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Learning from nature’s amazing molecular machines, globular
proteins, we present a framework for the predictive design of
nanomachines. We show that the crucial ingredients for a chain
molecule to behave as a machine are its inherent anisotropy and
the coupling between the local Frenet coordinate reference frames
of nearby monomers. We demonstrate that, even in the absence of
heterogeneity, protein-like behavior is obtained for a simple chain
molecule made up of just 30 hard spheres. This chain spontane-
ously switches between 2 distinct geometries, a single helix and a
dual helix, merely because of thermal fluctuations.

anisotropy � Frenet frame � globular proteins � molecular switching

S ignificant advances in laboratory techniques for tailoring
and processing materials at the atomic scale have resulted

in nanotechnology becoming an increasingly mature field with
great promise. One of the exciting goals of the field is the
design of powerful machines, such as functional entities that
can switch reversibly between distinct geometries (1–4). Such
machines would not only be of great use on their own but also
could yield novel emergent behavior upon networking them
together (5). The existence of life in its myriad forms provides
a proof-of-concept of what one might aspire to accomplish
with nanotechnology.

Proteins are complex water-soluble chain molecules made up
of tens or hundreds of 20 types of naturally occurring amino acids
and exhibit conformational switching (6) triggered by influences
such as ligand binding. At the nanoscale, thermal fluctuations
yield forces with magnitudes comparable with those involved in
chemical reactions catalyzed by the proteins (7). How might one
design a machine whose functionality is structure based? In its
simplest form, we seek an object that takes on just a few distinct
geometries in a reproducible manner and is able to switch
reversibly between them because of thermal fluctuations. Such
a situation would allow external stabilizing influences to favor a
given conformation over the others and allow for the develop-
ment of powerful machines at the nanoscale.

A collection of hard spheres constitutes the simplest model of
matter and exhibits both a crystalline phase and a fluid phase on
varying the density of spheres (8). A linear chain of hard spheres
is the simplest connected object with the fewest constraints and,
thus, the greatest f lexibility (9). Such a chain, at high temper-
atures or when there are no interactions promoting compaction,
would occupy a random-coil phase in which all self-avoiding
conformations are equally likely. This situation is not conducive
for machine design. In the presence of intersphere interactions
promoting compaction and when there are no frustrating influ-
ences from the sphere tethering, one would expect a generic
compact phase in which, at least locally, the preferred confor-
mation is that of a face-centered cubic (fcc) lattice. It was
conjectured by Kepler, and proven more recently by Hales, that
the fcc structure provides for optimal packing of unconstrained
spheres (10). There is a high degeneracy of compact conforma-
tions with no assurance that any given conformation will be
reached from a random coil conformation rapidly and repro-
ducibly. Again, this situation is not conducive for the design of
machines.

Of course, what one requires is a phase of matter with much
fewer ground-state conformations than either the random-coil
or generic compact phase. Additionally, one needs a phase that
is in the vicinity of a phase transition (or cross-over for finite size
systems) to a distinct phase, because that provides for exquisite
sensitivity to the right types of external influences. Our thinking
is guided by the liquid crystal phase (8), which is a distinct state
of matter that is poised in the vicinity of the liquid phase. This
phase is known to be one of the most sensitive phases of matter.
The liquid crystal phase opens up because of the anisotropy of
the constituent molecules—there is no longer a need for simul-
taneous ordering in all 3 directions. Rather, one can have
translational order in fewer than 3 dimensions along with
orientational order. Here, we address the issue of how one might
open up a distinct phase with relatively few ground-state con-
formations in the vicinity of the random-coil phase. Such a phase
would then be the analog of a liquid crystal phase but this time
for chain molecules.

Armed with insights from the liquid crystal phase and the
behavior of proteins, we identify 2 mechanisms for thinning the
number of candidate ground-state structures and demonstrate
that these are sufficient for the creation of the sought-after
behavior. One can define a Frenet reference frame (a local
Cartesian coordinate system) at each location of the chain
molecule composed of the tangent, the normal, and the binormal
as the orthogonal coordinate axes. These coordinate systems play
a crucial role in at least 2 ways, as can be readily seen in the
protein context: First, the chemistry of hydrogen bonds and
other chemical features yield constraints on the relative orien-
tations between the coordinate systems associated with pairs of
amino acids in contact; second, the side chains of amino acids are
located in a specified direction with respect to these coordinate
systems—for example, the amino acid side chains are typically
pointed approximately in the outward normal direction. Indeed,
both the �-helix and the �-sheet allow for the placement of side
chains in a manner that avoids steric clashes.

The first mechanism follows from the observation that a
model of a chain composed of spheres is unable to capture the
inherent anisotropy induced by the presence of the chain con-
straint—at each location of the chain, there is a tangent direction
defined by the 2 adjacent objects. Thus, the simplest model
capturing the correct symmetry is one in which the constituent
monomers are no longer isotropic. We therefore allow for the
overlap of van der Waals spheres of adjacent monomers along
the chain. Such an overlap overtly breaks the isotropy of the
spheres and confers uniaxial anisotropy to the chain. In both the
emergent building blocks of protein structures, �-helices and
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�-sheets, nearby segments are placed right up against each other
and aligned parallel to each other, reflecting the anisotropy. In
a protein, the distance between neighboring C� atoms is 3.8 Å,
requiring that the radius of the backbone of an amino acid be
�1.9 Å. This constraint is easily met by considering the van der
Waals radii of the constituent atoms. For example, one would
estimate (11) that the smallest amino acid, glycine, has a radius
�2.4 Å. Second, we study the effect of attaching side chains to
the backbone monomer, e.g., in the negative normal direction.
The self-avoidance of these side spheres with each other and with
the backbone spheres results in an induced coupling between
pairs of Frenet frames. Such a coupling is also realized in
tube-like or thick polymers (12).

We find that each of these features results in the creation of
a distinct intermediate phase for short chains sandwiched be-
tween the generic compact phase and the random-coil phase.
Furthermore, when the 2 features are combined, the phase is
stabilized and occupies a larger region in parameter space. For
our simplified model of a chain of backbone spheres (Fig. 1) with
a sphere separation along the sequence of 3.8 Å, we have 3 length
parameters: the radius a of the backbone spheres, the radius b
of the side spheres, and the cut-off scale Rc for the pairwise
attractive interaction potential �/kB between the backbone
spheres (see Materials and Methods). In the absence of side
spheres and for nonoverlapping backbone spheres, a � 1.9 Å,
there is a cross-over from a random-coil phase (in which the
conformations are mostly extended) to a globule phase in which
one has compact conformations with no distinct motifs such as
helices. The situation becomes qualitatively different upon in-
corporating 1 or both of the 2 key features.

Fig. 2A shows the T � 0 phase diagrams in the a–Rc plane for
a N � 12 chain. Distinct phases, corresponding to helical and
saddle-like conformations, emerge between the coil and the
globular phases analogous to the opening up of a liquid crystal
phase between the liquid and crystalline phases for anisotropic
molecules (8). The saddle can be thought of as a piece of a

dual-helix structure and does develop into a dual helix for longer
chains. (The dual helix is distinct from the double helix because
the former is a conformation of a single chain, whereas the latter
is composed of 2 chains.) These phases have a lower entropy than
both the globule and random-coil (swollen) phases but are
stabilized by the attractive interaction potential. We also find
that the presence of side spheres even without overlap of the
backbone spheres induces helical conformations [supporting
information (SI) Fig. S1]. This effect is accentuated when both
features are present simultaneously (Fig. S2). Interestingly,
conformations composed of nearly parallel strands similar to
those in �-sheets can be obtained by adding a bending energy
into the model (Fig. S3).

We now consider an even shorter system (N � 16) with an
enhanced overlap of the backbone spheres: a � 3.0 Å. The radius
of the side sphere is chosen to be b � 2.5 Å, and the range of
attraction is now increased to Rc � 7.5 Å. These parameter values
yield a helix ground state but are close to a cross-over to the
dual-helix state. Fig. 3A shows that the specific heat has 2 peaks
corresponding to 2 cross-over temperatures, T1 � 0.2�/kB and
T2 � 0.97�/kB. At the lowest temperatures, the helix is the
dominant conformation. At intermediate temperatures, one
obtains the dual-helix structure, whereas, at higher tempera-
tures, one obtains a random coil. Fig. 3B shows the contour plots
of the free energy on the energy–contact order plane at T1 and
exhibits pronounced minima corresponding to the single helix
and dual helix. The helix is a bit lower in energy, whereas the dual
helix is entropically more favorable. The free-energy barrier for
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Fig. 1. Sketch of the chain molecule. The backbone is modeled as a chain of
(dark color) spheres of radius a with a separation along the chain l � 3.8 Å. The
nearest-neighbor spheres along the backbone are allowed to overlap with
each other, thereby overtly introducing uniaxial anisotropy. ti and ni are the
tangent and normal vectors assigned to each sphere i, except to those at the
ends of the chain. Side spheres (shown in light color) of radius b are attached
to the backbone spheres in the negative normal direction. The side spheres are
not allowed to overlap with either the backbone spheres or with each other.
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Fig. 2. Phase diagram of chain molecules made up of spheres. (A and B) The
phase diagrams at T � 0 in the a–Rc plane for chains of length N � 12 without
side spheres (b � 0) and with side spheres (b � 2.5 Å), respectively. The
intermediate compact phase arises on the edge of compaction of the chain
molecule when Rc becomes sufficiently large to allow the attractive interac-
tion to be effective. The vicinity of this phase to other phases (it is sandwiched
between 2 distinct phases) confers sensitivity to structures in the intermediate
compact phase. (C–H) Typical ground state conformations: a random coil
conformation obtained with Rc � 2a (C), a globule conformation obtained
with a � 2.5 Å, Rc � 9 Å (D), a saddle conformation obtained with a � 3.2 Å,
Rc � 7 Å (E), several helix conformations with different pitch to radius ratios
obtained for a � 2.6 Å, Rc � 6.4 Å (F), a � 3.2 Å, Rc � 8 Å (G), and A � 3.4 Å,
Rc � 9 Å (H). The helical and saddle ground-state conformations in the model
with no side spheres are retained even when side spheres are present (b � 2.5
Å). However, the side spheres eliminate several random-globule and random-
coil conformations, thereby stabilizing the intermediate compact phase.
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the switching at T1 is �4�, which is equivalent to the energy
required to break 4 contacts. This barrier is significantly higher
than kBT1, and the 2 helical conformations are each quite stable
at this temperature. Quite remarkably, our Monte Carlo (MC)
simulations with standard pivot and crankshaft move sets show
a dynamical switching between the 2 conformations in a single
trajectory at a somewhat higher temperature of T � 0.5�/kB. The
system is bistable with a rapid switching between distinct con-
formations (for examples of molecular switches, see refs. 1–4)
with little weight for intermediate conformations (Fig. 4). Note
that the switching can also be easily effected by means of an
external influence that is sensitive to the chain end-to-end
distance.

It is important to note that the ease with which one obtains this
system without any fine-tuning of details is made possible by the
existence of the intermediate phase. The conformations in this
phase are in the vicinity of the random-coil phase while retaining
order because of the proximity of the compact phase. This results
in special sensitivity to small perturbations induced, e.g., by
thermal fluctuations that, in the example presented here, are
responsible for the switching between 2 distinct geometrical
shapes. Unlike the random-coil conformations that can switch
from one to another easily because of thermal fluctuations, the
structures in the intermediate phase exhibit some stability. At

the same time, the structures are not so densely compact that
they are subject to sluggish dynamics and kinetic inaccessibility
characteristic of the glassy phase. These distinct advantages of
the intermediate phase have a wider applicability than for chain
molecules as evidenced by the sensitive liquid crystal phase
sandwiched between the crystalline and liquid phases. In liquid
crystals, the anisotropy arises from the asymmetric shape of the
constituent molecules, whereas here, the anisotropy is a natural
consequence of the chain topology of the molecule. Interestingly,
earlier computational studies (13, 14) had found that overlap-
ping adjacent monomers yield helical conformations. Also pro-
tein-like folds are adopted by a host of nonbiological polymers
(15–21) (see Appendix).

Understanding the properties of matter is greatly simplified
upon using the concept of its phases (8). For example, a liquid
possesses certain gross properties, such as adopting the shape of
the container and its ability to flow, irrespective of its constituent
molecules and their underlying chemistry. Globular proteins
share a great deal of common characteristics—they are all linear
chains of the same 20 aa, and they fold rapidly and reproducibly
into their native state structures; these structures are made up of
emergent building blocks in the form of helices and almost
planar sheets; the total number of distinct folds that proteins
adopt is limited in number (22, 23) much as the number of space
groups associated with Bravais lattices (8) is 230; proteins are
flexible and versatile in their folded state; and proteins have a
tendency to aggregate and form amyloid, which in turn, is
implicated in debilitating human diseases. These common at-
tributes of proteins suggest that protein structures occupy an
intermediate phase of matter (12, 24) that confers on them their
many amazing characteristics.
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Fig. 3. Multiple specific heat peaks corresponding to 3 distinct phases. We
study a chain of N � 16 with a � 3 Å, b � 2.5 Å, and Rc � 7.5 Å. (A) The
temperature dependence of the specific heat indicates 2 peaks—one at T �
0.2 �/kB and another at T � 0.97 �/kB. The lower temperature peak indicates a
cross-over into a single-helix conformation from a dual helix, whereas the
peak at the higher temperature indicates a cross-over between the dual helix
and the random-coil phases. (B) Contour plot of the effective free energy as a
function of energy and contact order (CO) at the lower transition tempera-
ture. CO is defined as the sum over sequence separation of all contacts divided
by the product of the number of contacts and N. The effective free energy at
a given temperature T is determined as F(E, CO) � �kBT lnP(E, CO), where
P(E, CO) is a weighted 2-dimensional histogram for that temperature obtained
by using the multiple-histogram method (25). The unweighted histograms at
multiple temperatures are collected through parallel tempering (26) MC
simulations. The free-energy difference between consecutive contour levels is
4�. The contour plot shows 2 minima corresponding to the single helix and the
dual helix as indicated.

 0.2

 0.3

 0.4

 0.5

 0  2000  4000  6000  8000  10000

T=0.5 ε/kB

C
on

ta
ct

 O
rd

er

Monte Carlo steps / 106

A

 0.2

 0.3

 0.4

 0.5

 350  360  370  380  390  400

C
on

ta
ct

 O
rd

er

Monte Carlo steps / 106

B

t=370 t=376 t=377 t=379

T=0.5 ε/kB

Fig. 4. Dynamical switching between the single helix and the dual helix. (A)
A long MC trajectory, with standard pivot and crankshaft move sets (27), at T �
0.5�/kB, shows frequent switches between the single helix (lower contact
order) and the dual helix (higher contact order). The chain studied here is the
same as in Fig. 3. Both the single and the dual helix have similar energies. (B)
Similar to A but for a much smaller window of time steps and with higher
resolution, showing a single switch from the single helix to the dual helix. The
bottom figures are the snapshots during the switch at times t (in units of 106

steps) as indicated.
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Whitesides wrote (5) that one ought to ‘‘take existing nano-
machines—those present in the cell—and learn from them. We
will undoubtedly be able to extract from these systems concepts
and principles that will enable us to make variants of them that
will serve our purposes, and others that will have entirely new
functions.’’ The phase of matter so successfully used by nature as
the basis of life is ready to be exploited in the laboratory.

Materials and Methods
We consider chains of N hard spheres each of radius a. The beads spacing along
the chain is fixed to be l � 3.8 Å. Nonconsecutive spheres are not allowed to
overlap, whereas the neighboring spheres along the chain can overlap when
a � 1.9 Å. Nonconsecutive spheres interact via a pairwise square-well potential
equal to �� within a contact range Rc. A Frenet frame of reference is assigned
to each sphere i, except to those at the ends of the chain. The tangent vector
t̂i in this frame is a unit vector tangential to the circle passing through the
centers of beads i � 1, i, and i � 1. The Frenet normal vector n̂i is an unit vector
pointing to the center of this circle. The third vector of the frame is the
binormal vector, denoted by b̂i, and is defined to be the cross-product of the
tangent and the normal vectors. A side sphere of radius b is attached to each
backbone sphere in the direction opposite to the normal, with the distance
between the centers of the backbone sphere and its side-sphere partner equal
to a � b. The backbone spheres at the 2 ends of the chain do not have any side
spheres attached to them. The role of the side spheres is entirely steric—they
are not allowed to overlap with any of the other spheres in the system. The
energy of the chain in given conformation can be written as

E � �� �
i�1

N�2 �
j�i�2

N

��Rc � |r� i � r� j|	 , [1]

where r�i are center positions of the backbone spheres, N is the number of such
spheres, and the step function �(x) is equal to 1 if x � 0 and 0 otherwise.

We employ a parallel tempering (24) MC scheme for obtaining the ground
state as well as other equilibrium characteristics of the system. The simulation
entails monitoring 20–30 replicas, each evolving at its own selected temper-
ature Ti. For each replica, the simulation is carried out with the standard pivot
and crankshaft move sets (27) and the Metropolis algorithm for move accep-
tance. In a pivot move, one randomly chooses a sphere i in the chain and
rotates the shorter part of the chain (either from 1 through i � 1 or from i �
1 through N, where N is the number of spheres in the chain) by a small angle
and about a randomly chosen axis that goes through the ith sphere. In a
crankshaft move, 2 spheres i and j are chosen randomly such that  i � j � 6,
and the spheres between i and j are rotated by a small angle and about the axis

that goes through i and j. In both move sets, the rotation angle is randomly
drawn from a Gaussian distribution of zero mean and a dispersion of 4°. An
attempt to exchange replicas i and j is made every 100 MC steps. The exchange
is accepted with a probability equal to pij � max{1,exp[kB

�1(T i
�1 � T j

�1)(Ei � Ej)]},
where kB is the Boltzmann constant, and Ei and Ej are the energies of the replicas
at the time of the exchange. The weighted multiple-histogram technique (25) is
used to compute the specific heat and the effective free energy.

Appendix: Protein-Like Folds Are Adopted by a Host of
Nonbiological Polymers
Poly(diacetylene)s can form multiple-helical superstructures
(15) such as double-helical ribbons. Poly(ethylene glycol) (PEG)
has been shown to assume a helical conformation in isobutyric
acid with a trace amount of water, without which PEG forms a
coil configuration (16, 17). PEG also forms helices in isopen-
tanoic and n-propanoic acids but not in isobutanol or 1-butanol
(16). In isobutyric acid, PEG forms a mixture of helices and coils,
whereas a similar polymer poly(ethy-lene imine) (PEI) merely
forms helices. Phenylacetylene oligomers of specific chain
lengths (up to 18 units) and containing a tri(ethylene oxide)
side-chain segment at each repeat unit have been found to
undergo sharp switching between arrays of random coils and
arrays of helical conformations upon changing the solvent
composition (18). Another interesting example is provided by
poly(ethylene oxide) (PEO) dissolved in an electrolyte consisting
of a lithium salt (18), LiCF3SO3. In the crystalline phase of the
system, the PEO chains are helical and form parallel arrays. In
the amorphous phase, the arrays dissolve into separate helices.
Finally, there are several examples of synthesis of helical poly-
mers that are discussed by Sanda et al. (20) and that include
polychloral, polyisocyanates, polyisocyanides, polisilanes, and
polycetylenes. Such helical structures can be made to have
adjustable geometry and can then used to generate nanocavities
of tunable sizes (21). Sanda et al. (20) have recognized that the
crucial factor for the synthetic polymers to adopt the helical
structures is the steric repulsion between the side chains com-
bined with attraction that is usually provided by hydrogen
bonding.
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