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Summary
Over the past decade it has become clear that there is significant overlap in the clinical spectrum of
frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The identification of TDP-43
as the major disease protein in the pathology of both frontotemporal lobar degeneration with ubiquitin
inclusions and amyotrophic lateral sclerosis provides the first molecular link for these diseases.
Pathological TDP-43 is abnormally phosphorylated, ubiquitinated, and cleaved to generate carboxy-
terminal fragments in affected brain regions. The normal nuclear expression of TDP-43 is also
reduced leading to the hypothesis that sequestration of TDP-43 in pathological inclusions contributes
to disease pathogenesis. Thus, TDP-43 is the newest member of the growing list of neurodegenerative
proteinopathies, but unique in that it lacks features of brain amyloidosis.

Introduction
A wide variety of neurodegenerative diseases are characterized pathologically by the
accumulation of intracellular or extracellular protein aggregates composed of amyloid fibrils
[1]. For example, the pathology of Alzheimer's disease (AD) is defined by senile plaques and
neurofibrillary tangles composed of β-amyloid and microtubule-associated protein tau,
respectively, and Lewy bodies composed of α-synuclein are the disease-defining lesions of
Parkinson's disease. Until recently, the neuropathology of both frontotemporal lobar
degeneration with ubiquitin inclusions (FTLD-U) [2], the most common phenotype associated
with the FTLD syndrome, and amyotrophic lateral sclerosis (ALS) [3] were defined by non-
amyloidogenic ubiquitinated inclusions (UBI).

FTLD, the second most common form of presenile dementia, refers to a heterogeneous group
of neurodegenerative disorders that have in common behavioral and/or language dysfunction
[2]. Some affected individuals manifest a movement disorder such as parkinsonism or motor
neuron disease (MND). While the designation FTLD reflects the prominent frontal and
temporal lobe degeneration, multiple neuropathological abnormalities are identified in these
patients [4]. Two broad pathological subdivisions of FTLD are recognized: brains with tau-
positive inclusions (i.e., tauopathies) and brains with UBI that are not detected with antibodies
to tau, α-synuclein, and β-amyloid (i.e., FTLD-U). Up to 40% of FTLD show a familial pattern
of inheritance with three different genetic abnormalities associated with FTLD-U pathology
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including mutations in progranulin (PGRN) [5,6] and valosin-containing protein (VCP) [7-9]
as well as linkage to a novel locus on chromosome 9p [10-12].

ALS, the most common adult-onset MND, is characterized by rapidly progressive weakness,
muscular wasting, and spasticity resulting in death within a few years [13]. There is loss of
both upper and lower motor neurons with UBI, typically filamentous skeins or compact round
bodies, in the surviving motor cells. Familial forms of ALS (fALS) with Mendelian inheritance
account for ∼10% of cases and are associated with numerous genetic loci including mutations
in five genes: Cu/Zn superoxide dismutase (SOD1), alsin, senataxin, vesicle-/synaptobrevin-
associated membrane protein B, and dynactin. Mutations in SOD1 gene are the most common
accounting for ∼20% of fALS.

Until recently, it was unclear whether the ubiquitin pathology in both FTLD-U and ALS was
associated with the aggregation of a specific protein or through a generalized defect in protein
ubiquitination and degradation. However, this past year, the transactive response (TAR)-DNA
binding Protein with a molecular weight of 43 KDa (TDP-43) was identified as the major
disease protein in the UBI of FTLD-U and ALS [14]. The identification of TDP-43 pathology
in both of these disorders provided a mechanistic link for the following: 1) a large proportion
of ALS patients manifest a range of behavioral and cognitive changes that lie on the spectrum
of FTLD [15]; 2) MND is commonly observed in FTLD-U patients [16]; 3) there is significant
overlap in the ubiquitin pathology observed in ALS and FTLD-U [17]; and 4) identification
of genetic loci and mutations in specific genes in families with co-segregation of both ALS
and FTLD [18]. In this review, we highlight work over the past twelve months on TDP-43 and
its role in the pathogenesis of FTLD-U and ALS.

Identification of TDP-43 as a major disease protein in FTLD-U & ALS
Characterization of the biochemical composition of the UBI in FTLD-U and ALS was
complicated by the relatively low abundance and uneven distribution of the pathology. Unlike
the amyloidogenic inclusions composed of β-amyloid, tau, and α-synuclein, the UBI were not
clearly fibrillar; they were not detected using amyloid binding dyes such as Congo red,
thioflavin S or silver stains. This observation suggested that FTLD-U and ALS are unique
proteinopathies characterized by protein misfolding in the absence of brain amyloidosis, a
signature of many neurodegenerative diseases. Moreover, the description of subtypes of FTLD-
U pathology (Fig. 1) [4,19,20] raised the possibility of multiple disease proteins or pathways.
To address this issue, novel monoclonal antibodies (Mab) were generated to high molecular
weight insoluble protein extracts prepared from FTLD-U brains of distinct subtypes [20]. These
Mab immunolabeled the UBI in the FTLD-U subtype from which they were generated while
a subset of the Mab also immunoblotted disease-specific insoluble proteins extracted from
affected FTLD-U brain tissue. These Mab facilitated an extensive analysis of protein extracts
from FTLD-U brains and led to the identification of TDP-43 as the major component of the
UBI [14]. Despite the pathological heterogeneity among FTLD-U subtypes (Fig. 1),
immunohistochemistry with commercially available antibodies demonstrated TDP-43 in the
UBI of all FTLD-U subtypes as well as sporadic ALS. Furthermore, biochemical analysis of
TDP-43 demonstrated a signature profile of TDP-43 in detergent-insoluble, protein extracts
from affected FTLD-U and ALS tissue [14]. Thus, pathological TDP-43 was abnormally
phosphorylated, ubiquitinated and N-terminally truncated. The identification of these
biochemical modifications suggested a specific role for TDP-43 in the pathogenesis of FTLD-
U and ALS, rather than simply representing a non-specific entrapped protein within UBI.
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Biology of TDP-43
TDP-43, a 414 amino acid nuclear protein encoded by the TARDBP gene on chromosome 1,
was initially cloned from a genomic screen for cellular factors that bind to the TAR-DNA
element of HIV where it acts as a transcriptional repressor [21]. It is highly conserved and
ubiquitously expressed in all tissues including brain [22,23]. The expressed protein contains
two RNA-recognition motifs as well as a glycine-rich C-terminal sequence. It was also
independently identified as part of a complex involved in the splicing of the cystic fibrosis
transmembrane conductance regulator [24] and apolipoprotein A2 genes [25]. The glycine-
rich domain in TDP-43 is required for the exon skipping and splicing inhibitory activity [26,
27], an observation consistent with the finding that the C-terminal domain binds to several
proteins of the heterogeneous nuclear ribonucleoprotein (hnRNP) family involved in the
biogenesis of mRNA [27]. TDP-43 was also recently shown to bind to the proximal promoter
of the mouse SP-10 gene (acrosomal vesicle protein 1) involved in spermatogenesis and to
regulate its expression [28]. Finally, TDP-43 may also act as scaffold for nuclear bodies called
‘GEMS’ through interaction with survival motor neuron (SMN) protein [29]. Thus, the
physiological function(s) of TDP-43 are diverse and incompletely characterized but likely
involve the regulation of multiple biological processes through its binding to single stranded
DNA, RNA, and/or proteins.

TDP-43 pathology in FTLD-U and ALS
As demonstrated in our initial report [14] and rapidly confirmed in several follow up studies,
TDP-43 is a specific and sensitive marker to detect the UBI in both FTLD-U [30-34] and ALS
[32,35,36], including neuronal cytoplasmic inclusions (NCI), dystrophic neurites (DN), and
neuronal intranuclear inclusions (NII). Notably, while physiological TDP-43 is detectable in
the nuclei of unaffected neurons and some glial cells, TDP-43 pathology is associated with a
dramatic reduction of normal nuclear TDP-43 staining, raising the possibility that an essential
function of TDP-43 is lost in FTLD-U and ALS. Immunohistochemistry for TDP-43 also
facilitated the detection of white matter pathology with numerous oligodendroglial cytoplasmic
inclusions in a subset of FTLD-U and ALS cases that was not previously appreciated [32,36,
37].

FTLD-U pathology is heterogeneous with respect to morphology, laminar distribution of
pathological inclusions and relative proportion of intranuclear and cytoplasmic inclusions
leading to the description of four distinct subtypes (Fig. 1) [8,14,19,20,30,38]. The relevance
of the distinct patterns of pathology with respect to disease pathogenesis remains unclear. While
some cases of FTLD-U do not fit neatly into a specific category, a correlation of distinct
histologic subtypes was observed with familial forms of FTLD-U thereby supporting the
significance of this classification [30]. For example, mutations in PGRN, a secreted growth
factor associated associated with cell cycle progression and cell motility, were associated with
type 3 pathology. Nearly all of the mutations in PGRN are predicted to cause premature
termination of the coding sequence by nonsense mediated decay of mutant mRNAs leading to
haploinsufficiency. By contrast, mutations in the gene VCP are characterized by type 4
pathology. VCP, a member of the AAA-ATPase gene family, associates with a number of
protein adaptors to perform a plethora of cellular processes including ubiquitin-dependent
protein degradation, stress responses, programmed cell death, nuclear envelope reconstruction,
and Golgi and endoplasmic reticulum assembly. The mechanism whereby VCP gene mutations
cause neurodegeneration remains unclear although disruption of ubiquitin-dependent protein
degradation pathways has been implicated. Lastly, the recently identified locus on chromosome
9p is associated with type 2 FTLD-U pathology. As yet, no genetic alterations have been
associated with FTLD-U type 1.
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The role of TDP-43 in sporadic ALS versus fALS has also been evaluated. TDP-43 was
detected in the round and skein-like NCI as well as glial inclusions in affected brain regions
from ALS patients with and without dementia [14,32,35,36]. Remarkably, while pathological
TDP-43 was a consistent feature in non-SOD1-fALS, TDP-43 was not detected in the UBI of
any patients with SOD1 mutations [35,36]. Consistent with these findings is the reported
absence of TDP-43 immunoreactivity in inclusions in mutant SOD1 (G93A) transgenic mice
[39]. In contrast, in Guam ALS and parkinsonism-dementia complex (PDC), a disease of
unknown etiology affecting the Chamorro populations and characterized by extensive tau
pathology, TDP-43 inclusions were detected in the spinal cord of both ALS and PDC cases
but not in controls [40]. These TDP-43 inclusions were distinct from the tau pathology in the
spinal cord. Interestingly, TDP-43 pathology was also detected in cortical and limbic regions
from Guam-PDC cases, inclusions that were not detected with antibodies to the tau protein
[40,41]. Thus, these results support the hypothesis that ALS and FTLD-U represent a clinical
spectrum of neurodegenerative disease characterized by TDP-43 pathology (Fig. 1). However,
the absence of TDP-43 in SOD1-fALS implies that motor neuron degeneration in these cases
results from a different disease pathway that also affects motor neurons. However, this
hypothesis is highly controversial [42].

The specificity of TDP-43 as a marker for FTLD-U lesions now permits the investigation of
FTLD-U pathology in the setting of concurrent ubiquitin-positive pathology in other
neurodegenerative diseases (Box 1) [14,30-32,43-45]. Surprisingly, additional TDP-43
pathology similar to that found in FTLD-U was reported in several other neurodegenerative
diseases. This observation raised the possibility that amyloid deposition in the brain (i.e.,
neurofibrillary tangles and Lewy bodies) predisposes TDP-43 to misfold and aggregate to form
non-fibrillar inclusions. However, the clinical significance of concomitant TDP-43 pathology
in these other diseases is unknown.

Pathobiology of TDP-43
The identification of TDP-43 in the UBI of FTLD-U and ALS implicates a role for TDP-43 in
disease pathogenesis. However to date, the proverbial ‘smoking gun’, i.e., genetic variation in
the TARDBP leading to increased risk for disease, is lacking [46]. Although its functions are
reported as a transcriptional repressor and splicing regulator [21-23], the mechanism whereby
TDP-43 contributes to neuron degeneration is unknown (Fig. 2). Nonetheless, based on this
functional data, a number of hypotheses have been generated. The sequestration of TDP-43 in
inclusions could cause a loss of function defect and thereby result in transcriptional
deregulation and aberrant splicing of pre-mRNA. For example, TDP-43 was recently
demonstrated to stabilize low molecular weight neurofilament mRNA via a direct interaction
with the 3′UTR [47]. Loss of TDP-43 activity could destabilize low molecular weight
neurofilament mRNA thereby altering the stoichiometry of neurofilament subunits and leading
to the formation of neurofilament aggregates as observed in ALS. The sequestration of TDP-43
could also alter the cellular distribution of SMN and hnRNP; however, changes in the
expression and posttranslational modification of hnRNP were not observed in FTLD-U and
ALS, and hnRNP were not detected in the UBI [48]. Alternatively, the C-terminal domain of
TDP-43 that aggregates in the inclusions and is implicated in its splicing regulatory function
[23,27], may have aberrant biological activities (i.e., toxic ‘gain of function’). It has also been
hypothesized that PGRN might be a protein binding partner of TDP-43, involved in its
trafficking to and from the nucleus [49]. Thus, dysfunction or dysregulation of PGRN could
contribute to the abnormal compartmentalization of TDP-43. Finally, the abnormal
phosphorylation of TDP-43 may disrupt important signaling pathways or directly affect the
trafficking of TDP-43 itself, thereby leading to neuronal dysfunction. The development of cell
culture and murine model systems will be critical to testing these hypotheses and elucidating
the role of TDP-43 in the pathogenesis of FTLD-U. Furthermore, the development of genetic
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models will be essential to our understanding of the link between TDP-43 and mutations in
multiple different genes including PGRN and VCP.

Conclusions
Despite the significant clinical, genetic, and neuropathologic heterogeneity within FTLD and
ALS, TDP-43 is a common pathological substrate linking FTLD-U and ALS caused by
different genetic alterations. This observation supports the hypothesis that FTLD and ALS
represent two extremes of a clinicopathological spectrum of TDP-43 proteinopathies. An
understanding of the role of TDP-43 in the pathogenesis of FTLD-U and ALS will have to
integrate the biology of multiple distinct genetic elements. However, the absence of
pathological TDP-43 in fALS with SOD1 mutations implies that MND in these cases is not
the familial counterpart of sporadic ALS.

While these are still early days in the understanding of the pathobiology of TDP-43, it is evident
that a new classification of neurodegenerative disorders has emerged (Fig. 1). However, the
TDP-43 proteinopathies are distinct from other protein misfolding neurodegenerative diseases
because of the lack of amyloid fibrils and will likely lead to unique challenges. Nonetheless,
the identification of TDP-43 in the pathological inclusions of FTLD-U and ALS will have
significant implications for the diagnosis and treatment of FTLD and ALS. For example, the
development of assays to monitor levels of normal and pathological TDP-43 in cerebrospinal
fluid could be used as a diagnostic tool to distinguish TDP-43 proteinopathies from other
clinically similar neurodegenerative disorders. Further, the development of imaging ligands
that enable the detection of TDP-43 neuropathology in living patients will provide a tool not
only for diagnosis but also for following the response of patients with a neurodegenerative
TDP-43 proteinopathy to disease-modifying therapies. Finally, the recognition that TDP-43
pathology underlies and links FTLD-U and ALS will be a significant driver of efforts to develop
mechanistically-based therapies for these disorders.

Box 1
Spectrum of TDP-43 pathology in neurodegenerative disease

The initial report identifying TDP-43 in the UBI of FTLD-U and ALS suggested that
TDP-43 is a specific marker for these diseases [14]. However, a follow-up study identified
TDP-43 not only in the UBI of FTLD-U and ALS but also in tau inclusions including the
majority of Pick bodies in Pick's disease, as well as a subset of the neurofibrillary tangles
in AD and tangle-predominant senile dementia and threads and coiled bodies in corticobasal
degeneration [32]. TDP-43 was not detected in the tau pathology of progressive
supranuclear palsy or the α-synuclein pathology in Lewy body disease and multiple system
atrophy. While subsequent studies did not detect TDP-43 in the tau inclusions of both
familial and sporadic tauopathies [30,31], these findings prompted further investigation into
the specificity of TDP-43 pathology.

Amador-Ortiz and colleagues detected TDP-43 pathology in 71% of hippocampal sclerosis
(n = 65) cases [45]. While this result is not surprising in light of the high prevalence of
hippocampal sclerosis in FTLD-U, they also detected TDP-43 pathology in 23% of AD
cases (n = 167). However, double-labeling for TDP-43 and phospho-tau demonstrated that
the TDP-43-immunoreactive pathology was largely distinct from the neurofibrillary
tangles. In a related study on Lewy body disease, co-morbid TDP-43 pathology was
identified in 29% of cases with Dementia with Lewy body and AD pathology, 19% of
Parkinson's disease dementia, and 7% of Parkinson's disease [44]. TDP-43 pathology was
also a consistent feature in affected Chamorrans with Guam-PDC, but not in controls [40,
41]. Whether TDP-43 pathology represents concomitant FTLD-U pathology in these cases
or is analogous to co-localization of α-synuclein pathology in AD remains to be determined.
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Nonetheless, these studies expand the concept of TDP-43 proteinopathies by implication
of TDP-43 in a variety of neurodegenerative diseases characterized by the aggregation of
fibrillar amyloid deposits.
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Figure 1. Proposed classification scheme for TDP-43 proteinopathies
Despite the significant clinical, genetic, and neuropathologic heterogeneity within FTLD and
ALS, TDP-43 is a common pathological substrate linking FTLD-U and ALS caused by
different genetic alterations. This observation supports the hypothesis that FTLD and ALS
represent two extremes of a clinicopathological spectrum of one disease, TDP-43
proteinopathies. FTLD-U is subclassified based on distinct morphological, genetic, and clinical
parameters while dementia is reported in a significant subset of ALS patients. ALS,
amyotrophic lateral sclerosis; DN, dystrophic neurites; fALS, familial amyotrophic lateral
sclerosis; FTLD, frontotemporal lobar degeneration; FTLD-U, frontotemporal lobar
degeneration with ubiquitin inclusions; GCI, glial cytoplasmic inclusions; NCI, neuronal
cytoplasmic inclusions; NII, neuronal intranuclear inclusions; MND, motor neuron disease;
PGRN, progranulin; SOD1, Cu/Zn superoxide dismutase; VCP, valosin-containing protein.
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Figure 2. Model of TDP-43 disease pathogenesis
The aggregation of TDP-43 (depicted in red) in neurons as well as glia leads to its sequestration
in cytoplasmic and intranuclear inclusions as well as dystrophic neurites. The sequestration of
TDP-43 may be toxic due to loss of normal function. Alternatively, the aggregation of TDP-43,
in particular the C-terminal fragment(s) may lead to a toxic gain of function.

Forman et al. Page 12

Curr Opin Neurobiol. Author manuscript; available in PMC 2009 May 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


