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Changes in climate during the 20th century differ from region to
region across the United States. We provide strong evidence that
spatial variations in US temperature trends are linked to the
hydrologic cycle, and we also present unique information on the
seasonal and latitudinal structure of the linkage. We show that
there is a statistically significant inverse relationship between
trends in daily temperature and average daily precipitation across
regions. This linkage is most pronounced in the southern United
States (30–40°N) during the May-June time period and, to a lesser
extent, in the northern United States (40–50°N) during the July-
August time period. It is strongest in trends in maximum temper-
atures (Tmax) and 90th percentile exceedance trends (90PET), and
less pronounced in the Tmax 10PET and the corresponding Tmin

statistics, and it is robust to changes in analysis period. Although
previous studies suggest that areas of increased precipitation may
have reduced trends in temperature compared with drier regions,
a change in sign from positive to negative trends suggests some
additional cause. We show that trends in precipitation may account
for some, but not likely all, of the cause point to evidence that
shows that dynamical patterns (El Niño/Southern Oscillation,
North Atlantic Oscillation, etc.) cannot account for the observed
effects during May-June. We speculate that changing aerosols,
perhaps related to vegetation changes, and increased strength of
the aerosol direct and indirect effect may play a role in the
observed linkages between these indices of temperature change
and the hydrologic cycle.

atmosphere � trends

The rate of warming and changes in other climate variables such
as sea-level rise vary over the globe. For arriving at reliable

predictions of future changes it is important both to characterize
regional climate change differences and to understand the under-
lying climate processes. In this article, we focus on the observed
spatial variations of trends in daily maximum temperature and its
extremes (e.g., trends in the hottest or coolest 10% of daily maxima)
along with related climate change indices such as trends in daily
minimum temperatures, using records of daily temperatures for
1950–2006 at stations across the continental United States. Sharp
contrasts in the nature of the changes in daily maximum and
minimum temperature are identified, with certain regions display-
ing trends toward substantial increases in daily maximum temper-
atures, in particular, whereas others display much smaller warming
trends or even trends toward cooler values. We show that the largest
warming trends of daily maximum temperature have occurred in
dry locations, whereas wetter regions have been subject to negative
trends. Further, changes in the hottest 10% of daily maxima display
the strongest dependence on precipitation and the strongest sea-
sonality, in particular, in the months of May and June from 30° to
40°N and to a lesser extent in July and August from 40° to 50°N.

A number of papers have probed the relationship between
temperatures, clouds, and precipitation (e.g., refs. 1–3). Note that
in this article we only use precipitation, but because clouds and

precipitation are strongly correlated we implicitly include much of
the cloudiness signal. Ref. 1 extensively probed the connection
between precipitation and Tmax and diurnal temperature range
(DTR), showing strong anticorrelation of precipitation, Tmax, and
DTR on short timescales (up to interannual) during the warm
season. These are caused primarily by reductions of solar heating by
clouds and increases in surface latent heat release by surface
wetness increases due to precipitation. They suggest that long-term
changes in precipitation and clouds may be the cause of reduced
temperature trends and negative DTR trends. We explore this in
detail below. Recently, it has been shown that trends in temperature
and DTR show a strong dependence on precipitation amount on a
global scale (4). We carry out a similar but more detailed analysis
on the continental United States and expand the analysis to include
seasonality and effects on the extremes in the distribution. Differ-
ences with ref. 4 are noted below.

The southeastern United States is one of the few places in the
world displaying an overall cooling trend over the 20th century, in
contrast to the widespread global warming (5). A number of articles
have explored this anomaly (6–9). Note that several of these find the
anomalous region in the central United States and not in the
Southeast depending on the time interval and the dataset used (we
show below that it is most prominent in the early summer in the
southeastern United States and in the late summer in the north-
central United States). It is not clear whether a common explana-
tion is possible for both the southeastern and central United States.
No consensus exists to adequately explain these anomalous regions.
For example, one study used a global climate model forced by
observed sea surface temperatures (SSTs) to suggest that SSTs can
force the anomaly in the east-central United States (6). Others used
downscaling in regional models and proposed different mecha-
nisms that can simulate the ‘‘warming hole’’ [a circulation/soil
moisture feedback (7) and better cumulus parameterization (8)].
Another suggested that internal dynamic variability could be the
cause of the anomaly in the central United States by analyzing
multiple simulations from 18 climate models (9). In addition,
large-scale circulation modes [El Niño/Southern Oscillation
(ENSO), Arctic Oscillation, etc.] may play a role and are discussed
more below. The lack of consensus in these articles is a key
motivation for further characterization of the observations as
provided in this article, to obtain constraints to test various theories.
In this article we probe relationships between precipitation (both
climatological and trends) and trends in both maximum and
minimum temperatures, and trends in their extremes and the
seasonal and latitudinal patterns of the correlations. The finding
that the anomalous negative trends in daily temperature maxima in

Author contributions: R.W.P., S.S., and G.C.H. designed research; R.W.P. performed re-
search; R.W.P. analyzed data; and R.W.P., S.S., and G.C.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: robert.w.portmann@noaa.gov.

7324–7329 � PNAS � May 5, 2009 � vol. 106 � no. 18 www.pnas.org�cgi�doi�10.1073�pnas.0808533106



the Southeast over the past 50 years appear to be most closely tied
to hydrologic parameters, and elucidation of its seasonal cycle, is of
particular interest for attempts to explain the unusual changes
observed in the climate of this region. We propose speculative
mechanisms to explain the observed connections between daily
maximum temperatures and precipitation below.

Results
The Global Historical Climatology Network Daily (GHCND)
station data (Version 1) that are used in this study provide daily
minimum and maximum temperatures and precipitation amounts
at thousands of stations in the United States (10). We concentrate
on the years 1950–2006 because there are a large amount of data
present throughout the continental United States over this time
interval and several studies have focused on this time interval (e.g.,
ref. 11). However, as discussed below, our results are robust to
changes in time interval. We include all stations with �50 years of
data throughout this period. The mean precipitation, trend in Tmin,
Tmax, and Tmean, and trends in percent exceedance of percentiles
(e.g., 10, 50, and 90%) are computed at each station. In general, we
have used a 90% available data threshold to include data in the
analysis. This threshold is applied in a given time period (e.g., a
2-month period to compute a mean) and when computing a trend
(90% of the years must have averages). The computation of the
trends of percentile exceedance is discussed below.

Temperature Trends, and Precipitation. We computed trends in
temperature monthly, bimonthly, and seasonally. We present ex-
amples here for the May-June period first because this period has
the highest degree of statistical significance for the linkage we are
exploring (this is discussed further below). Fig. 1 A and B shows
maps of trends in daily minimum and maximum temperature for all
US GHCND stations with data in the 1950–2006 time interval
satisfying the criteria discussed above. Fig. 1C shows the average
precipitation for the March-June period for the same stations (the
addition of earlier months is discussed below). The map of trends
in maximum temperature (Fig. 1B) shows a large variation across
the United States in going from east to west, and smaller variations
north to south, whereas the minimum temperature map (Fig. 1A)
is more homogeneous. The large area of negative trends in the
southeastern United States is in the same general region as the
negative 20th century temperature trends for this time period (5).
Fig. 1 shows that this Southeast anomaly region of trends in
maximum temperature is characterized by a high precipitation rate.
It is striking that the 100th meridian, which provides a demarcation
for the transition between the drier western and wetter eastern
United States (sometimes referred to as the ‘‘dry line,’’ see Fig. 3
below), separates the regions of negative and positive trends in
Fig. 1B.

The average Tmax anomaly time series is shown in Fig. 2 for a
region of the southeastern United States (80–95°W, 30–40°N)
along with the average precipitation and the Southern Oscillation
Index (SOI) (from http://www.cpc.ncep.noaa.gov/data/indices).
The anomaly is computed by removing the long-term mean tem-
perature at each station and averaging all stations in the region. The
anomalies of mean precipitation have been overlaid on Fig. 2 Upper
(dashed line) with scale reversed, clearly demonstrating the large
degree of anticorrelation between these variables (r � �0.57), as
noted by previous studies (1, 3). The anticorrelation likely comes
from both the surface wetness effects of precipitation and the
effects of clouds associated with the precipitation discussed above.
However, correlation on shorter timescales does not necessarily
imply strong links in longer-term trends. To account for both the
annual and long-term changes in the precipitation time series on the
temperature time series to first order, we compute the trend of
the temperature time series with and without including the precip-
itation time series as a linear regression term. The trend in
temperature changes from �0.21 to �0.14 K decade�1 demon-

strating a role for trends in precipitation but for only a small amount
of the anomalous trend. We revisit this using a larger geographic
scale below. The DTR time series shows even larger annual
correlation with average precipitation (r � �0.78), but the long-
term trend is similarly little affected. Even less connection of the
SOI index and the temperature time series is evident (r � 0.03).

To further explore the relationship between trends in daily
maximum temperature and the mean precipitation, a longitudinal
cross-section of stations located from 30–40°N latitude is shown in
Fig. 3A. This figure indicates that the large change in mean
precipitation that occurs near 100°W longitude coincides with a
distinct change in the temperature trend. Significantly, the rela-
tionship to precipitation is not restricted to the large-scale change
seen in crossing the dry line: smaller changes in the temperature
trend (for example, stations in the Northwest and in California) are
also colocated with consistent changes in precipitation (see also,
Fig. 3B).

A scatter plot of all observations in Fig. 3A is shown in Fig. 3B
along with a trend line fitting the data. Fig. 3B demonstrates and
quantifies the relationship between these variables, which can be
visually observed in Figs. 1 and 3A. The cyan subset of points in Fig.
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Fig. 1. Maps of 1950–2006. (A) Minimum temperature trends for May-June,
(B) same as A but for the maximum temperature, and (C) mean daily precip-
itation (mm/day) but for March-June time period (earlier months included
because effects of precipitation may persist for several months; see Discus-
sion). All stations are shown that satisfy minimum data requirements discussed
in the text.
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3B represents stations from 115–125°W, and from 30–40°N (pri-
marily in California), illustrating that the relationship of trends in
maximum temperature to precipitation occurs to some degree
across that region and in the larger scale. Estimating the degree of
significance of the slope of the mean precipitation versus temper-
ature trend scatter plot is complicated by the large amount of spatial
correlation among nearby stations in particular years, both in the

average precipitation and temperature trend fields. If unaccounted
for, this correlation would artificially inflate the significance of the
relationship because of an overestimation of the number of inde-
pendent points. To account for this correlation and estimate the 1
and 2 sigma slopes about the null hypothesis (zero slope, i.e., no
connection between the trend in daily maximum temperature and
climatological precipitation) the observational temperature and
precipitation time series are used, but the ordering of the years is
randomized. The same randomization of years is used for all
stations to preserve the spatial correlations. The precipitation
versus temperature trend slope is recomputed for the randomized
data and this procedure is repeated 10,000 times to obtain a
distribution of slopes, from which the 1 and 2 sigma values are
obtained for the null hypothesis that there is no time dependence
in the relationship between climatologically average precipitation
and temperature anomalies. The 2-sigma estimate for the slope on
Fig. 3B is 0.04 (K decade�1)/(mm day�1), demonstrating that the
computed slope of �0.11 (days decade�1)/(mm day�1) is highly
significant.

To explore the possibility that precipitation trends might have
caused the reduction of the temperature trends in the southeastern
United States, we show the longitudinal variation of precipitation
trend and the temperature trend on Fig. 4A. A small increase in the
precipitation trend is evident in the southeastern United States, but
it is relatively small compared with the variability and not well
correlated with trends in maximum temperature. Fig. 4B shows a
scatter plot of the data in Fig. 4A. It is evident that there is no
significant relationship between these variables above the variability
across the Southern United states. Using % decade�1 instead of
mm decade�1 (to enhance the trends in dry regions) does not
improve the relationship (data not shown). The nearly complete
lack of any relationship between these variables is strong evidence
that trends in precipitation are not the cause of negative trends in
Tmax in the southeastern United States.
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Fig. 2. Time series of annually averaged daily maximum temperature and
mean precipitation anomalies for a region of the southeastern United States
(80–95°W, 30–40°N) (A) and the SOI (B). Note the reversed scale used for the
average precipitation anomalies on A that demonstrate the large short-term
anticorrelation (r � �0.57).
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Fig. 3. 1950–2006 May-June daily maximum temperature trends together
with March-June average daily precipitation for 30–40°N. (A) Longitudinal
variation. Solid lines show the averaged results and the points show individual
stations. (B) Scatter plot of the points in A along with a least-squares trend line
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Fig. 4. 1950–2006 May-June daily maximum temperature trends together
with average daily precipitation trends for 30–40°N. Like Fig. 3, except that
precipitation trend is used in place of mean precipitation. The least-squares fit
line is not shown on B because the relationship between these variable is weak
compared with the variability.
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Percentile Exceedance Trends and Precipitation. We have demon-
strated that there is a large difference between trends in minimum
and maximum temperature in the southeastern United States. We
now explore whether this change also affects different parts of the
daily temperature distribution differently, and how changes in
temperature extremes relate to precipitation. We will use trends in
percentile exceedance in the tails of the distributions to quantify the
trends of extreme values (11, 12). The trend in exceedance rate of
percentiles is computed in the following way. First, at each station
the percentiles on each day of the year are computed by using all
temperatures within a 5-day window about that day for all years with
data. The 5-day window is used to improve the statistics of the
percentile calculation. In this article, we use the term ‘‘time
interval’’ to refer to the entire time history used (e.g., 1950–2006)
and ‘‘time period’’ to refer to the period in the year that statistics
are combined (e.g., May-June). A time period in a given year is only
included if 90% of the data are present. Data are used, on a given
day-of-year, only if 90% of the data within the 5-day window is
available over the entire time interval. Next, we compute the
exceedance rate for days that exceed the 90th percentile including
all days within the desired time period. Finally, the least-squares
trend of the exceedance rate time series is computed if 90% of the
years have exceedance rates present, and it is converted to days/
decade by multiplying by the number of days in that time period
(assuming no missing data). We label the 90th percentile ex-
ceedance trend 90PET.* We use the same time interval for the
percentile computation and the trend calculation and thus avoid
inhomogeneities in the exceedance time series that other methods
can produce (14). Note that the pattern of changes in 90PET found
with GHCND stations is very similar to that seen if a sparser, tightly
quality controlled network of stations is used [Expert Team on
Climate Change Detection and Indices (ETCCDI); see ref. 11].

Fig. 5 illustrates the method using daily temperatures at one
GHCND station. Three years of data are shown. The daily per-
centile values have been computed over the entire 1950–2006 time
interval. The exceedances in each of the 3 years are readily seen, and
the percentage of data exceeding the 90th percentile in each year
is indicated on the graph; these are the basis for computation of the
trends in exceedance rates.

The trend in the exceedance rate is an interesting quantity for
several reasons. It is intuitive, because it is easier to relate to a trend
in days/decade than one in K/decade. It also accounts for the
seasonal cycle by using the percentile values on each day. It is
sensitive to relatively small changes in extremes, but this can also
cause the trend values of exceedance to saturate if the trends in
temperature are too large. For example, if there is a large positive
trend then it is possible for the early portions of the time series to
have no exceedances and the later portions to have 100% ex-
ceedances. This would cause the exceedance trend to be saturated.
For the US stations used in this study, the exceedance trends are not
saturated and are a useful and sensitive way to examine trends in the
tails of the temperature distribution. One could also analyze trends
in the tails of the temperature time series by computing the trend
of the 90th percentile values directly by using all of the points in each
time period of every year (e.g., ref. 15) or by analyzing changes in
absolute extremes, such as the warmest day in a year. The direct
percentile approach avoids the saturation problem but has the
disadvantage of computing the percentiles with a combination of
seasonal cycle and daily variability, which only captures changes
in the peak warm/cold season and may have poorer sampling
properties.

We show the 10 and 90PET for daily maximum and minimum
temperatures on Fig. 6 A and B as a function of latitude, along with
the trends in mean daily minimum and maximum temperature
already presented. The trends for both the high and low side of the
temperature distribution (10 and 90PET) are contrasted with the
overall trend in temperature. The maximum temperature shows a
distinct difference between the 10 and 90PET fields in the south-
eastern United States, with much larger negative trends observed
in 90PET. The trend in mean daily maximum temperature displays
characteristics of both 10 and 90PET, with closer similarity to
90PET, indicating a distinct shift in the temperature distribution
toward a shorter upper tail. The minimum temperature distribution
shows much less variation between the trend in the mean, upper tail,
and lower tail of the distribution (trend, 90PET, and 10PET,
respectively) and the shape of the changes is much less similar to
that of mean precipitation. It is interesting to note that the
maximum temperature 10PET curve is similar to the minimum
temperature statistics, although the 10PET of daily maximum
temperature shows small negative trends compared with small
positive trends of the daily minimum temperature in the southeast-
ern United States. Fig. 6C shows how the anomalous behavior
observed in the maximum temperature fields affects the mean
temperatures, i.e., the quantity most often used in climate studies.
Overall this figure shows that much of the changes in the extremes
are driven by a shift in the entire distribution of temperatures. This
is especially true for the daily minimum temperatures. The daily
maximum temperatures show evidence for enhanced changes in the
high side of the distribution. As illustrated in Fig. 6A the 90PET
field is even more strongly related to the mean precipitation than
the overall trend in temperature and so we will now focus on it.

The seasonal variation of the correlation slope of the precipita-
tion-90PET relationship is shown in Fig. 7, along with the 1- and
2-sigma confidence intervals computed as described above. Data
for 30–40°N and 40–50°N latitude regions are shown separately to
probe latitudinal changes. The slope is negative and significant at
least to the 1-sigma level throughout the year except in November-
December in the 30–40°N region. The May-June time period shows
a very strong correlation that is significant at well beyond the
2-sigma level, as noted above. A similar analysis using monthly time
periods shows that the May and June months individually show the
most significant correlation of all months. When computed sea-
sonally, both the March-April-May and June-July-August time
periods show significant correlations, in large part from the strong
effect of May and June individually. Thus, we chose to show the
May-June combined period in Figs. 1–6 for the 30–40°N region.
The 40–50°N region shows a similar seasonality, but the most

*Note that other articles have labeled the maximum temperature 90th percentile rate
TX90p (see, for example, refs. 11 and 13). We use different nomenclature because we do
not use the standard 1961–1990 time interval in computation of the percentiles because
we do not use the standard set of indices from ref. 11. Thus, our ‘‘Tmax 90PET’’ corresponds
to ‘‘trend of TX90p’’ discussed elsewhere (e.g., refs. 11 and 13). We also compute the trend
in 10PET in the same direction (i.e., toward the warm part of the distribution) as 90PET to
facilitate comparison between 10 and 90PET. This is opposite to some other articles, so our
‘‘Tmax 10PET’’ corresponds to their ‘‘trend of -TX10p.’’
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Fig. 5. Illustration of typical observations and the method of computing
exceedance rates. The red line shows the 90th percentile values of daily
maximum temperature for the selected station (Cuthbert, GA, GHCND ID
42500092450) over the time interval (1950–2006) for May and June. Crosses
represent observations in 1989, 1990, and 1991, showing those days when
exceedances of the 90th percentile of Tmax are observed. The averaged ex-
ceedance rates for May-June in each year (Ex90) are indicated.

Portmann et al. PNAS � May 5, 2009 � vol. 106 � no. 18 � 7327

EN
V

IR
O

N
M

EN
TA

L
SC

IE
N

CE
S



negative slope is found for this region in the July-August time
period, and the correlation becomes small and statistically insig-
nificant for the months November through April. However, both
the May-June and July-August periods are significant at near the
2-sigma level for 40–50°N. The delay of the large negative slopes as
one goes northward may provide clues in understanding the causes
of this effect, as discussed below.

Discussion
The results shown in this article clearly demonstrate a connection
in the southern United States (30–40°N) between the regional
changes in daily maximum temperatures, in particular, the overall
trend and the 90th percentile exceedance trends (90PET) and
climatological mean precipitation through much of the year, but
most strongly in the May-June time period. In contrast, this
relationship is absent in November and December in the southern
United States, and between November and April in the northern
United States (40–50°N). This connection between precipitation
and changes in the number of warm days is quite robust. It is
noteworthy that the relationship is much weaker for daily minimum

(i.e., nighttime) temperatures, and for the 10PET of daily maximum
temperatures, so this behavior is most strongly a property of the
middle and high part of the daily maximum temperature distribu-
tion. We obtain similar results when using precipitation frequency
in place of mean precipitation.

We have probed the effect of including mean precipitation for
months previous to the time period used in the 90PET calculation
in examining these relationships. We find that including 2 months
previous in the precipitation calculation improves the statistical
significance of the precipitation-90PET connection. However, us-
ing the mean for the same months as the 90PET calculation,
including only the month before, or using the mean precipitation for
the entire year all give qualitatively the same result. The large
temperatures present in the 1950s (see Fig. 2) raise concern that the
observed relationship is sensitive to the time interval used. We have
computed the exceedance–precipitation relationship for May-June
using time intervals starting in 1900, 1940, 1960, 1970 (all ending in
2006) and in all cases the result is qualitatively the same, although
the trends are somewhat smaller when using 1900 or 1970 as the
starting point.

Note that the relationship between hydrological parameters and
daily maximum temperatures has been probed here specifically for
the United States, and does not appear to be universal across the
globe. Although a detailed analysis of all other regions is beyond the
scope of the present study, we note, for example, that trends over
the past 50 years based on ETCCDI indices (11) show increases in
the number of hot daily maxima over large parts of China that are
quite distinct in their relationship to precipitation from that shown
here for the United States (including, e.g., the climatologically
wettest easterly coastal region, whereas decreases can be seen in the
Beijing area and southwest of it, and in the Southwest corner of
China, which are climatologically drier). It was recently found that
trends in daily maximum and minimum temperature decrease with
increasing precipitation when a nearly global dataset is used (4), but
several differences exist between these authors’ result and ours.
First, they find no precipitation amount that gives negative trends,
only smaller positive trends. Second, they find a stronger relation-
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Fig. 6. Variation of the 1950–2006 average precipitation, the 10th and 90th
percentile exceedance trends (10 and 90PET, exceedance toward higher tem-
perature extremes), and the trend in temperature as a function of longitude
for all stations 30–40°N. The temperature statistics are for the May-June
period and precipitation for the March-June period. Stations have been
averaged into 5° longitude bins. Maximum, minimum, and mean temperature
statistics are shown in A–C, respectively.
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Fig. 7. Slope of the relationship between the daily maximum temperature
90th percentile exceedance trends (90PET) and the daily mean precipitation
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shading, respectively.
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ship with Tmin and their DTR trend is found to increase with
increasing precipitation, whereas in the southern United States we
find a stronger relationship with Tmax and decreasing DTR trends
with increasing precipitation in May-June and no significant DTR
variation with precipitation in the annual average. Our study
complements that in ref. 4 by focusing on an anomalous region, by
exploring extremes (which tighten the relationships), and by show-
ing the seasonality and spatial changes of the relationship.

The primary purpose in this article is to present the correlations
between daily minimum and maximum temperature changes, tem-
perature extremes, and precipitation across the United States.
Although this study does not focus on the cause of this relationship,
it is reasonable to consider possible connections between these
properties. As noted in the introduction, previous explanations for
this (or a similar) phenomenon include: trends in precipitation (e.g.,
ref. 1), effects of SSTs (6), local microclimatic effects (7, 8), and
internal variability of the climate system (9). We show above that
trends in precipitation are not able to explain the spatial patterns
observed (Figs. 2 and 4). The effects of SSTs and the downscaling
results were confined to the central United States and not the
southeastern United States. It is unclear whether a similar phe-
nomenon could operate in the southeastern United States. Large-
scale modes of climate variability (ENSO or interdecadal Pacific
variability) can cause a pattern of cooling in the southeastern
United States (see, for example, refs. 16 and 17) but the response
is primarily in the winter season and affects the upper tails of both
minimum and maximum temperature (17). The response of ENSO
in the summer (May-October) is small in the southeastern United
States (figure 4 of ref. 17) and when that analysis is restricted to
May-June it is still found to be small, even if appropriate lags in the
response to ENSO are considered (this is true of the other modes
studied as well). Also, the poor correlation between changes in daily
maximum temperature and the SOI (Fig. 2) does not support a link
to ENSO. Climate variability could certainly be playing a role but
it should be noted that ref. 9 finds cooling in the central United
States in summer and not the southeastern United States, and
statistically significant relationships between trends in maximum
temperature and the mean precipitation that do not depend on
trend length would be difficult to explain by internal climate
variability.

Precipitation and cloudiness are strongly correlated and thus the
relationships we find could be related to either. Both clouds and
precipitation are expected to damp local greenhouse warming;
clouds, although a direct reduction of the anthropogenic green-
house effect, and precipitation, by increasing surface wetness and
thus increasing evaporation at the expense of sensible heating. This

is likely the cause for much of the decrease of trends in daily
maximum temperature we have found (and those found globally in
ref. 4) but one would not expect either of these effects to produce
negative trends in temperature. A number of speculative possibil-
ities exist for producing even larger reductions in the trend, resulting
in the negative trends observed in this article.

The southeastern United States is known to be cloudy and with
a high population density it is likely a rich source of aerosol from
the many cities and towns. Thus, an enhanced direct and indirect
effect could be responsible. However, it is unclear why this effect
alone would produce the seasonality found in Fig. 7. Furthermore,
other cloudy regions with large amounts of industrial activity do not
show this behavior. Something more uniquely tied to this region
appears to be necessary. The strong seasonality of the trend and its
delay as one moves northward suggest a possible link to the growing
season. The southeastern United States has a large source of
volatile organic molecules; concentrations of gases such as isoprene
in the southeastern United States are comparable to those obtained
in the Amazon (18). Recent measurements show that a large
fraction of the secondary organic aerosol (SOA) in this region is of
biogenic origin (e.g., ref. 19) and that SOA of biogenetic origin may
have higher yields in regions with elevated anthropogenic pollution
(20). The wet Southeast has also experienced an extensive reveg-
etation of the natural forest after clearing for agriculture in the late
18th and early 19th centuries (21). Although clearly speculative,
increasing biogenic secondary organic aerosol/cloud effects linked
to forest regrowth and/or interactions with anthropogenic pollution
is one possibility that is qualitatively consistent, not only with the
spatial structure ,but also with the seasonality of the correlation of
the unusual negative temperature trends with precipitation found
in the southeastern United States. Detailed process-based model-
ing studies would be required to proof this hypothesized relation-
ship, which is beyond the scope of the present article.

Whatever its cause, we find the highly significant negative
relationship between precipitation and trends in maximum tem-
perature and its extremes to be intriguing, and it strongly suggests
a link between some type of hydrologic process and key aspects of
the pattern of climate trends across the United States.

Materials and Methods
The GHCND temperature and precipitation data were obtained from ftp://
ftp.ncdc.noaa.gov/pub/data/ghcn/daily and the SOI was obtained from http://
www.cpc.ncep.noaa.gov/data/indices.

ACKNOWLEDGMENTS. We thank Drs. John Daniel and Michael Trainer for
helpful discussions and Jesse Kenyon for calculations using the ETCCDI data.

1. Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and
water vapor on diurnal temperature range. J Climate 12:2451–2473.

2. Madden RA, Williams J (1978) The correlation between temperature and precipitation
in the United States and Europe. Monthly Weather Rev 106:142–147.

3. Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface tem-
perature. Geophys Res Lett, 10.1029/2005GL022760.

4. Zhou L, et al. (2008) Spatial dependence of diurnal temperature range trends on
precipitation from 1950 to 2004. Clim Dyn, 10.1007/s00382–008-0387–5.

5. Trenberth KE, et al. (2007) Observations: Surface and atmospheric climate change.
Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds
Solomon S, et al. (Cambridge Univ Press, Cambridge, UK), pp 235–336.

6. Robinson WA, Reudy R, Hansen JE (2002) General circulation model simulations of
recent cooling in the east-central United States. J Geophys Res, 10.1029/2001JD001577.

7. Pan Z, et al. (2004) Altered hydrologic feedback in a warming climate introduces a
‘‘warming hole.’’ Geophys Res Lett, 10.1029/2004GL020528.

8. Liang XZ, et al. (2006) Regional climate model downscaling of the U.S. summer climate
and future change. J Geophys Res, 10.1029/2005JD006685.

9. Kunkel KE, Liang XZ, Zhu J, Lin Y (2006) Can CGCMs simulate the twentieth-century
‘‘warming hole’’ in the central United States. J Climate 19:4137–4153.

10. Vose R, Menne M, Durre I, Gleason B (2007) GHCN-Daily: A global dataset for climate
extremes research. EOS Trans AGU 88(Jt Assem Suppl):A41A-08 (abstr).

11. Alexander LV, et al. (2006) Global observed changes in daily climate extremes of
temperature and precipitation. J Geophys Res, 10.1029/2005JD006290.

12. Easterling DR, et al. (2000) Climate extremes: Observations, modeling, and impacts.
Science 289:2068–2074.

13. Frich P, et al. (2002) Observed coherent changes in climatic extremes during the second
half of the twentieth century. Climate Res 19:193–212.

14. Zhang XB, Hegerl G, Zwiers FW, Kenyon J (2005) Avoiding inhomogeneity in percentile-
based indices of temperature extremes. J Climate 18:1641–1651.

15. Robeson SM (2004) Trends in time-varying percentiles of daily minimum and maximum
temperature over North America. Geophys Res Lett, 10.1029/2003GL019019.

16. Ropelewski CF, Halpert MS (1986) North American precipitation and temperature
patterns associated with the El Nino/Southern Oscillation (ENSO). Monthly Weather
Rev 114:2352–2362.

17. Kenyon J, Hegerl GC (2008) Influence of modes of climate variability on global
temperature extremes. J. Climate, 10.1175/2008JCLI2125.1.

18. Greenberg JP, et al. (1999) Tethered balloon measurements of biogenic VOCs in the
atmospheric boundary layer. Atmos Environ 33:855–867.

19. Lewis CW, Klouda GA, Ellenson WD (2004) Radiocarbon measurement of the biogenic
contribution to summertime PM-2.5 ambient aerosol in Nashville, TN. Atmos Environ
38:6053–6061.

20. Weber RJ, et al. (2007) A study of secondary organic aerosol formation in the anthro-
pogenic-influenced southeastern United States. J Geophys Res, 10.1029/
2007JD008404.

21. Hurtt GC, et al. (2006) The underpinnings of land-use history: Three centuries of global
gridded land-use transitions, wood-harvest activity, and resulting secondary lands.
Global Change Biol 12:1208–1229.

Portmann et al. PNAS � May 5, 2009 � vol. 106 � no. 18 � 7329

EN
V

IR
O

N
M

EN
TA

L
SC

IE
N

CE
S


