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Abstract

The heterogeneous sampling of behavioral states by freely moving animals hinders our ability to
relate neuronal firing rates to behavioral variables by introducing dependencies between them. We
specifically consider the animal’s location and orientation, although our analyses may generalize
to other behavioral variables such as speed of movement. A maximum-likelihood approach is
presented for producing estimates of the separate histograms relating firing rate to multiple
independent causes. Examples show that the method can be used to avoid the artefactual
behavioral correlates of place and head-direction cell firing produced by standard analyses; to
characterize the independent influences of both location and orientation in a third cell type
(Cacucci at al., submitted); and to demonstrate the location-independence of the directional firing
of head-direction cells.
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There are good examples of surprisingly pure firing-rate responses to an animal’s location
and orientation: ‘place cells’ fire at a high rate whenever the animal is in a specific portion
of its environment (the “place field’ O’Keefe & Dostrovsky, 1971; O’Keefe, 1976), while
‘head-direction cells’ fire whenever the animal’s head is pointing in a specific direction
(Taube, Muller, & Ranck, Jr., 1990). In standard analyses the experimenter collects the
number of spikes fired by a putative single neuron and the ‘dwell time’ spent by the animal
corresponding to different intervals (‘bins’) in the range of the behavioral variable in
question. A histogram of the firing rate (number of spikes divided by dwell time) as a
function of the behavioral variable is then produced, and often smoothed for interpretability
using a fixed (O’Keefe & Burgess, 1996) or variable (Markus et al., 1995) sized kernel.

However, inhomogeneous sampling of behavioral variables by the animal’s motion creates
dependencies amongst them which can produce artefactual results. For example,
inhomogeneity in the sampling of orientations will cause place cell firing to show an
apparent preferential response to those head-directions sampled most frequently when the
animal is in the place field. Likewise, inhomogeneity in the sampling of places will cause
head-direction cells to show an apparent preferential response to those places sampled most
frequently with the preferred head-direction. Inhomogeneity of sampling is unavoidable in
freely moving animals, and is often particularly acute at the boundaries of an environment,
where locations can only be approached in particular directions. In this paper we present a
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method for estimating the effect of one variable (e.g. location) on firing rate while taking
into account the effect of a second variable (e.g. orientation).

Suppose we are interested in the independent modulatory influences on firing rate as a
function of location x divided into A, bins centered on the positions x;and head direction 8
divided into A/ybins centered on directions 6. Our data consist of the number of spikes 77;;
and the “‘dwell time’ #; corresponding to locations x;and directions &;. The traditional spatial
firing rate map would be defined as Ax)) = n/t; where n;=Z; njand ;= Z; tj;are the
number of spikes and dwell time in the location bin at x;. Similarly, the traditional
directional firing rate polar plot would be defined as £6) = n/¢;, where ;= Z;njjand ;= Z;
tjare the number of spikes and dwell time in the direction bin at 6.

The presence of a directional effect on place cell firing beyond the artefactual effect of
inhomogeneous behavior interacting with a ‘true’ locational effect can be detected using the
‘distributive hypothesis’ (Muller, Bostock, Taube, & Kubie, 1994). The directional firing
predicted by the “Null” hypothesis (no influence of direction other than that caused by a
locational effect) is calculated. Thus the assumed ‘true’ locational firing rate map Ax;) = nit;
is attributed to directions according to the time spent facing in each direction at each

location to produce the predicted artefactual dependence on direction:

f (gj) =Xitij (ni/ ;) [Zitij (1)

The observed firing rate polar plot &) can then be tested to see if it differs significantly
from 7°(8). This was successfully used to show that place cell firing in an open cylinder
was not directionally modulated (i.e. £8) did not differ significantly from 7’(8), Muller et
al., 1994). A similar procedure could be used to detect the presence of a locational effect
beyond that due to inhomogeneous behavior interacting with a ‘true’ directional effect. In
addition, semi-partial correlation coefficients can be used to describe the amount of overall
variance accounted for by one variable after taking into account the effects of other variables
(Sharp, 1996). However, these procedures do not allow estimation and visualization of the
relative effects of location and direction in cells for which there might be ‘true’ effects of
both.

We now outline how the parameters of a model of independent modulatory influences on
firing rate can be estimated. Under such a “factorial’ model, the expected number of spikes
per location and direction bin is parameterized as:

E (”ij) =pidjtij, (2)

where pjrepresents the contribution of position x;as a cause of firing and gjrepresents the
contribution of direction &;as a cause of firing. The maximum-likelihood approach (see e.g.
Duda, Hart, & Stork, 2001) is to choose p;and gjto maximize the probability of the
observed data /7 under the model. For this we must define a probability distribution for the
observed data, not just the expected values. The most obvious choice for the number of
counts per bin of a random variable is the Poisson distribution. While this seems a
reasonable model for firing as a function of position or direction, it would not be such a
good model for firing as a function of time. Fenton and Muller (1998) note that, in contrast
to the reliability of place cell firing as a function of location, averaged over several runs (i.e.
nit;above), the firing rate on individual runs through a place field shows greater variability
than consistent with a Poisson distribution. One reason for this might be that rate covaries
with factors other than location, e.g. speed, which average out over many runs. The
likelihood of the data in a single bin under a Poisson model is:
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p (nf,j|Pi, dj, lij) =(/1f,j)nijexp (—/lij) /nij! (3)

where A= p; dj tj;under the factorial model. Assuming independence over bins, the
likelihood of the data L and the log likelihood /are, respectively:

LZHijp (}’l,‘jlpi, dj, tij) s and l:E,-jlog (p (nij|p,-, dj, [ij)) . @

Under the factorial model with Poisson noise:

l:E,-jn,-jlog (/lij) - /l,'j = lOg (n,,’) :Ei‘,-n,-jlog (pidjtij) = pidjtij - lOg (l/l,]') . (5

By setting the partial derivatives d/0p;and 0/ddjequal to zero we see that the values of p;
and djthat maximize /(and thus maximize L) obey:

pi=Zjnij/Ejdjtij;  dj=Einij/Zipitij.  (6)

These N,+ Nyequations can be iterated? to find piand dj, given a sufficiently large number
of data points 77;; (in principle there can be Njx/\yobservations of 7;;but in practice far
fewer are sampled and many of these will be zero). Intuitively the equations can be thought
of as setting djto be the multiplicative factor by which the observed number of spikes for
direction &;differs from that predicted by the locational firing pattern (using a distributive
hypothesis) and vice versafor p;. To display pjor djindependently of the other, as estimated
firing rate plots, the values in each plot are scaled so as to match the total numbers of spikes
recorded.

We next illustrate the use of our approach in assessing the effects of location and direction
on cell firing, as compared to simply composing histograms relating firing rate to location or
direction without consideration of the effects of one variable on the other. The cells shown
were recorded using tetrodes (Recce & O’Keefe, 1989) from freely moving rats exploring
for scattered food rewards in walled environments (see e.g. Lever, Wills, Cacucci, Burgess,
& O’Keefe, 2002 for methods). The animal’s location and head-direction is tracked by an
overhead camera monitoring two LEDs (one bright, one dim) on the animal’s head (Axona,
Itd.).

Figure 1 shows examples of the firing of head-direction cells in the presubiculum displayed
as uncorrected histograms of the directional and locational effects (uncorr) or when the
combined maximum likelihood model is used to correct for the effects of direction and
location on each other (corr, equation 6). Note the spurious positional correlate of firing in
the uncorrected histogram by position, due to the preferred head-direction occurring
preferentially in locations near to the edge of the environment (e.g. HD1 where the rat tends
to approach the north edge facing northwards, and HD2-3 where it shows some
unidirectional wall-following). These do not occur when using the combined maximum
likelihood model. As noted in the caption, applying the combined model tends to noticeably
reduce the locational information content of the firing of these cells, but not so the
directional information content (as estimated by the method of Skaggs, McNaughton, &

1Starting with a uniform estimate for p;use equation 6 to: calculate aj, then use the new values of a}'to recalculate pj, then use the new
values of pjto recalculate dj and so on until the log likelihood of the data (/from equation 5) stops increasing. Equally one can start
from a uniform estimate of ;.
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Gothard, 1993). In a larger sample of 43 head-direction cells, locational information (in bits
per spike) was reduced by 28% on average while directional information was reduced by
4%. However the specific effect of the correction on a given cell was by no means uniform
(standard deviation of reduction of information: 25% for location; 7% for direction).

Figure 2 shows examples of the firing of hippocampal place cells displayed as uncorrected
histograms of the directional and positional effects (uncorr) or when the combined model is
used (corr). Note the spurious directional correlate of firing observed in the uncorrected
histogram by direction. Spurious peaks in the directional histogram occur at the directions
along which the rat most often ran through the place field. This spurious directionality is
reduced in the combined model. As noted in the caption, applying the combined model
noticeably reduced the directional information content of the firing of these cells, but not so
the locational information content. In a larger sample of 44 place cells, directional
information (in bits per spike) was reduced by 27% on average (standard deviation 21%)
while locational information was increased by 1% (standard deviation 10%).

Figure 3 shows examples of a third cell type recorded in the pre- and para-subiculum
(Cacucci et al., submitted) which has a genuine response to both place and direction, as
shown by the combined model. Note the spurious “‘edge field’ in the uncorrected histogram
by position for TPD1. Figure 4 demonstrates the anecdotally well-known fact that the
directional preference of head-direction cells is independent of position. Using uncorrected
histograms over direction to make this point would be open to doubt due to differences in
the sampling of head-directions in the different parts of the environment.

It is possible that firing rate is affected by location and direction in ways not consistent with
our factorial model (in which the influences multiply). It might be better to consider the
influences of location and direction to combine additively. Unfortunately, maximizing the
log likelihood of the data (equation 5) under an additive model, i.e. A= (p;+ dj)t;, does not
lead to easily solvable equations like equation 6. However, an additive model can be found,
using the reasoning of the distributive hypothesis, by estimating the additive effect of
location (p,) above that predicted by an effect of direction (d)) and vice versa, giving:

pi=Zmij/Ejtij  —  Xjtidj/Zitiy; dj=Eing/Eit; — ZitijpilZitij. (1)

These equations can be solved iteratively, like equation 6, or by inversion of their matrix
form2. However, we found no better convergence for this solution over the iterative solution
of equation 7, in both cases convergence was worse than for equation 6, see Figure 5
caption. The resulting model is a reasonable attempt to match the observed data with an
additive model, but does not necessarily maximize the likelihood of the data under any given
(e.g. Poisson) noise model. For comparison we also evaluate the ‘naive’ method based on
the standard histograms (e.g. assuming firing rate at location 7and direction /is simply the
average of pjand dj, where each is calculated in isolation in the standard way).

Finally a ‘simple normalisation’ approach would be to take the locational firing rate as the
mean firing rate over all directions sampled at that location (to remove dependence on the
time spent in each direction), and similarly the directional firing rate as the mean firing rate
over all locations sampled at that direction i.e.: p;j=Z; (nfty) | Ng and dj=Z;(mt) I Ny
However, the sampling of positions and directions in typical data is so sparse that the means

2By substitution, equation 7 gives: p= (I -T)'lm, where pis the vector of pj, the vector m has has elements mj=njtj- Zjtjjnjtjtj | is
the identity matrix and the matrix T has elements 7jx = Z tjj 4/ tjtj. Variable d'can then be found from pand equation 7.
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are dominated by extreme rates from very short duration samples (while the medians are
zero), so that this approach fares worse than the naive model, see Figure 5 caption.

The goodness of fit of different models can be assessed by comparing the log likelihood (/)
of the data under each model. We do this using equation 5, under the assumption of Poisson
noise, calculating: /« with A= p; aj t;;from equation 6 for the factorial model; /. with A=
(pi+djtjfrom equation 7 for the additive model; /, with A= 44 ny/ti+nyt) t; for the naive
model; and /, with A= (Z; nj! Zj £ tj for the prediction of a uniform firing rate model.
The goodness of fit of the naive, additive and factorial models to place, head-direction and
TPD cell firing is shown in Figure 5 (as log scores of the factor by which the data are more
likely under a given model than under the uniform model, e.g. /-/,). There is a clear
advantage for the factorial model over the available alternatives. Although this does not
conclusively rule out an additive model, since our estimate is not necessarily the additive
model that maximizes the likelihood of the data, factorial rather than additive models are
consistent with the very low firing rates of TPD cells outside of their preferred location and
direction (and with the low firing rate of place cells outside the place field, despite its
modulation by running speed, McNaughton, Barnes, & O’Keefe, 1983; Wiener, Paul, &
Eichenbaum, 1989; Huxter, Burgess, & O’ Keefe, 2003). Data may also contain more
complex dependencies that are not well characterized by any of these models (e.g. two
locational subfields with different preferred directions). Such data can sometimes be divided
so that each subset of observations is well fitted. In this case, the (geometric) mean
likelihood per observation in a subset of A/ observations (exp(#\)) can be used to indicate
whether the division was justified or not.

In conclusion, we believe that our approach for separating the influences of multiple
independent causes made dependent by inhomogeneous sampling, or an equivalent
approach, is required before correct assessment can be made of the contribution of any one
variable where there is a contribution from a second variable. This approach is related to the
converse problem of how a factorial code can enable multiple cells to encode a single
variable (see e.g. Schneidman, Bialek, & Berry, 2003; Schmidhuber, 1992). We have
illustrated the application of our approach to place and direction correlates of cell firing in
single units recorded in freely moving rats. A spurious impression of positional or
directional correlates created by inhomogeneous sampling of places and directions is
commonplace when using the traditional method of separately forming histograms of
numbers of spikes divided by dwell-times. The use of an explicit maximum-likelihood
factorial model of the independent influences of position and orientation succeeds in
reducing the problems posed by inhomogeneous sampling, and provides an improvement on
the available alternatives (the standard separate histograms or an additive model). This
opens the way to assess the firing patterns of cells for which both variables have an effect
(e.g. Figure 3), and to assess the contribution of one variable under manipulations of the
other (e.g. Figure 4). In principle our method could be used to disentangle the combined
effects of behavioral variables other than location and orientation (e.g. running speed) so
long as there is a well-defined metric for the values observed.
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Figure 1.

The firing rate histograms of 4 “head-direction cells’ (HDs) recorded over 10 minutes. Left
hand columns show locational rate histograms. Righthand columns show directional rate
histograms. The peak firing rate (Hz) is shown on each plot. Uncorrshows the uncorrected
histograms which simply plot the number of spikes divided by dwell time in each interval in
the corresponding behavioral variable. Corrshows the histograms calculated under the
maximum likelihood factorial model (MLM, equation 6) to correct for the effects of
direction and location on each other. Note the spurious positional effects shown using the
uncorrected histograms. Applying MLM decreases locational information content (from
uncorrto corr. 0.32 10 0.22, 0.18 to 0.04, 0.75 to 0.40, 0.35 to 0.21 bits per spike in cells 1 to
4 respectively, see also main text) and decreases locational peak rates, but produces similar
directional information content (2.33 to 2.28, 0.63 to 0.60, 1.61 to 1.50, 1.93 to 1.97 in cells
1 to 4 respectively) and directional peak rates. To give reasonable spatial resolution and
interpretability, binning of locations uses a square grid such that on average 245 locational
bins were occupied (i.e. mean A, = 245) and locational histograms were smoothed using a
3x3 kernel. Directions were divided into 60 bins (nearly always fully occupied, i.e. Ny= 60)
and directional plots were not smoothed.

HD 3

HD 4
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Figure 2.

The firing rate histograms of 4 “place cells’ (PCs) simultaneously recorded over 20 minutes.
Left hand columns show locational rate histograms. Righthand columns show directional
rate histograms. Uncorr columns show the uncorrected separate histograms while Corr
columns show the histograms calculated under the maximum likelihood factorial model
(MLM), as in Figure 1. Note the spurious directional effects shown using the uncorrected
separate histogram. Applying the MLM decreases directional information content (from
uncorrto corr. 0.27 t0 0.08, 0.98 to 0.51, 0.73 t0 0.28, 0.29 t0 0.07 in cells 1 to 4
respectively) and directional peak rates, but produces similar locational information content
(1.66t01.71, 3.12t0 3.26, 1.77 to 1.70, 1.57 to 1.58 in cells 1 to 4 respectively) and
locational peak rates.
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Figure 3.

The firing rate histograms of 3 ‘theta-modulated place-by-direction cells’ (TPD; Cacucci et
al., submitted) recorded over 10 minutes. Left hand columns show locational rate
histograms. Righthand columns show directional rate histograms. Uncorr columns show the
uncorrected separate histograms while Corr columns show the histograms calculated under
the maximum likelihood factorial model (MLM), as in Figure 1. The MLM allows an
unbiased picture of the dependencies on place and direction to be shown. Note the spurious
positional effect at the edge of the environment using the uncorrected histogram in cell 1.
The precise effect of applying the MLM on peak rates and information content cannot be
simply predicted (locational information, from uncorrto corr. 0.47 to 0.67, 0.93 to 0.87,
0.74 t0 0.60 in cells 1 to 3 respectively; directional: 0.42 to 0.63, 0.85 t0 0.78, 1.86 to 1.54 in
cells 1 to 3 respectively).
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Figure4.

The effect of head-direction on the firing rate of a ‘head-direction cell’ calculated in each

quadrant of the environment using the combined maximum likelihood model. Data from the
Northeast quadrant are shown in the Top Left panel, etc. This allows an unbiased picture of
the dependency on direction to be shown, despite inhomogeneous sampling of locations and
directions. Note the parallel directional preferences in the different parts of the environment.
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Figureb5.

The relative goodness of fit of naive, additive (p+d) and factorial (pxd) models of the
locational and directional influences on the firing rate of place cells (PC) head-direction
cells (HD) and theta-modulated place-by-direction cells (TPD). The difference in the log
likelihood of the data under the given model and under a uniform firing rate model is shown.
For example, for the factorial model /«-/, is shown, see text. The naive model is based on the
traditional separate histograms of firing rate by location and direction. A square grid of
location bins was used such that on average 68 bins were occupied (i.e. mean N,;= 68, this
smaller number cf. Figures 1-3 was used to aid convergence of equation 7 for the additive
model) and 64 direction bins were used (i.e. Vy= 64). The mean and s.e.m. are shown for
the 29/46 PC, 30/46 HD and 33/46 TPD cells for which equation 7 converged. The
differences between the bar heights for each model is significant for each cell type (p<10,
paired sample t-test). The ‘simple normalisation” approach to estimating p;and gj (see text)
showed a worse overall fit than any of the above models, with /--/, = 346 for PCs, 485 for
HDs and 465 for TPDs when /s is found using A= Y2(p;+ d))¢;;in equation 5, and 414 for
PCs, 450 for HDs and 55.4 for TPDs when /s is found using A= pj dj t;;
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