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Summary
Mixed-effects linear regression models have become more widely used for analysis of repeatedly
measured outcomes in clinical trials over the past decade. There are formulae and tables for estimating
sample sizes required to detect the main effects of treatment and the treatment by time interactions
for those models. A formula is proposed to estimate the sample size required to detect an interaction
between two binary variables in a factorial design with repeated measures of a continuous outcome.
The formula is based, in part, on the fact that the variance of an interaction is fourfold that of the
main effect. A simulation study examines the statistical power associated with the resulting sample
sizes in a mixed-effects linear regression model with a random intercept. The simulation varies the
magnitude (Δ) of the standardized main effects and interactions, the intraclass correlation coefficient
(ρ ), and the number (k) of repeated measures within-subject. The results of the simulation study
verify that the sample size required to detect a 2 × 2 interaction in a mixed-effects linear regression
model is fourfold that to detect a main effect of the same magnitude.
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1. Introduction
The mixed-effects linear regression model (Harville, 1977; Laird and Ware, 1982) is widely
used in observational studies and randomized controlled clinical trials (RCT) in which there
are repeated measures over time. In designing a study, the Ethical Guidelines of the American
Statistical Association (ASA, 1999) advise statisticians to provide informed recommendations
for sample size such that a research protocol will neither propose an inadequate nor an excessive
number of subjects to detect a scientifically noteworthy result with acceptable statistical power.
Several authors have examined the sample sizes required to detect the main effects and
interaction of treatment and time in longitudinal studies with repeated measures (e.g., Hsieh,
1988; Rochon, 1991; Overall and Doyle, 1994; Hedeker, Gibbons, and Waterneaux, 1999;
Raudenbush and Liu, 2001; Diggle Heagerty, Liang, and Zeger, 2002). Yet a study that is
designed to detect the main effect of treatment will not have sufficient power to detect the
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interaction between two binary fixed effects. In a 2 × 2 factorial fixed-effects ANOVA with
equal cell sizes and an assumption of independence among observations, for instance, the
sample size required to detect an interaction is four times that for a main effect of the same
magnitude (Fleiss, 1986). However, we are not aware of formulae to estimate the sample size
needed to detect an interaction between two binary fixed effects in a mixed-effects linear
regression model for analysis of repeatedly measured correlated data.

The objective of this manuscript is to examine the sample size required to detect a 2 × 2
interaction of two binary fixed effects in mixed-effects linear regression analyses. The model,
described in detail in Section 2, also incorporates a time-varying covariate, but that covariate
does not interact with group membership. We sought to determine if, as with the fixed-effects
factorial ANOVA, the sample size needed to detect an interaction in a repeated measures design
is fourfold that of a main effect. A formula for the sample size required to detect an interaction
is presented below. A simulation study then examines the statistical power of the resulting
sample sizes to detect interactions of various magnitudes in a 2 × 2 factorial design with
repeated measures of a continuous outcome.

2. Mixed-Effects Linear Regression Model and Sample Size Determination
A mixed-effects linear regression model of repeated measures of a continuous dependent
variable, yij, is specified as:

(1)

for subject i (i = 1, …, N), at time j (j = 1, …, k), where β0 is the intercept term, x1, represents
the treatment contrast (x1 = −1/2 if placebo; x1 = 1/2 if investigational treatment), x2 represents
the moderator contrast (x2 = −1/2 if effect moderator is absent; x2 =1/2 if effect moderator is
present), x1x2 represents the treatment by moderator interaction. As defined by Kraemer et al.,
(2002), “… moderators identify on whom and under what circumstances treatments have
different effects”. Randomization to treatment assignment is stratified by the moderator. Note
that N is the total sample size. Therefore N/2 subjects are randomized to each treatment and
the sample size per cell is N/4 for the balanced design with two binary factors, which we
consider here. The coefficients, β1 to β3, represent the magnitude of the corresponding main
effects and interaction, tj represents the time point of the j-th assessment and its coefficient
β4 represents the slope over time. This model assumes parallel slopes across treatment groups
and that the slopes do not vary as a function of the moderator. These assumptions could be
relaxed if either a treatment by time interaction or a treatment by moderator by time interaction
were included in the model. However, here we have chosen to focus on the treatment by
moderator interaction. Therefore, model (1) is an extension of the factorial fixed-effects
ANOVA model, and can be described as a 2 × 2 factorial random intercept ANCOVA model
with tj as a time-varying covariate.

The subject-specific random intercept υi is assumed to be distributed , and the
conditional distribution of error term εij for a given υi is assumed to be independent and identical
with  across time points j within the i-th subject. The marginal distributions of υi and
εij are assumed to be mutually independent, that is Cov(ε, υ)= 0. It follows from those
conditional and mutual independence assumptions that  and

, the intraclass correlation coefficient (ICC), for j ≠ j′.
The standardized effects of β1 to β3 can be quantified as Δm = βm/σ, m = 1,2,3.

The variance of the estimated interaction is four times that of estimated main effect in the
factorial fixed-effects ANOVA (section 4.2 in Fleiss, 1986). That relation also holds for the 2
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× 2 factorial random intercept ANCOVA model (1) that we are considering here, since neither
Var(Yij) = σ2 nor the correlation, ρ, depends on subject i or time point j. Specifically, the
following holds:

and therefore

(2)

where β ̂1, β ̂2, and β ̂3, are corresponding maximum likelihood estimates of β1, β2, and β3. It
follows that the sample size needed to detect an interaction effect will be four times that for
detecting a main effect of the identical magnitude because the sample size is a linear function
of the variance of an effect estimate.

The total number of subjects, say N(Δ1), required to detect a main effect with power 1-β (where
β is the level of type II error) was presented elsewhere (Donner et al., 1981; Donner and Klar,
2000; Diggle et al., 2002):

(3)

It follows that N(Δ1) = N(Δ2) for Δ1 = Δ2. However, for effects of the same magnitude, Δ1 =
Δ3, the total number of subjects, say N(Δ3), required to detect an interaction effect with power
1-β can then be expressed as fourfold that of the main effect. Finally, combining the sample
size determination (3) for the main effect with the fourfold increase in the variance of the mle
of the interaction effect of interest (2), we propose the following for sample size determination
for detecting the interaction:

(4)

3. Simulation Study
The primary focus of this simulation study was to examine whether the statistical power to
detect an interaction of two fixed effects in a 2 × 2 factorial design with repeated measures of
a continuous outcome in model (1) is consistent with the sample sizes derived from (4). The
statistical power to detect a main effect with the sample sizes derived from (3) was also
examined. A Wald test with a two-tailed alpha-level of .05 was used to test each of two
hypotheses:

The simulations were specified such that the magnitude of either one main effect (Δ1) or the
interaction (Δ3) ranged from 0.20 to 0.50 and the remaining two effects were null. Thus the
results of the interaction (Δ3) and only one main effect (Δ1) will be discussed hereafter.
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3.1. Simulations Specifications
The simulation was designed by varying following specifications:

1. Main effect, β1, specified as standardized effects (Δ1): .20, .25, .30, .35, .40, .45, .50

2. Interaction, β3, specified as standardized effects (Δ3): .20, .25, .30, .35, .40, .45, .50

3. Intraclass correlation coefficient (ICC) ρ : .20, .40, .60

4. Repeated measures, within subject, over time (k): 4, 6, 8

5. Total number of subjects, N(Δ1), based on equation (3), to detect the respective main
effects (Δ1) with 80%, 90%, and 95% power

6. The total number of subjects, N(Δ3), to detect the respective interactions (Δ3) with
80% 90%, and 95% power, based on equation (4).

3.2. Data Generation
The simulated outcome variable for the four treatment by moderator cells was generated as a
time-varying continuous variable (Yij) based on normal distributions. Specifically, we first
generated from  and then for given υi we independently generated εij from .
Those simulated random values were then added to the respective fixed main effect and
interaction. As specified above, the magnitude of either the main effect (Δ1) or the interaction
of the two binary fixed effects (Δ3) ranged from 0.20 to 0.50. For each of 63 combinations of
simulation specifications for the interaction (7Δ3 × 3ρ × 3k) for each level of power, 6000 data
sets were generated. Similarly, 6000 data sets were generated for each of 63 combinations of
simulation specifications for the main effect (7Δ1 × 3ρ × 3k) for each level of power. We chose
to generate 6000 data sets per combination of specifications based on the precision of the
resulting power estimates. Specifically, based on 6000 simulations, the 95% confidence
interval for 80% power ranges from 0.789 to 0.810, for 90% power it ranges from 0.892 to
0.908, and for 95% power it ranges from .945 to .956.

3.3. Evaluation of Statistical Power
For each data set, model (1) was fit to the simulated outcome data using the S-plus routine
“lme” with maximum likelihood (ML) method and p-values for the effects were retained for
estimation of empirical power. Specifically, the empirical statistical power was defined as the
proportion of the 6000 analyses per simulation specification in which the null hypothesis was
rejected at a two-tailed alpha-level of .05. S-plus 7.0 was used for all computations.

4. Simulation Results
Empirical power estimates for each specification of the main effect models (Table 1 for 80%
power; Table 2 for 90% power; Table 3 for 95% power) are consistent with the sample size N
(Δ1) calculation based on equation (3). Furthermore, the required sample sizes N(Δ3) for an
interaction are indeed fourfold that of a main effect of the same magnitude. For example, for
80% power, with ρ = 0.20 and k=4 observations per subject, N(Δ3)=808 subjects in total (or
202/cell) are needed for power of 80% to detect an interaction effect (Δ3) of .25; N(Δ3)=560
subjects are needed for Δ3=0.30, 320 subjects for Δ3=0.40 and N(Δ3)=208 subjects for Δ3=0.50.
Similar patterns hold for ρ = 0.40, 0.60 and k = 6, 8, as shown in Table 1, yet the required
sample sizes increase with greater ρ . The required N(Δ3)’s are fourfold N(Δ1) for the main
effects for all values of k, Δ and ρ, For example, the corresponding sample size for a main
effect with ρ = 0.20 and k=4 are N(Δ1)=202 (Δ1=0.25), N(Δ1)=140 (Δ1=0.30), N(Δ1)=80
(Δ1=0.40) and N(Δ1)=52 (Δ1=0.50). The same relation holds true for power of .90 (Table 2)
and .95 (Table 3). Thus, a multiplicative factor of four can be used to estimate the required
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sample size for an interaction effect, given the N(Δ1) for a main effect of the same magnitude
based on the equation (3).

5. Application
There is a recent NIH initiative (NIH: RFA-MH-09-010) to identify personalized treatments
by designing clinical trials that test not only the effect of treatment, but moderators of the
treatment effect. The goal of such a trial would be to test whether an hypothesized subject
characteristic (i.e., the moderator) is associated with enhanced or inhibited treatment response.
In either case, a treatment by moderator could test an important clinical question, in that it
would help the clinician provide a targeted intervention to patients in need.

Consider, for example, an RCT of an antidepressant that is hypothesized to be more effective
in the subgroup of subjects who carry the short allele of the serotonin transporter gene
polymorphism (5-HTTLPR). Subjects meeting criteria for major depressive disorder will be
randomized to either fluoxetine or placebo and evaluated weekly with the Quick Inventory of
Depressive Symptomatology-Self-Rated (QIDS-SR; Rush et al., 2003) over a 6 week trial
(k=6). The sample will be equally divided by recruiting half of the subjects having the short
allele and the other half without the short allele. Randomization will then stratified by allelic
variation. The study will be designed to detect an interaction effect as small as Δ3=0.35. For
example, that would represent a difference in response between the two allele groups, within
a treatment cell, of about one-third of a standard deviation on the QIDS-SR, which will
represent about 6 points, or a clinically meaningful effect. The total sample size required for
power of 80% will vary with the intraclass correlation coefficient: N(Δ3) =344 (ρ =0.20), N
(Δ3)=520 (ρ =0.40), and N(Δ3)=688 (ρ =0.60). In contrast, the total sample size for power of
90% is N(Δ3) =464 (ρ =0.20), N(Δ3)=688 (ρ =0.40), and N(Δ3)=920 (ρ =0.60) and, for power
of .95%, N(Δ3) =568 (ρ =0.20), N(Δ3)=856 (ρ =0.40), and N(Δ3)=1136 (ρ =0.60).

6. Discussion
This simulation study examined required sample sizes for the main effects and interaction of
two binary fixed effects in a mixed-effects linear regression model with a random intercept.
The results indicate that, for a given set of design specifications, four times as many subjects
are required to detect an interaction as for a main effect, as specified in our formula (4). The
formula was verified by simulation for 80%, 90%, and 95% statistical power. This relationship
did not depend on the standardized effect size Δm, the number of observations per subject k,
or the intraclass correlation coefficient ρ.

The simulation results indicate that required sample sizes for the main effect were in accord
with estimates based on equation (3). It is worth noting that linear interpolation of N(Δ3)
appears to be accurate across ICCs, for a given k and Δ3. However, interpolation is not
warranted across Δ3’s or k’s.

The simulation study examined statistical power of the interaction of two binary fixed effects
in a mixed-effects linear regression model with a random intercept. Equation (4) does not
necessarily apply to a model with a random slope. Furthermore we did not examine the required
sample size in the presence of a treatment by time interaction or a treatment by moderator by
time interaction. Similarly, the results presented here do not apply to sample sizes needed to
detect interactions among categorical covariates with more than two levels. An investigation
into that issue would involve a likelihood ratio test, not the normal approximation that was
used here.

An RCT that is specifically designed to test a treatment by moderator interaction could yield
valuable information to guide clinical decision making regarding appropriate interventions for
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subgroups of those with the diagnosis of interest. However, given the sheer number of subjects
that is needed to detect that interaction, a researcher might consider an alternative design. For
instance, if the objective of a study is to demonstrate efficacy in a particular subgroup, one that
has been identified in preliminary research, the RCT inclusion criteria might be designated to
enroll only that subgroup. Thus the focus would no longer be on a moderating effect, but instead
on treatment of a group of particular interest.

The results of this simulation study provide sample size estimates for statistical power of 80%,
90%, and 95% to detect various standardized main effects and interactions between two binary
fixed effects in a mixed-effects linear regression model with a random intercept. The range of
the magnitude of those effects, the number of repeated observations, and the ρ ‘s should be
useful for broad application. However, because the sample size required to detect an interaction
is four times that of a main effect, equations (3) and (4) can be used to estimate sample size
for research designs with specifications that were not examined here.
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