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Abstract We follow up on a suggestion by Rolls and co-

workers, that the effects of competitive learning should be

assessed on the shape and number of spatial fields that

dentate gyrus (DG) granule cells may form when receiving

input from medial entorhinal cortex (mEC) grid units. We

consider a simple non-dynamical model where DG units

are described by a threshold-linear transfer function, and

receive feedforward inputs from 1,000 mEC model grid

units of various spacing, orientation and spatial phase.

Feedforward weights are updated according to a Hebbian

rule as the virtual rodent follows a long simulated trajec-

tory through a single environment. Dentate activity is

constrained to be very sparse. We find that indeed com-

petitive Hebbian learning tends to result in a few active

DG units with a single place field each, rounded in shape

and made larger by iterative weight changes. These effects

are more pronounced when produced with thousands of

DG units and inputs per DG unit, which the realistic sys-

tem has available, than with fewer units and inputs, in

which case several DG units persists with multiple fields.

The emergence of single-field units with learning is in

contrast, however, to recent data indicating that most

active DG units do have multiple fields. We show how

multiple irregularly arranged fields can be produced by the

addition of non-space selective lateral entorhinal cortex

(lEC) units, which are modelled as simply providing an

additional effective input specific to each DG unit. The

mean number of such multiple DG fields is enhanced, in

particular, when lEC and mEC inputs have overall similar

variance across DG units. Finally, we show that in a

restricted environment the mean size of the fields is

unaltered, while their mean number is scaled down with

the area of the environment.

Keywords Hippocampus � Entorhinal cortex �
Place cells � Grid cells � Competitive learning

Place fields in the age of grid cells

Until a few years ago the representation of space in terms

of place cells, discovered by John O’Keefe and collabo-

rators in the rodent hippocampus (O’Keefe and Dostrovsky

1971; O’Keefe 1976), was often seen as approaching an

apparently unique, necessary and fundamental Platonic

ideal, and as such embedded in brain-inspired models of

navigation and spatial cognition. Note, however, that

abundant experimental evidence points at departures from

the Platonic ideal, e.g. in terms of modulation of the place-

dependent response by the animal’s own velocity and even

by that of other moving objects (Ho et al. 2008). With the

discovery of grid cells (Fyhn et al. 2004; Hafting et al.

2005), at least as striking in their geometrical beauty, grid

and place cells have appealed together for the ‘‘conceptual

primacy’’ formerly enjoyed by place cells alone. They have

appeared as dual representations in a scheme akin to that of

orthogonal bases in frequency and real space, respectively.

Correspondingly, it has been proposed that place cell

responses may be generated by grid cell responses through
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a sort of Fourier transformation, where a limited number of

sines and cosines of different spatial frequency suffice to

generate, if summed with appropriate coefficients, an

approximately localized bump of activity approaching a

delta-function (Solstad et al. 2006). The nearly periodic

grid cells, close to delta-functions in frequency space,

would lead to a similar set of near delta-functions in real

space, such that the position of the animal, represented by a

distributed ensemble of many grid cells, could be equiva-

lently represented by a much more restricted, hence sparser

ensemble of place cells.

Loosely speaking, the metaphor of a Fourier transform

does seem fitting, and the drastically enhanced sparsity of

the code describes the main effect of the transform, even

if implemented through a different algorithm, such as

Independent Component Analysis (Franzius et al. 2007b).

In detail, however, a few tens of grid-cell-like units can

summate their activity into the single broad peak of a

place-cell-like unit only if their spatial phases are pre-

cisely aligned on their one surviving peak, and the

connection weights are such as to suppress the extra

peaks. The connection weights and input sampling that

are required in the established transformation (Solstad

et al. 2006; Franzius et al. 2007a) could conceivably

emerge from a self-organizing plasticity process, but this

needs to be fleshed out. A step in this direction has been

taken by Rolls et al. (2006), who have proposed that

simple competitive learning on the connections from grid

cells in medial entorhinal cortex (mEC) to granule cells in

the dentate gyrus (DG) might turn the DG cells, which

have multiple scattered tiny fields with the initial random

connection weights, into proper place cells with a single

peak. In their model, each DG unit receives inputs solely

from mEC units, 100 in their 1D simulation and 125 in

their 2D simulation, and competitive learning is imple-

mented through a variety of simple ‘‘learning rules’’

inspired by Hebb’s principle (Hebb 1949). If the learning

rules used include a ‘‘trace’’, i.e. a temporal smoothing

factor, the resulting DG fields are broader.

This simulation study has been published before new

experimental recordings (Leutgeb et al. 2007) confirmed

that DG granule cells, a very small proportion of which had

been shown to be active in any given environment (Jung

and McNaughton 1993; Chawla et al. 2005), in fact often

present multiple firing fields, when active. The distribution

of the number of firing fields per active DG cells reported

in Leutgeb et al. (2007) can be well fitted by a Poisson

distribution with mean q ’ 1:7: Preliminary data also

suggest that in larger environments the average number of

these DG fields scales up with the environment, and their

average size might also tend to scale up (Jill K. Leutgeb,

personal communication). Unlike the single fields typical

of the hippocampus proper, particularly the CA3 region,

DG does not therefore seem to match the Platonic ideal of a

place cell in the delta-function sense. The transformation

from mEC to DG cannot be really idealized as a transfor-

mation from frequency to real space.

Aside from perhaps ‘‘overdoing’’ the tendency to pro-

duce single DG fields, the notion of competitive Hebbian

learning advanced by Rolls et al., while very appealing in

its simplicity and in not invoking any ad hoc ingredient,

has not been found completely convincing. For exam-

ple, it has been criticized for resulting in implausibly

small fields (Molter and Yamaguchi 2008) and for not

explaining how a mere realignment of grid activity, in a

changed context, could lead to global remapping in the

hippocampus (Hayman and Jeffery 2008), as indeed

observed experimentally (Fyhn et al. 2007). Both these

recent modelling studies envisage a specific mechanism to

select out a cluster of mEC inputs that tightly overlap in

spatial phase: in the Molter and Yamaguchi (2008) model

it is coincident theta phase, whereas in the Hayman and

Jeffery (2008) model it is coincident location on the

granule cell’s dendritic tree.

We have been intrigued by these more structured sug-

gestions, which fit into interesting ideas about the role of

theta oscillations and dendritic structure (see e.g. Burgess

et al. 2007; Igarashi et al. 2007; Wagatsuma and Yamag-

uchi 2007); but at the same time we have wondered

whether the simple notion of competitive learning advo-

cated by Rolls and colleagues had expressed its full

potential in their simulations. In particular, we have asked

what is the effect, simulating the emergence of DG firing

activity in a new environment, of incorporating three basic

facts: (i) there are not few, but of the order of millions, DG

granule cells in the rodent (Amaral et al. 1990); (ii) they

receive from over a thousand, not just over a hundred, of

mEC layer II units; and (iii) they also receive from over a

thousand units in lateral entorhinal cortex (lEC), which do

not present with a clear spatial modulation, but appear to be

able to distinguish one context or environment from others,

for example by representing the presence of particular

objects, as suggested again by Rolls et al. (2005; see also

Suzuki and Amaral 2003).

This short paper thus reports the effects of competitive

Hebbian learning in what is essentially an upgraded version

of the simulation by Rolls and colleagues, restricted to the

emergence of DG fields in a single new environment.

Model

Grid unit activity

The firing rate of a grid unit, as a simplified model of real

grid cells, is defined as
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kl is the distance between two peaks of wiðr~Þ; and xk is the

orientation of the grid.

Grid units are organized into 200 local ensembles. Each

ensemble has 100 grid units with the same orientation xk

and spacing kl. xk is uniformly sampled within [0, 2p] (i.e.,

within [0, p/3], as our grids present an exact p/3 rotation

symmetry around any of their peaks). kl is either linearly or

logarithmically sampled within the range [30, 70] (arbitrary

spatial units, meant to roughly correspond to cm); the fig-

ures are drawn from the linear sampling simulations, but

results were virtually indistinguishable. Within each

ensemble, the 100 grid cells have different spatial phases,

with xj and yj uniformly sampled in the range [0, 100].1

Network model

The firing rate biðr~; tÞ of a DG unit is determined through a

simple linear-threshold transfer function. The total number

of DG units is M = 1,000. Each DG unit receives input

from N = 1,000 different units randomly selected from the

entire population of 20,000 mEC grid units.

biðr~; tÞ ¼ gðtÞ
X

j

wijðtÞwjðr~Þ � hðtÞ þ ci

" #þ
ð3Þ

Here j is the index that labels grid units which are

connected to DG unit i, through synaptic weights wij(t);

[�]? denotes the threshold-linear transform that leaves

positive arguments intact and sets negative arguments to

zero; further, ci denotes the sum of all lEC inputs, which

are taken to provide context information from lateral

entorhinal cortex, but no spatial information coding for

position within the environment. In the model, each value

ci is sampled from a Gaussian distribution with standard

deviation r. The mean of the distribution is not relevant as

it can be lumped together with the threshold h(t). For each

DG unit i, ci can be positive or negative, but is fixed during

simulations. Finally, in fact, g(t) and h(t) are the (uniform)

gain and threshold of the DG network, chosen at each time

t to ensure that the mean and sparsity of the DG activity are

both equal to a pre-specified constant a
PM

i¼1 biðr~; tÞ
M

¼ a; ð4Þ

PM
i¼1 biðr~; tÞ=M

� �2

PM
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Learning rules

Learning proceeds as follows. First, the current location r~ðtÞ
along the virtual trajectory is determined, and the activity of

all mEC units is calculated according to Eq. 1, given the

current location. Then, the activity of all DG units is deter-

mined by their threshold-linear transfer function (Eq. 3). The

weights are then updated according to a Hebbian rule

wijðt þ 1Þ ¼ wijðtÞ þ �biðr~; tÞ wjðr~Þ �
X

j0
wj0ðr~Þ=N

 !" #þ
:

ð6Þ

Here the negative weights are cut to zero by the threshold-

linear function [�]?. � is a positive learning rate. In all the

following simulations, � is set to 0.00001.

Before learning, the weights are initialized as uniform

random numbers in the range [0,1]. At each time step, the

weights are further normalized into unitary length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j

w2
ijðtÞ

s
¼ 1: ð7Þ

Results

The effect of learning

First, we run standard simulations with each DG unit

receiving input from a random sample of 1,000 mEC units. A

simulation entails 20 learning epochs in each of which the

virtual rat simply visits each of the 10,000 nodes of a

100 9 100 grid representing the 1 sqm environment. After

visiting each node, activity is propagated from the input array

to the DG units, the threshold and gain are adjusted to pro-

duce the required mean DG activation and sparsity, and the

(feedforward) weights are updated according to Eqs. 6 and 7.

Visiting each node orderly does not alter the character of the

results with respect to simulations where a virtual rat follows

a more realistically varied trajectory, as we checked in

control simulations (not shown), but it does reduce

1 Note that the exact type of k sampling is not essential. What is

important is that many different spacings, as well as orientations and

spatial phases, are sampled. We also run simulations with the same

sampling of spacings and phases but a unique orientation of the grids, and

results were quite different, as that orientation remained quite salient in

the nearly periodic responses of many of the DG units (not shown).
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fluctuations substantially, enabling a clearer appreciation of

small differences. With the small learning rate we used, there

is no difference between the characteristics of the firing fields

of DG units activated earlier and later within one epoch.

Figure 1a reports the mean number of fields, or more

exactly of peaks, of DG units that show at least one peak

after thresholding, at different stages of learning. A peak of

a DG field is extracted as a continuous region where the

maximal firing rate of the DG unit is larger than 0.3 and its

mean firing rate in the region is larger than 0.2 (corre-

sponding to about 15% and 10% of the maximal firing rate

of all DG units respectively). The multiplicity distribution,

i.e. the distribution in the number of peaks per unit, is

shown in Fig. 1c as semi-log histograms at five different

time points. At time 0, before any learning occurs, a sub-

stantial fraction of DG units show two or more peaks

(detailed distribution averaged over six simulations: 561.17

units with no peaks, 304.5 with 1 peak, 108.83 with 2,

20.83 with 3, 4.17 with 4 and 0.5 with 5 or more). As

learning proceeds, most of the smaller and lower peaks

disappear and others coalesce, leading to an eventual dis-

tribution highly concentrated on single-peak units (after 20

learning epochs, 862.5 units with no peaks, 128.83 with 1

peak, 8.33 with 2, only 0.33 with 3 and none with more).

In parallel to the reduction in the number of peaks, their

average size increases. The size of a peak is quantified as the

diameter of the minimal circle bounding the region. Fig-

ure 1b indicates an over two-fold mean increase in area,

which, as shown in panel (e), is accompanied by a signifi-

cant rounding and smoothing of the shape of the field—this

is of course highly variable from field to field. As indicated

in the histograms of Fig. 1d, most of the smallest fields

disappear with learning, and those that remain tend to have

a large diameter (the mode of the distribution ends up at 23–

24 nodes, or ‘‘cm’’); whereas before learning, most peaks

have a small diameter (mode at 9–10 nodes). Competitive

Hebbian learning, therefore, reduces the number of peaks of

active DG units, while making them larger, smoother and

rounder, as earlier found by Rolls et al. (2006).

Learning in small networks is not quite the same

Interestingly, while the effects are qualitatively the same in

a network of smaller number of units and connections, such

as the one studied by Rolls et al. (2006), quantitatively there

are large differences. Figure 2 compares the results just

described above with those obtained in a network with the

same structure as used by Rolls et al. (2006), and with those

obtained in two networks with intermediate structures.

When considering only 100 DG units, each connected to

the same 125 mEC units (chosen at random; with the DG

sparsity set to a = 0.03, so that a similar number of DG

units, about 3, are active at any time, as in the previous

simulations) the network structure is essentially the same

as used by Rolls et al. (2006). The average number of

peaks per active DG unit is then about twice as many as

those in larger networks with 1,000 DG units (Fig. 2a).

Before any learning, most units have more than three

peaks, as the example shown in the inset of Fig. 2a, and

even after many learning epochs the average decreases

only to ca. 2.5 peaks per active DG unit. This is simply due

to the small number of DG units: with about 3 required to

be active at any one place, almost all of them get a chance

to win the competition at least somewhere in the environ-

ment, and usually more than once. In fact, the total number

of peaks, summed over all DG units, is much smaller than

in equivalent simulations with 1,000 DG units, as shown in

Fig. 2c; those peaks are however forced onto an insuffi-

cient number of units.

While the main difference between the results obtained

by Rolls et al. (2006) and those reported in Fig. 1 is due to

the different number of DG units, the two intermediate

simulations in Fig. 2 clarify that also the number of mEC

inputs to each DG unit has a significant effect. When a DG

unit receives only 125 inputs, as in the study by Rolls et al.

and unlike the 1,000 inputs used in Fig. 1, less averaging

makes individual fields more irregular and rigid (see the

inset in Fig. 2b), so they increase in size less and decrease

in number less than in our standard simulation (see Fig. 2b,

c). More DG units remain active (Fig. 2d) but, still, nearly

all active DG present a single field (Fig. 2a). Whether the

fewer mEC inputs are the same across all DG units or a

random sample for each unit, on the other hand, makes

almost no difference.

Figure 2e shows that with a small DG population, the

peak multiplicity distribution can be well fitted to a posi-

tive Poisson distribution. When the DG population is large,

instead, the multiplicity distribution lies between a positive

Poisson distribution and a positive discrete exponential

distribution2. The size distribution after 1 learning epoch is

similar across all simulations (Fig. 2f).

Fig. 1 Competitive Hebbian learning reduces the number of DG

fields and increases their size. a Mean number of peaks per active DG

unit, averaged over 6 simulations, as a function of learning epoch. b
Mean diameter of peaks, extracted as a continuous region with

maximal firing rate above 15% and mean firing rate above 10% of the

maximal firing rate of all DG units. c Multiplicity distributions, i.e.

distributions in the number of peaks per unit, after 0, 1, 2, 10, 20

learning epochs. The means of the positive multiplicity distributions,

i.e. bars with C1 peaks, are shown in (a). d Size distributions

generating the means in (b). e Example fields of three DG units at

time 0, 1, 2, 10, 20 epochs. Sparsity a = 0.003

c

2 The positive Poisson distribution is defined as pðkÞ ¼ e�kkk

k!ð1�e�kÞ; k ¼
1; 2; � � � : The positive discrete exponential distribution is defined as

pðkÞ ¼ e�kkðek � 1Þ; k ¼ 1; 2; � � � : The maximum likelihood estima-

tion of the parameter k is fitted according to the actual distribution of

the peaks.
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Although the effects of learning are largely similar,

we see that scaling up the model to a more realistic

size, in particular the size of DG population and the

number of mEC inputs per DG unit, leads to a rather

different scenario, where DG units come to have

essentially a single place field, in contrast to experi-

mental findings (Jung and McNaughton 1993; Leutgeb

et al. 2007).
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Fig. 2 Fewer DG units and

mEC inputs lead to more fields

per unit, due to less competition

and insufficient averaging.

a Mean number of peaks per

active DG unit (solid line), as in

Fig. 1, but also in simulations

with 125 mEC inputs per DG

unit. Inset: example of a DG

unit with multiple peaks from a

simulation with 100 DG units

and 125 inputs before learning

(left) and after 20 learning

epochs (right). b The difference

in the size of the peaks vanishes

gradually with learning. Inset:

example of a DG unit with

irregular peaks from a network

with 1,000 DG units and 125

random mEC inputs per unit

before learning (left) and after

20 learning epochs (right).
Color code is the same as in (a).

c The total number of peaks

decreases with learning. d The

number of active DG units.

Most of the DG units in the

small network are active in

order to represent the 10,000

locations. e Multiplicity

distributions generating the

means in (a), after 1 learning

epoch. The square and circle
markers show the best-fit

Poisson distributions and

exponential distributions

respectively. f Size distributions

generating the means in (b),

after 1 learning epoch
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While obtained in simulations in which we set a

= 0.003, the above conclusion is valid for other sparsity

values as well, with only quantitative variations. We run

control simulations also with a = 0.001, 0.005, 0.007 and

0.01, all in the ‘‘realistic’’ DG sparse coding regime, in

which only a few percent of granule cells are observed to

be active somewhere in a typical experimental box

(Chawla et al. 2005) and of these only a fraction at

any particular location in the box (Leutgeb et al. 2007).

Figure 3 shows that less sparse activity implies more as

well as larger peaks per active DG unit, while maintaining

the earlier trends with training: training decreases the

mean number of peaks, and increases their size. The

fraction of active DG units also increases with less sparse

representations, so if one counts the total number of

active DG units in the environment (Fig. 3d) one finds an

enhanced version of the increase in the number of peaks

per active units (Fig. 3a). Remarkably, if one counts

instead the number of active DG units at any particular

location in the environment (Fig. 3c) one finds that they

do not vary with training, and almost exactly match the

naı̈ve guess aM.

The effect of additional lEC inputs

The scenario changes once more, however, if we consider

that real DG granule cells receive also a substantial

fraction of their afferents from lateral entorhinal cortex,

where cells have been described as having weak spatial

modulation or none at all (Hargreaves et al. 2005). In our

model, we assume lEC inputs not be spatially modulated;

hence the sum of all lEC inputs to a given DG unit is a

randomly assigned quantity, constant in space, which we

take to be normally distributed across DG units, with

standard deviation r. The simulations above therefore

correspond to r = 0, whereas r = 0.3–0.4 yields a total

lEC input with similar variance, across DG units and at

any given position, as the total mEC input they receive.

Figure 4 describes the effect of running simulations (with

1,000 DG units and 1,000 mEC inputs per DG unit) at

different r values.

As shown in Fig. 4a, adding the model lEC input sub-

stantially increases the mean number of peaks per active

DG unit. The effect is easy to understand: a subset of DG

units are made more likely to be activated anywhere in the

environment, those that receive the larger (constant) lEC

input, so they tend to display more peaks, at the expense of

units that would have had a field in the environment but are

driven below threshold by a lack of lEC drive. Therefore

strong lEC inputs help break the homogeneity across DG

units, contrasting the effects of competitive learning. The

addition of lEC inputs concurrently increases somewhat the

mean size of DG fields, at least at initial and intermediate

stages of training, though after 20 epochs this effect nearly
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Fig. 3 Results are similar

however sparse the DG

representation: a Mean number

of peaks per active DG unit, as a

function of sparsity. b Mean

diameter of the peaks of DG

fields. c Mean number of DG

units which have fields at any

particular location (counting

only firing rates C15% of the

maximal firing rate of all DG

units). d Total number of DG

units active anywhere in the

environment
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vanishes, and in fact for large r training in itself decreases

the size of the fields (Fig. 4b).

The detailed distribution in the number of peaks per DG

unit (Fig. 4c) is not dissimilar, after 1 learning epoch, from

that reported experimentally (Leutgeb et al. 2007),

although closer to exponential (a sloped line in the semi-

log histograms) than to Poisson when r is larger than 0.1.

The appearance of the fields, for the ‘‘realistic‘‘ value

r = 0.3, is also broadly similar (Fig. 4d).

Scaling down the environment

Finally, we performed identical simulations in environ-

ments scaled down by a factor of 2 (a 70 9 70 grid,

corresponding to roughly 0.5 sqm) and by a factor of 4 (a

50 9 50 grid, corresponding to roughly 0.25 sqm).

The effects are clear: the mean number of peaks is

reduced, whereas their average size does not change sig-

nificantly (Fig. 5a,b). In particular, after 1 learning epoch,

in the three sets of simulations the number of DG units was

distributed as follows: in the 100 9 100 environment,

863.5 DG units with no fields, 69 with 1, 27.67 with 2, 18.5

with 3, 11.33 with 4 and 10 with more than 4; in the

70 9 70 environment, 903.17 DG units with no fields,

61.33 with 1, 22 with 2, 9 with 3, 3.67 with 4 and 0.83 with

more than 4; in the 50 9 50 environment, 930.67 DG units

with no fields, 53.83 with 1, 12.83 with 2, 2.16 with 3, 0.17

with 4 and 0.33 with more than 4.

When counting the total number of active DG units in

each environment (Fig. 5d), the decrease in the smaller

ones seems sublinear, stabilizing after training around 97

(100 9 100), 55 (70 9 70) and 35 (50 9 50). The
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Fig. 4 Adding lEC input increases the number of DG fields. a Mean

number of peaks per active DG unit, after 0, 1, 2, 10 and 20 learning

epochs, as a function of the lEC signal width r. b Mean diameter of

peaks, for the simulations in (a). c Multiplicity distributions

generating some of the means in (a), after 1 learning epoch. The

square and circle markers show the best-fit Poisson distributions and

exponential distributions respectively. d Examples of the maps

expressed by DG units after 1 learning epoch
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sublinearity appears to be due to border effects, in that

fields with an average diameter around 20 units may be

counted if they fall within larger areas, of e.g. 1.44

(120 9 120), 0.81 (90 9 90) and 0.49 (70 9 70) sqm—in

fact, the number of DG units active at each location

remains constant at the value set by the sparsity, Fig. 5c.

Examples of the fields in the three environments are given

in Fig. 5e–g.

(a)

0  50000 100000 150000 200000
1

1.5

2

2.5

Time steps

N
u

m
b

er
 o

f 
p

ea
ks

 

size=50x50
size=70x70
size=100x100

(b)

     0  50000 100000 150000 200000
10

15

20

25

Time steps

D
ia

m
et

er
 o

f 
p

ea
ks

 

size=50x50
size=70x70
size=100x100

(c)

0  50000 100000 150000 200000
  2

2.5

  3

3.5

4

Time steps

N
u

m
b

er
 o

f 
ac

ti
ve

 D
G

 u
n

it
s

 

size=50x50
size=70x70
size=100x100

(d)

     0  50000 100000 150000 200000
  0

 50

100

150

200

Time steps

N
u

m
b

er
 o

f 
D

G
 u

n
it

s

 

size=50x50
size=70x70
size=100x100

(e)

x

y

20 40

20

40

x

y

20 40

20

40

x

y

20 40

20

40

x

y

20 40

20

40

x

y

20 40

20

40

x

y

20 40

20

40

x

y

20 40

20

40

x

y

20 40

20

40

(f)

x

y

20 40 60

20

40

60

x

y

20 40 60

20

40

60

x

y

20 40 60

20

40

60

x

y

20 40 60

20

40

60

x

y

20 40 60

20

40

60

x

y

20 40 60

20

40

60

(g)

x

y

20 40 60 80

20

40

60

80

x

y

20 40 60 80

20

40

60

80

x

y

20 40 60 80

20

40

60

80

x

y

20 40 60 80

20

40

60

80

x

y

20 40 60 80

20

40

60

80

Fig. 5 Scaling down the environment reduces the number of fields

per DG unit, with no effect on their size. a Mean number of peaks per

active DG unit, in 3 sets of simulations differing in the size of the

environment. b Mean diameter of each field, in the same 3 sets. c The

mean number of DG unit active at any given location does not scale

down—it remains roughly equal to aM. d The total number of active

DG units scales sublinearly with the size of the environment. (e–g)

Representative examples of DG fields in environments of three sizes,

after 100,000 steps of learning. Here results are shown as functions of

time steps, because in environments with different size 1 learning

epoch corresponds to different number of time steps. Sparsity

a = 0.003, r = 0.3
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Discussion

In conclusion, we find that the experimentally observed

appearance, size and number of DG fields are broadly

compatible with those that are produced by a simple model

in which DG units receive mEC and lEC inputs of similar

strength, and have their mean activity and sparsity tightly

regulated by inhibition. The effect of competitive Hebbian

learning on the feedforward connections they receive from

mEC is to decrease the fields of active DG units, while

making them larger and more regular in shape, as envis-

aged by Rolls et al. (2006). We obtain results that largely

replicate those of their simulations, but as a consequence of

the near cancellation of two factors of a distinct nature: we

consider a larger and more realistic number of DG units

and mEC inputs per unit, which tends in itself to produce

DG units with a single field, and we also consider addi-

tional lEC inputs, which brings back the mean number of

DG fields to higher values. What we do not find anymore,

in this more realistic model, is the appearance of the

resilient, underlying periodicity of the grid inputs, which

was evident in earlier models (Solstad et al. 2006).

Although other complex factors, such as the theta

rhythm (Hayman and Jeffery 2008) may well contribute to

shape DG fields, we find that these additional factors are

probably not required for a first appraisal of the EC-DG

transformation. In this sense, this little study fits within the

general view that much of the relevant learning and

memory dynamics in the rodent hippocampus may be

understood even neglecting the prominent rhythmicity at

theta and faster scales, and the beautiful geometry in the

circuitry, and resorting to extremely simplified network

models like the one employed here. In a similar spirit, we

have discussed how grid cell activity could emerge itself

purely as a single-cell process, from learning on feedfor-

ward weights combined with firing rate adaptation (Kropff

and Treves 2008). In a forthcoming publication (Cerasti

and Treves, in preparation), we discuss the amount of

information that multiple DG fields can impart to a new

CA3 representation, in which active CA3 units typically

have, instead, a single field. Thus, the overall transforma-

tion from multiple regularly arranged fields in mEC to

fewer multiple but irregular fields in DG to essentially

single fields in CA3 appears both natural and information

efficient, and to require no dynamical sophistication at all.

In previous reports (see e.g. Papp et al. 2007) we have

discussed the main properties of simplified models of the

CA3 recurrent network, which are extremely interesting

even at a rather abstract level of analysis: fragmentation of

would-be continuous attractors, tendency to coalesce,

storage capacity.

We have limited the analysis reported here to the

learning of a single environment, even though

understanding the EC-DG transformation crucially hinges

on understanding how the apparent universality of EC

maps can be translated into hippocampal remapping (Fyhn

et al. 2007) and in particular into the exquisite sensitivity

to context of DG fields (Leutgeb et al. 2007), which

appears to depend on Hebbian learning in the DG network

(McHugh et al. 2007). The type of correlations which

result between the activity of DG units in different envi-

ronments, as well as the fundamental issue of the role of

new DG units, produced by neurogenesis within the pre-

vious few weeks (Aimone et al. 2006), are left for future

reports.
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