii

d/i

dt ¼ xþ ðb� KðSiÞÞ sin /i

(

ð1Þ

with wij, the synaptic weight between cells i and j, R(Sj),

the spike density of the cell j, and Ii represents the driving

stimulus which enables to selectively activate a cell. In the

second equation, x and b are respectively the frequency

and the stabilization coefficient of the internal oscillation.

The spike density is defined by a sigmoid function:

RðxÞ ¼ 1

2
tanh gðx� 0:5Þð Þ þ 1ð Þ; ð2Þ

The couplings between the two equations, C and K
appear as follows:

Cð/iÞ ¼ rðcos /i � cos /0Þ
KðSiÞ ¼ qSi

�

ð3Þ

where q and r modulates the coupling between the internal

oscillation and the membrane potential, and /0 is the

equilibrium phase obtained when all cells are silent

(Si = 0); i.e. /0 ¼ arcsinð�x=bÞ.
The following set of parameters was used: x = 1,

b = 1.2 and g = 10. Accordingly, cos /0 � �0:55. q, r and

142 Cogn Neurodyn (2009) 3:141–151

123



wij are adjusted in each simulations. A C?? Runge–Kutta

Gill integration algorithm is used with a time step set to

h = 0.01 in first simulations and to h = 0.1 in Section

‘‘Working memory of cell assemblies’’ simulations (to fas-

ten the computation time). The variation of h leaded to no

visible dynamical change. If we consider that x = 1 rep-

resents the 8 Hz theta oscillation, one computational time

step represents 0:01=8=2p� 0:199 ms in first simulations

and *1.99 ms in last section.

One unit

For one unit, the dynamics in Eq. 1 simplifies to:

dS
dt ¼ �Sþ rðcos /� cos /0Þ þ I
d/
dt ¼ xþ ðb� qSÞ sin /

�

ð4Þ

Next paragraph analyzes the dynamics in absence of any

external input (I = 0). Then, to understand how

information is processed by a neural unit, we observe the

dynamics in response to different patterns of stimulation.

Fixed point attractors

When I = 0, since x\ b, the dynamics defined by Eq. 1

has two fixed points, M0 = (0,/0) and M1 = (S1,/1). The

linear stability of M0 is analyzed by developing the Jaco-

bian of the coupled Eq. 4 at M0:

DFjM0
¼ �1 �r sinð/0Þ
�q sinð/0Þ b cosð/0Þ

� �

ð5Þ

The eigenvalues are given by:

k1;2 ¼
1

2
g� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg� 1Þ2 þ 4ðqr sin2 /0 þ gÞ
q� �

ð6Þ

where g ¼ b cos /0: The linear stability of the fixed point

M0 is a function of the internal coupling between S and

/, l = qr. With our choice of x = 1 and b = 1.2, one

eigenvalue becomes positive and M0 becomes unstable for

l[ lc ¼ 0:96: Since l is the crucial parameter for the

stability of the resting state, we fixed here q = 1 and we

analyzed the dynamics according to r.

Figure 1a shows trajectories and nullclines in the three

possible scenario (l\ lc, l = lc and l[ lc). The two

fixed points M0 and M1 (defined by the intersection of the

two nullclines) merge for l = lc. To have a better

understanding of the dynamics, Fig. 1b shows the evolu-

tion of the Lyapunov exponents at M0 and M1 when r1 is

varied. Figure 1c shows how the two fixed points exchange

their stability at criticality. This corresponds to a trans-

critical bifurcation. Around the bifurcation our two

equations (Eq. 1) can be reduced to the normal form of the

bifurcation:

dx1

dt ¼ ax2
1 þ k1x1

dx2

dt ¼ k2x2

ð7Þ

Figure 2 shows how the fixed points changed stability

according to the variation of k1.

For the fixed point M0:

a b

c

Fig. 1 Fixed points analyses for one cell. a Cylinder space (S,/) with

nullclines (orange for dS/dt = 0, yellow for d//dt) and some

trajectories. Left to right shows the three possible scenario: M0 is

stable fixed-point for l\lc, M0 is the Milnor attractor for l = lc

and M0 is unstable fixed-point for l[lc. b Evolution of the two

Lyapunov exponents of the system at M0 (in blue) and M1 (in green)

in function of r (q = 1). As expected, one exponent becomes null at

r = lc. c Evolution of the two fixed points, M0 and M1, when r is

varied. l = lc corresponds to a transcritic bifurcation

1 Lyapunov exponents aims to quantify the dependency of the

dynamics to infinitesimal perturbation. They are computed here

analytically as the eigenvalues of the Jacobian (see Ott 1993).
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l\ lc: both Lyapunov exponents are negative. All

trajectories converge to the trajectories M0 which is

accordingly stable. The other fixed point, M1, is unstable

with /1 \ /0 and S1 [ S0;

l[ lc: one Lyapunov exponent is negative while the

other is positive. It corresponds to the co-existence of

both attracting and diverging trajectories. Trajectories

attracted to M0 escape directly from it. M0 corresponds

to an unstable fixed point. M1 is stable with /1 [ /0 and

S1 \ S0;

l = lc one Lyapunov exponent is negative. Accord-

ingly, the basin of attraction of M0 has a positive

measure and many trajectories are attracted to it.

However, since the other Lyapunov exponent equals

zero, it exists an ‘unstable’ direction along which the

dynamics can escape due to infinitesimal perturbation.

Accordingly, M0 does not attract all trajectories from an

open neighborhood and does not define a classical fixed

point attractor. However, it is still an attractor if we

consider Milnor’s extended definition of attractors

(Milnor 1985). At M0, the two nullclines becomes

tangent and the two fixed points merge, M0 = M1.

The particularity and interest of the Milnor attractor is

the following. For all values of l, any initial state of our

system is attracted and converges to a fixed point of the

system (M0 or M1). To escape from that fixed point, and to

perform an oscillation, a given amount of energy has to be

provided, e.g. as a transient input. The more l� lc or

l	 lc; the more the amount of energy required to escape

from that fixed point is important. By contrary, at the

Milnor attractor (or for l � lc;) the dynamics becomes

very receptive and an infinitesimal perturbation can push

the dynamics to iterate through an oscillation.

Response to a constant input

Under constant inputs, the dynamics of the system 4 can

either converge to a fixed point, either converge to a limit

cycle. To obtain a fixed point ðS
;/
Þ; d//dt must be equal

to zero in Eq. 4, which requires:

x
b� S


�
�
�
�

�
�
�
�\1 ð8Þ

and Eq. 4 becomes:

S
 ¼ rðcos /
 � cos /0Þ þ I
0 ¼ xþ ðb� rðcos /
 � cos /0Þ � IÞ sin /


ð9Þ

Figures 3 and 4a show the evolution of the dynamics for

various levels of input. Fixed points are obtained either

for small values of I (S \ (b-x) in Condition 8), either for

large values of I (S [ b in Condition 8). In between,

oscillatory dynamics occurs. The period of the oscillation

can be approximated by identifying S with its temporal

average, S and by solving the integral
R 2p

0
d/

xþðb�SÞsinð/Þ :

This approximation gives an oscillation at frequency x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � ðb� SÞ2

q
; which is in good agreement with

computer experiments (Fig. 3).

In Fig. 4a, the dynamics of our system of two equations

is compared with the dynamics obtained for r = 0 (i.e. for

a simple integrating unit as in the rate model) and for the

current output from the phase model (cos /). As expected

from Fig. 3, the coupling of the phase adds oscillation in a

large range of inputs, and, as a first order approximation,

our unit’s dynamics appears as a non-linear combination of

both dynamics.

Response to oscillatory input

Since the output of a unit can become the input to other

units and can contain oscillations, it is interesting to see

how a unit reacts to oscillatory inputs. Figure 4b shows the

dynamics obtained when considering an oscillating cur-

rents having an increasing frequency. The input current

follows the ZAP function, as proposed in (Muresan and

Savin 2007): I ¼ sinðatbÞ; with a ¼ 2p10�5 and b = 3.

Fig. 2 Normal form reduction near lc. The two nullclines _x1 ¼ 0 and

_x2 ¼ 0 appear. Plain arrows indicate the direction of the trajectories

for x2 = 0

input

frequency

SMax

Smin

0

0

1

4
2

0

2

3
6

0.4 0.8 1.2-0.4
-1

Fig. 3 Evolution of the maximum and minimum values of S, and of

the dominant frequency obtained by FFT when the input current is

varied
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Again the two limit cases are considered. First, when

r = 0 (third row), the unit becomes an integrating unit and

the membrane potential oscillates at the input frequency

but with exponential attenuation in amplitude. Second, for

the phase impact (fourth row), at slow input frequency

(lower than x), one or several oscillations are nested in the

up-state. When the input frequency is larger than x
(t [ 650 ms), oscillations follows the input frequency

which leads to faster oscillations with attenuation.

When the two dynamics are coupled (second row), at

very low frequencies (lower than 2 Hz), the dynamics goes

from fixed point dynamics to limit-cycle dynamics during

up-states. We propose that these oscillations at the theta

frequency occurring for positive currents could model the

increase of activity during ‘up-states’. For faster frequen-

cies of the input signal, but still slower than the phase

frequency x, one oscillation occurs during the up-state,

leading to higher depolarization of the membrane potential,

and an attenuation function of the frequency appears as a

result of the integration. At frequencies faster that the

phase frequency x, interference occur and generate higher

mode resonances.

Two coupled units

For sake of simplicity, we will discuss results obtained for

symmetrical connections (w12 = w21 = w). In the two

following simulations, the dynamics of the network is

analyzed after a transient excitation is applied to one unit.

Figure 5 analyzes the dynamics by looking at the extrema

of the membrane potential and by quantifying the phase

difference between the two units. The measure of syn-

chrony is obtained by dividing the time between the

maximum of the membrane potential of the two units,

dw ¼ tðSmax
1 Þ � tðSmax

2 Þ; by the period of the signal, T.

Accordingly, dw=T ¼ 0 corresponds to the two units

oscillating at same phase (phase locked), and dw=T ¼ 0:5

corresponds to the two units being antiphase locked.

The impact of different type of inputs is beyond the

scope of this paper and only the impact of a transient input

applied to one unit is considered.

From an Hopfield network to a flip flop network

For r = 0, the membrane potential is not influenced by the

phase and the system of two equations simplifies to a

classical recurrent network. Since Hopfield, that system is

well known for its ability to encode patterns as associative

memories in fixed point attractors (Hopfield 1982; Amit

1989; Durstewitz et al. 2000). In our two units network, if

the coupling strength w is strong enough (w larger than

0.68), the dynamics is characterized by two stable fixed

points, a down state (S1 = S2 = 0) and an up-state (visible

in Fig. 5a with S1 * 0.65). Applying a positive transient

input to one of the two cells suffices to move the dynamics

from the down-state to the up-state. In return, a negative

input can bring back the dynamics to the down state.

When increasing r, a small oscillation characterizes the

up-state and associative memory properties (storage and

completion) are preserved. The two cells oscillate at nearly

identical phases.

a b
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Fig. 4 Voltage response to input currents. a for current steps, b for

oscillatory input of increasing frequency. Upper figures show the

input pattern. Then, from up to down, the voltage response is shown

for our complex unit, then for a unit without phase modulation,

finally, when only the phasic output is considered
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For large values of r (i.e. large internal coupling), the

membrane potential saturates. The region of interest lies

before saturation when the membrane returns transiently

near the resting state and accordingly not so far from the

Milnor attractor. This leads to complex dynamics as shown

by the fractal structure of the local minima of S1 (lower part

of Fig. 5a). In that situation, a transient input applied

simultaneously to the two units would synchronize the two

units’ activity and after one oscillation, when the mem-

brane potentials cross the resting state, they stop their

activity and remain in the fixed point attractor (not shown

here).

Influence of the synaptic weight

Figures 5b and 6 show the impact of varying the synaptic

weight on the dynamics of the two units after transient

stimulation of one unit.

For small synaptic weights, the two units oscillate anti-

phase (Fig. 6a) and their membrane potentials periodically

a b
1

1 1
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Fig. 5 Extrema of the membrane potential during the up-state (Smin
1

and Smax
1 ) and normalized phase difference (Dw=T ¼ ð/2 � /1Þ=T)

for a two-unit network when either the internal coupling strength (a)

or the synaptic weight (b) is varied. Lower figures demonstrate the

presence of complex dynamics in specific region of the upper figures

by showing the bifurcation diagram for the local minima of the

membrane potential. For (a), w = 0.75. For (b), r = 0.9
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oscillation for intermediate coupling. c Down-state oscillation for weak coupling
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visit the resting state for a long time. The frequency of this

oscillation increases with the synaptic weights and for

strong synaptic weights (Fig. 6c), rapid in-phase oscillation

appear. In that situation, the oscillation does not cross

anymore the fixed point attractor, the dynamics remains in

up-state. For intermediate coupling strength, an interme-

diate cycle is observed and more complex dynamics occur

for a small range of weights (0.58 \ w \ 0.78 with our

parameters, Fig. 5b). The bifurcation diagram shows mul-

tiple roads to chaos through period doubling (Fig. 6b).

Working memory of cell assemblies

In this section, a network of N = 80 cells containing eight

strongly overlapped cell assemblies is simulated. Each cell

assembly contained 10 cells among which seven were

overlapping with other cell assemblies. The intersection

between two cell assemblies was limited to two cells. The

connectivity of the network was chosen bimodal: The

synaptic weights between cells lying in the same cell

assembly were chosen from the normal distribution

(l = 0.8 and r = 0.15), while the other weights were

chosen from the normal distribution (l = 0.2 and

r = 0.1).

To avoid saturation, a global inhibition unit has been

added to the network. This unit computes the total activity

of the network ðA ¼
P

RðSiÞÞ and inhibits all cell with the

following negative current:

D c A� jNð Þð Þ ð10Þ

where D(x) = -x for x [ 0 and 0 elsewhere; c defines the

strength of the inhibitory cell (here 0.1) and j (in %)

defines a threshold triggering the inhibition (here 0.03,

meaning that inhibition starts when more than 3% of cells

are activated).

Spontaneous activity

Figure 7 shows the spontaneous activity of the network, i.e.

in absence of any external stimuli. The upper part of the

figure shows the evolution of the membrane potential for

the 80 cells (each cell is represented by a different color).

The membrane potential is maintained around the Milnor

attractor (nearby the stable fixed point). The middle part in

Fig. 7 shows rasterplot of cells activity. Global inhibition

was tuned to prevent the simultaneous activation of mul-

tiple cell assemblies and each period is associated with the

activation of a specific subset of cells. Lower part in Fig. 7

quantifies the proportion of each cell assembly activated at

each time step. During the observed period, all cell

assemblies (characterized in the figure by a different color

and letter) are reactivated. It has to be noted that since cell

assemblies are overlapping, the total reactivation of a cell

assembly is necessarily associated with the partial reacti-

vation of other cell assemblies.

The activity of the network can be explained in the

following way: when one cell is activated, it tends to

)t(
S
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Fig. 7 Spontaneous activity in a 80 units network containing eight

overlapped cell assemblies of 10 cells each. The upper and the middle

figures show respectively the membrane potential and a rasterplot of

the activity of each individual cell (one color per cell). The lower

figure shows the reactivation of the different cell assemblies (each

assembly has its own color and letter). Periods of no-activity alternate

with periods of activity during which specific cell assemblies are

preferentially activated
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activate the cells belonging to the same cell assembly and

the activated cells undergo one oscillation before going

back to the resting state, nearby to the Milnor attractor. At

the Milnor attractor, any cell can be kicked out of the

attractor leading to the activation of a different or the same

cell assembly. As a result, the spontaneous activity of the

system is characterized by the Milnor attractor which

provides a kind of reset of the entire network, enabling the

activation of the different stored memories. The system

itinerates among the previously stored memories, with the

passage from one memory to a new one characterized by

the ‘‘ruin of the Milnor attractor’’ leading to a kind of

‘‘chaotic itinerancy’’ (Tsuda 1992; Kaneko 1992).

The overlapping structure of the cell assemblies can

influence the sequence of reactivation: The reactivation of

one specific cell assembly will tend to reactivate the cell

assemblies sharing common cells.

Working memory

In this section, after applying external stimuli during short

time periods to part of one or several cell assemblies

embedded in the network, we observe the network’s ability

to sustain the activity of these cell assemblies in agreement

with the theory of working memory. To reflect biologically

plausible conditions, cell assemblies were sequentially

activated during 100 computational time steps; i.e. approx-

imately 200 ms.

In the previous section, we saw that after the reactiva-

tion of one cell assembly, all cell assemblies are equally
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Fig. 8 Working memory in a 80 units network containing eight

overlapped cell assemblies of 10 cells each. In both a and b, upper

figures show the membrane potential of each individual cell (each cell

one color). Middle figures show rasterplots of individual cells activity

(a cell is said to be in an active state if its spike density is larger than

0.5). Lower figures show the reactivation of the different cell

assemblies (one color and letter per cell assembly). a An external

stimulus was impinging part (40%) of one cell assembly during a

short transient (10 computational time steps). As a result, this cell

assembly is continuously activated as a short term memory. b
External stimuli are successively applied to part (40%) of three cell

assemblies (each CA is stimulated during 100 computational time

steps; i.e. approximately 200 ms). After stimulation, we observe that

these three cell assemblies have sustained activity
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probable to be reactivated. To modify this probability and

to increase the probability of selected cell assemblies to be

reactivated, as previously proposed (Molter et al. 2008),

we simulated a transient period of Hebbian synaptic plas-

ticity during the presentation of the stimuli. Practically, at

each computational step, weights between cells reactivated

during that period were increased by 0.01. We believe that

the proposed mechanism can be related with growing

evidence showing that attention-like processes are associ-

ated with period of short term plasticity (van Swinderen

2007; Jaaskelainen et al. 2007).

In Fig. 8a, part (40%) of one cell assembly was stimu-

lated. In Fig. 8b, part (40%) of three cell assemblies were

sequentially stimulated. First, we observe that in agreement

with the theory of associative memories, in both scenario,

rasterplot figures indicate that the stimulation of 40% of a

cell assembly results in its complete reactivation. Second, it

appears that in both cases, the transient stimulation of a cell

assembly leads to its preferential reactivation and to a form

of sustained activity.

The explanation is the following. After external stimu-

lation, the network is attracted to its resting state, and again

the dynamics reflects the presence of diverging orbits

crossing attracting orbits. When one cell assembly was

reactivated (Fig. 8a), its recurrent connections were

increased during the attention-like reactivation, and that

cell assembly is now more likely to win the competition

and to be reactivated. Since the rapid weight increase due

to attention is not balanced by a slow decrease, no

dynamics transition is expected and short term memory is

expected to last forever (as in Brunel et al. 2004; Mongillo

et al. 2008). To implement a slow extinction of the work-

ing memory (after dozens of seconds), a mechanism of

slow weight decrease could be implemented.

When three cell assemblies were reactivated (Fig. 8b),

the balance between excitation and inhibition results in the

competition of these three cell assemblies which leads to

complex patterns of activity. As a result, the three cell

assemblies show clear sustained activity, and these reacti-

vations occur at different times. This result appears

important since their simultaneous reactivation would mix

them and would prevent any possibility to decode the utile

information embedded in the network. Together, these

results confirm that our model satisfies one important

defining feature of the working memory: The ability to

maintain simultaneously multiple chunks of information in

short term memory.

Discussion

Recent neuroscience emphasized the importance of the brain

dynamics to achieve higher cognitive functions. From a

computational perspective, it gave straightforward directions

for the development of new type of models where dynamics

played more central roles (Kozma and Freeman 2003; Molter

et al. 2007). In this paper, to conciliate the classical Hopfield

network (Hopfield 1982) with the need of more complex

dynamics, we propose a new biologically motivated network

model, called ‘‘flip-flop oscillation network’’.

In this model, each cell is embedded in a recurrent

network and is characterized by two internally coupled

variables, the cell’s membrane potential and the cell’s

phase of firing activity relatively to the theta local field

potential.

In a first study, we demonstrate theoretically that in the

cylinder space, the Milnor attractor (Milnor 1985) appears

at a critical condition through forward and reverse saddle-

node bifurcations for a one-cell network (Figs. 1, 2). Near

the critical condition, the pair of saddle and node constructs

a pseudo-attractor, which leads to Milnor attractor-like

properties in computer experiments. Nearby the attractor,

the dynamics of the cell is characterized by high sensitiv-

ity: infinitesimal transient perturbation can activate an

oscillation of the membrane potential.

Simulations of a two-cell network revealed the presence

of numerous complex dynamics. We observed that semi-

stability of the Milnor attractor dynamics characterizing

one cell dynamics, combined in a two cell-network leads to

oscillations and chaotic dynamics through period doubling

roads (Fig. 5). The important role played by the Milnor

attractor for the apparition of the chaotic attractor suggests

chaotic itinerancy (Tsuda 2001).

Finally, we tested our model during spontaneous activity

(Fig. 7) and for selective maintenance of previously stored

information (Fig. 8). In agreement with the cell assembly

theory (Hebb 1949), multiple overlapping cell assemblies

were phenomenologically embedded in the network to

simulate chunks of information.

During spontaneous activity, the network is dynamically

switching between the different cell assemblies. After the

reactivation of a specific cell assembly, the quasi-stable

state of the Milnor attractor provides receptivity to second

order dynamics of the internal state and to external stimuli.

During that ‘‘receptive’’ or ‘‘attention-like’’ state, a dif-

ferent information can be reactivated. This is supported by

recent biological reports; for example, the spatiotemporal

pattern of activity of cortical neurons observed during

thalamically triggered events are similar to the ones

observed during spontaneous events (MacLean et al.

2005). From a dynamics perspective, the presence of the

Milnor attractor prevents the network to be ‘‘occulted’’ by

one information and leads to chaotic itinerancy between the

previously stored cell assemblies.

To simulate working memory tasks, we analyzed if the

network could transiently hold specific memories triggered
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by external stimuli. To reliably and robustly enforce the

maintenance of triggered cell assemblies, short period of

synaptic plasticity was simulated, reproducing attention-

like processes (van Swinderen 2007; Jaaskelainen et al.

2007). As a result, one or multiple cell assemblies could

selectively be maintained. An important feature brought by

the addition of the theta rhythm to the classical Hopfield

network is that different cell assemblies are separately

reactivated at different theta oscillations. At each theta

cycle, cells from a unique cell assembly are synchronously

reactivated. That enables our network to solve the binding

problem by reactivating at different phases different over-

lapping cell assemblies.

If the addition of an internal oscillation to classical rate

coding model (e.g. Brunel et al. 2004; Mongillo et al.

2008) can solve the binding problem, it can still not explain

in an easy way the limited memory capacity of working

memory [e.g. the magical number seven (Miller 1956)]. In

that sense, it differs from the seminal paper from Idiart

et al. (Lisman and Idiart 1995) where it was proposed that

memories are stored in gamma cycles embedded in theta

cycles, and that the magical number seven is explained by

the number of gamma cycles which can be embedded in a

theta cycle. Further studies should focus more deeply on

the capacity problem. More precisely, the reactivation of

multiple items at different phase of a same theta cycle

should be tested.

To summarize, we are proposing a compact, effective, and

powerful ‘‘flip-flop oscillations network’’ whose dynamical

complexity can be of interest for further analysis of inte-

grative brain dynamics. First attempts to solve working

memory tasks gave promising results were different chunks

of information were reactivated at different theta cycles.

Finally, in our model, the information conveyed during

spontaneous activity and working memory tasks appeared

similar, reminding the famous quote from Rodolfo Llinas:

‘‘A person’s waking life is a dream modulated by the senses’’

(Llineas 2001).

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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