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Abstract
Summary: Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and
sensory function. There is no treatment available that restores the injury-induced loss of function to a degree
that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal
cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism.
Promising results have been obtained in experimental models of SCI. Stem cells can be directed to
differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI.
Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem
cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical
concerns. This paper reviews the current status of stem cell application for spinal cord repair.
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INTRODUCTION

Stem cells proliferate, migrate, and differentiate to form

organisms during embryogenesis. During adulthood,

stem cells are present within tissues/organs including

the central nervous system (1–5), where they may

differentiate into neurons (6). Since the identification

and characterization of stem cells, a great deal of interest

has been given to their potential for treatment of spinal

cord injury (SCI), traumatic brain injury, and degenera-

tive brain diseases (7–12). Considering their characteristic

abilities to self-renew and differentiate into any cell type

in the body, the therapeutic promise of stem cells is

justified. Before effective therapies can be developed,

several issues need to be addressed and resolved. These

issues range from increasing our basic knowledge about

the stem cell’s biology to prevailing over moral concerns
fueled by religious and/or political ideas.

STEM CELL DEFINITIONS
A stem cell is defined by its ability of self-renewal and its
totipotency. Self-renewal is characterized by the ability to
undergo an asymmetric division in which one of the
resulting cells remains a ‘‘stem cell,’’ without signs of
aging, and the other (daughter) cell becomes restricted
to one of the germ layers. A stem cell may become
quiescent and at later stages re-enter the cycle of cell
division (13,14) (Figure 1).

A true stem cell is a totipotent cell; it can become
any cell type present in an organism. Many consider the
zygote to be the only true totipotent (stem) cell because
it is able to differentiate into either a placenta cell or an
embryonic cell. Others define the cells of the inner cell
mass within the blastocyst as embryonic stem cells
(ESCs). These cells are pluripotent because they can not
become a placenta cell (Table 1). Besides ESCs,
undifferentiated cells can be found among differentiated
cells of a specific tissue after birth. These cells are known
as adult stem cells, although a better term would be
‘‘somatic stem cell’’ because they are also present in
children and umbilical cords. There is ample evidence
that adult stem cells are not restricted to a particular
germ layer and can transdifferentiate (15–19). An
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important advantage of adult stem cells over ESCs is that

they can be harvested without destruction of an embryo.

As a result, adult stem cells have gained ample interest

for their application in a variety of disorders (see below).

Differentiation

The pluripotent stem cell differentiates into a multipotent

cell of the 3 germ layers. These 3 layers are the

ectodermal layer (from which skin and neural tissue

originate), the mesodermal layer (connective tissue,
muscle, bone, and blood cells), and the endodermal
layer (gastrointestinal tract and internal glandular organs)
(Figure 2).

The multipotent cell differentiates into a unipotent
cell of a particular cell lineage within its own germ layer
(Figure 2). The unipotent cell is capable of becoming a
cell type within that particular cell lineage (Figure 2). At
the successive phases of differentiation (or determina-
tion), the resulting progeny are known as progenitor
cells; ‘‘stem cell-like’’ cells capable of self-renewal. Within
the central nervous system, unipotent neural progenitors
become the neurons and glial cells present in brain and
spinal cord (Figure 2).

Transdifferentiation
In classic embryology, the totipotent stem cell becomes
unipotent through successive phases of fate restriction.
The steps in this process were thought to be irreversible.
However, recently it was shown in vitro that the fate of
multipotent cells can be changed to another germ layer
(15–19). This process is known as transdifferentiation.
The unlimited potential of transdifferentiation prompted
many investigators to obtain cells that normally derive
from stem cells that are more difficult to harvest from
stem cells that are easier to harvest. For instance, it is less
complicated to harvest stem cells from skin (20,21) or
bone marrow (22,23) than from the brain (24,25). Thus,
it would be more efficient to obtain neural cells from skin-
or bone marrow–derived stem cells through transdiffer-
entiation.

Transdifferentiation has often been shown using
nonspecific markers and ignoring possible artifacts
caused by culturing methods (26,27). Therefore, the
existence of transdifferentiation is still debated (27,28). It

Table 1. Terms Most Frequently Used in Stem Cell Biology

Totipotent cell Differentiates into any cell type without exception. Also ‘‘stem cell’’

Pluripotent cell Differentiates into any cell type present within a germ layer

Multipotent cell Differentiates into cells of a particular cell lineage (in a germ layer)

Unipotent cell Differentiates into only 1 type of cell and differs from non–stem cell because it is able to self-
renew

Self-renewal Asymmetrical division producing 1 identical cell and 1 ‘‘daughter’’ cell that enters the
determination phases

Zygote Fusion of spermatozoid and egg cell; develops into blastocyst

Inner cell mass Clump of cells within blastocyst; the original (totipotent) embryonic stem (ES) cells

Embryonic stem cell Undifferentiated cell present in the inner mass cells of a blastocyst

Adult stem cell Undifferentiated cell in differentiated tissue; better term is ‘‘somatic stem cell’’ because this
type can also be found in children

De-differentiation Reversion of partially or terminally differentiated cell to an earlier developmental stage in its
own lineage

Transdifferentiation Change of cell’s fate, ie, cell enters a lineage that was not the original destination

Figure 1. All tissues in an organism originate from the 3
germ layers: the ectoderm layer, endoderm layer, and the
mesoderm layer. Neural cells that form the central and
peripheral nervous system derive from the ectoderm.
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should be kept in mind that forced differentiation into a
cell from a lineage within an unnatural germ layer could
result in abnormal phenotypes that, after grafting, could
induce carcinogenesis (29).

POTENTIAL FOR SPINAL CORD REPAIR
After SCI, endogenous regenerative events occur, indi-
cating that the spinal cord attempts to repair itself.
Schwann cells, the myelinating and regeneration-pro-
moting cell in the peripheral nervous system, migrate
from spinal roots into the damaged tissue and myelinate
spinal cord axons (30,31). The expression of regenera-
tion-associated genes is increased in damaged neurons
(32,33). There is a surge in proliferation of local adult

stem cells and progenitor cells (34–36). However, axonal
growth is thwarted by growth inhibitors present on
oligodendrocyte myelin debris and on cells that form scar
tissue (37–39). Also, the newborn stem cells and
progenitor cells do not integrate functionally into the
injured spinal cord tissue. Thus, the endogenous
regenerative events that occur after injury fail to repair
the spinal cord.

Improved functional outcome after SCI may be
elicited by neuroprotective approaches that limit second-
ary tissue loss and thus the loss of function. Alternatively,
functional recovery could be elicited by axon growth-
promoting approaches that result in restoration of
damaged and/or formation of new axon circuits that
could become involved in function. There is little doubt
that stem cells and neural progenitor cells could become
invaluable components of repair strategies for the spinal
cord. They can become neural cells that may support
anatomical/functional recovery. Alternatively, they may
secrete growth factors that could support neuroprotec-
tion and/or axon regeneration (Figure 3). The potential of
stem cells or progenitor cells to support spinal cord repair
has been studied extensively (40–42). Their shortcomings
for repair are also understood (43,44). Over the last
decade, stem cells have often been studied without
implementing explicit criteria that would define the used
cells as such. Consequently, the therapeutic potential of
true stem/progenitor cells is still unknown. Other matters
related to the use of stem/progenitor cells for SCI also
need to be resolved before effective therapies can be
developed. How can the cells be best obtained? Do they
need to be differentiated in vitro before transplantation?
How can survival of grafted stem/progenitor cells be
improved and uncontrolled division and differentiation
be prevented (45)? How can functional integration of the
transplanted cells be improved?

Cell Replacement in the Injured Spinal Cord
Considering the ability of stem cells to become any cell
type, their potential use for cell replacement strategies is
common sense. With the appropriate combination of
(growth) factors (induction cocktail), ESCs can be used to
obtain neurons and glial cells (46,47). ES-derived neurons
can survive and integrate after injection into the injured
rat spinal cord (48). It was shown that transplanted
mouse ESCs myelinate axons in the myelin-deficient
shiverer rat spinal cord (49). Also, mouse ESCs grafted
into the injured (normal) rat spinal cord result in
improved functional recovery (50). Importantly, ESCs
were found to survive well within the injured spinal cord,
suggesting that long-term treatments could be achieved
using this approach (51).

Human ESC can be directed toward multipotent
neural precursors (52), motor neurons (53,54), and
oligodendrocyte progenitor cells (55). The latter were
found to differentiate into mature oligodendrocytes in
vitro and in vivo (56). Moreover, these cells are able to

Figure 2. From embryonic stem cell to differentiated neural
cell. Embryonic stem cells from the inner cell mass of the
blastocyst are pluripotent and undergo phases of differen-
tiation that change them into unipotent cells. This depicts
the generation of neural cells; oligodendrocytes, neurons,
and astrocytes.
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myelinate axons after transplantation into the spinal cord

of myelin-deficient shiverer mice and adult rats (55).

Neural progenitor cells (ie, multipotent cells from

which the cells of the central nervous system arise) often

aggregate into neurospheres. Cao et al (57) showed that

neural progenitor cells transplanted into the injured rat

spinal cord favored differentiation into astrocytes. These

results indicated the need for differentiation protocols

before grafting (58). Fetal neural precursor cells genet-

ically modified to express noggin, an antagonist of bone

morphogenetic protein, differentiate preferably into

neurons and oligodendrocytes (59). Transplantation of

these cells into the injured mouse spinal cord resulted in

improved functional outcome (59). However, this result

could not be shown by others using the same approach

(60).

Human neural progenitor cells can be harvested from

blastocyst-stage embryos and manipulated to generate

functional neurons and glia (61). When human neural

progenitor cells were grafted into the injured rat spinal

cord, some of them were found to differentiate into

oligodendrocytes (62,63). Moreover, this finding was

accompanied by improved functional outcome (62,63).

Mesenchymal stem cells from bone marrow may also
have therapeutic promise for SCI (64,65). Although still
debated (66), these particular adult stem cells have been
shown to differentiate into bone, fat, tendon, and
cartilage cells (67). It has been published that these cells
can also transdifferentiate in vitro into liver (68), skeletal
(69,70), and cardiac muscle (71,72) cells and into central
nervous system cells (68,70,73–77). This makes mesen-
chymal bone marrow stromal stem cells interesting for
strategies for repair of the injured spinal cord. Many
medical fields are exploring mesenchymal stem cells, for
instance, for repair of the heart after myocardial infarction
(78,79), osteogenesis imperfecta in orthopedics (80,81),
organogenesis in internal medicine (82,83), interverte-
bral disk disease in neurosurgery (84–87), and stroke/
neurodegenerative diseases in neurology (88–90).

Neuroprotection
A neuroprotective strategy implemented soon after SCI
would be the first line of defense against injury-induced
tissue loss and could contribute to an improved
neurological outcome. It has been shown that neural
progenitor cells can protect against excitotoxicity
(91,92). Also, neural progenitor cells secrete a variety of
molecules that could protect neural cells from death
mechanisms other than excitotoxicity (91,92). Thus,
transplantation of these cells into the injured spinal cord
could in fact exert neuroprotective effects. Bone marrow
stromal cells have also been shown to elicit neuroprotec-
tive effects because grafting into the injured adult rat
spinal cord resulted in tissue sparing (93,94). This may
have resulted from the secretion of a number of growth
factors (95–98).

Axon Regeneration
Promoting axon growth in the injured spinal cord could
contribute to restoring function. The ability of neural
progenitor cells to secrete a variety of neurotrophic
factors indicates that they could promote growth of
damaged axons (91,92). Adult neural progenitor cells
were found to provide a permissive guiding substrate for
corticospinal axon regeneration after spinal cord injury
(99). The stem cell–like olfactory ensheathing cells assist
axon regeneration in the injured spinal cord in a different
manner. These cells are capable of preventing axons from
recognizing growth inhibitory molecules thereby allow-
ing them to elongate into otherwise inhibitory terrain
(100,101).

CLINICAL APPLICATION TO SCI
The translation of approaches developed in the labora-
tory involving stem cells into the clinic is in progress. The
use of stem cells harvested from tissue from an adult has
facilitated the use of stem cells in the clinic because it has
practically dismissed the moral objections surrounding
the use of stem cells derived from an embryo.
Nevertheless, for reasons described below, the use of

Figure 3. Potential effects of stem cells on spinal cord
repair. Although transplanted stem cells could elicit axon
regeneration and/or neuroprotection through secretion of
growth factors, the most logical contribution to repair could
come from their ability to replace lost neural cells. This could
result in remyelination of demyelinated axons if they become
oligodendrocytes, restoration of (new) circuits if they
become neurons, and providing scaffolding and nutrition
of the injured area if they become astrocytes. Generally, the
last is not preferred because astrocytes express a number of
axon growth inhibitory molecules that could prevent axon
regeneration and thus limit the overall restoration.
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ESCs is often preferred over that of adult stem cells. Use
of human ESCs for spinal cord repair in the United States
has been proposed by Geron, a California-based biotech-
nology company. Application of adult human stem cells
for treatment of SCI is in progress in many countries
around the world (102). For instance, autologous bone
marrow–derived stem cells have been transplanted in the
injured spinal cords of 25 patients in Guayaquil, Ecuador,
a trial that is supported by a California-based biotech-
nology company, PrimeCell Therapeutics. Encouraging
results have been reported such as improved walking and
sensory perception. It has been suggested that sur-
mounting the ethical hurdles (see below) could benefit
the clinical application of ESCs (103).

EMBRYONIC VS ADULT STEM CELLS
ESCs can develop into more than 200 different cell types
present in the human body (104) and under the
appropriate circumstances into an entire organism
(105). Human ESCs have been isolated from blastocyst-
stage embryos (106). They have also been created using
somatic cell nuclear transfer (107,108) or parthenoge-
netic activation of eggs (109,110). Isolated ESCs do not
undergo senescence and retain high telomerase activity
and normal cell cycle signaling, which explains their rapid
proliferation in culture (111,112). These plastic charac-
teristics make the ESC suitable for central nervous system
repair strategies. However, transplantation of ESC can
result in teratomas because of uncontrollable cell
proliferation (113–115). Also, ESCs in culture may
undergo genomic and epigenetic changes that could
lead to transformation, although this can be prevented
using proper culture techniques (116). Transplanted ESC
are prone to be rejected after injection into adult tissue,
and long-term treatment with immunosuppressive drugs
may be required to prevent this loss (114). These findings
have to some extent tempered the enthusiasm for
application of ESC in repair strategies for the central
nervous system, despite the fact that ESC possess by far
the greatest potential and could be applied in a broad
selection of reparative cell therapies.

An alternative for ESC are stem cells obtained from
tissue after birth. For instance, neural progenitor cells
have been harvested from adult brain (117,118) and
spinal cord (119). However, adult stem cells are less
plastic than ESCs and divide less frequently in culture
(120). Also, their differentiation potential may decrease in
time (121). This makes them a possible but somewhat
limited alternative for ESCs. On the other hand, they offer
the advantage that they can be transplanted without
genetic modifications or pretreatments. Immune rejec-
tion would not be an issue with adult stem cells when the
cells are isolated from the patient (autografting) (122).
Also, adult stem cells show a high degree of genomic
stability during culture (123,124) and usually do not
result in tumor formation (124). Finally, there is much less
moral concern surrounding the use of adult stem cells

because they can be harvested from the patient. These
latter features support the use of adult stem cells over
ESCs for strategies aimed at repairing the central nervous
system. This is certainly true if strategies can be
developed that circumvent the potential drawbacks of
using adult stem cells such as the lower plastic ability and
lower rate of proliferation in vitro compared with ESCs.

ETHICAL AND SOCIAL CONCERNS
One of the issues that surround the use of ESCs is the time
point at which an embryo is considered to be a person
(125–127). According to the Roman Catholic Church and
other religious institutions, an embryo ‘‘must be treated
from conception as a living person’’ (128). This implies
that a blastocyst cannot be used to harvest cells. Others
consider an embryo to be a person only after the 20th
week of gestation (125,126), implying that ESCs can be
harvested from blastocysts. Also, in that case, ESCs could
be harvested from embryos that were generated but not
selected for in vitro fertilization. These would otherwise
be discarded.

Discussions on what constitutes ‘‘life’’ and when does
‘‘life’’ start are often intense because they are driven by
moral concerns fueled by religious and political ideas.
These issues need to be addressed with respect to all
opponents. Rules regarding the harvest and use of stem
cells can only be set after full agreement by all groups
within a society.

Ethical issues that surround the use of adult stem cells
mostly involve their possible misuse (129). For instance,
oocytes can be derived from stem cells of male origin,
which allows the production of a child from one or two
male biological parents (130–132). The potential biolog-
ical problems and psychological effects on the child are
unknown. It would also be possible that the offspring
develops defects because of acquisition of pairs of
(recessive) genes (130–132).

Therapeutic cloning and genetic manipulation are
other issues that surround the use of stem cells. Cloning
of cells, genetically matched for the host, could in theory
be beneficial for organ transplantation because it may
solve issues such as organ shortage and rejection. Genetic
manipulation could convert ESCs into gametes, which
would allow germ line gene therapy (GLGT) (131).

INDUCED PLURIPOTENT STEM CELLS
It is now possible to obtain pluripotent cells by
reprogramming differentiated cells, such as fibroblasts,
through the introduction of 4 transcription factors,
OCT3/4 (octamer-4), SOX2 (sex-determining region Y-
box2), KLF4 (Kruppel-like factor), and MYC (induced
pluripotent stem (iPS) cells (133,134). This new technol-
ogy was first described by Takahashi and Yamanaka (135)
for mouse fibroblasts and has now been applied for other
mouse cells (136) and for human somatic cells (137). Of
the 4 transcription factors, MYC and KLF4 can be
substituted by others (138,139). The underlying mech-
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anisms for this typically straightforward and robust
reprogramming procedure are still unknown and intense-
ly debated. At present, it is still unclear in how closely iPS
cells resemble conventional ESCs and whether applica-
tion of iPS cells would result in similar functional results as
can be obtained with ESCs. Comparative gene expression
profiles of human ESCs and human iPS cells is now
ongoing (137,140). Several hurdles need to be overcome
before iPS cell technology can produce cells for clinical
use (133), such as the use of retroviral vectors to
introduce the transcription factors and the need for
selection markers to identify the reprogrammed cells, as
well as the use of the oncogene MYC and the integration
of retroviral vectors into the genome. These needs are
required for proper reprogramming, but they modify the
cell genetically and modified cells face regulatory
obstacles for therapeutic applications. Nevertheless, it is
evident that iPS cell technology is promising and has
opened exciting avenues for the clinical application of
pluripotent cells without the ethical obstacles that go
along with the use of ESCs.

CONCLUSIONS
Stem cells hold promise for spinal cord repair, but their
true potential has not yet clearly been shown. At this
time, stem cell–based therapies are at an early stage,
and the associated risks are still unclear. When a patient
has a disabling or life-threatening disease, a case might
be made for surmounting the existing ethical and social
barriers to enable treatment. Changing ethical barriers
will not be accomplished overnight. Most likely, stem
cell science will advance faster than the debate on
ethical issues. Therefore, to enable future use of stem
cells for therapeutic purposes, discussions on all related
issues and especially the moral aspects need to be held
today. As with any medical intervention, the questions
to be asked are whether this approach is the most likely
one to achieve success and whether the risks justify the
benefits.
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